Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
Cancer Biol Ther ; 25(1): 2375440, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38978225

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most lethal malignant tumors worldwide. Brahma-related gene 1 (BRG1), as a catalytic ATPase, is a major regulator of gene expression and is known to mutate and overexpress in HCC. The purpose of this study was to investigate the mechanism of action of BRG1 in HCC cells. In our study, BRG1 was silenced or overexpressed in human HCC cell lines. Transwell and wound healing assays were used to analyze cell invasiveness and migration. Mitochondrial membrane potential (MMP) and mitochondrial permeability transition pore (mPTP) detection were used to evaluate mitochondrial function in HCC cells. Colony formation and cell apoptosis assays were used to evaluate the effect of BRG1/TOMM40/ATP5A1 on HCC cell proliferation and apoptosis/death. Immunocytochemistry (ICC), immunofluorescence (IF) staining and western blot analysis were used to determine the effect of BRG1 on TOMM40, ATP5A1 pathway in HCC cells. As a result, knockdown of BRG1 significantly inhibited cell proliferation and invasion, promoted apoptosis in HCC cells, whereas BRG1 overexpression reversed the above effects. Overexpression of BRG1 can up-regulate MMP level, inhibit mPTP opening and activate TOMM40, ATP5A1 expression. Our results suggest that BRG1, as an oncogene, promotes HCC progression by regulating TOMM40 affecting mitochondrial function and ATP5A1 synthesis. Targeting BRG1 may represent a new and effective way to prevent HCC development.


Subject(s)
Apoptosis , Carcinoma, Hepatocellular , Cell Proliferation , DNA Helicases , Liver Neoplasms , Mitochondria , Mitochondrial Precursor Protein Import Complex Proteins , Nuclear Proteins , Transcription Factors , Humans , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Cell Movement , DNA Helicases/metabolism , DNA Helicases/genetics , Gene Expression Regulation, Neoplastic , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Membrane Potential, Mitochondrial , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Proton-Translocating ATPases/metabolism , Mitochondrial Proton-Translocating ATPases/genetics , Neoplasm Metastasis , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics
2.
Reprod Sci ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39060752

ABSTRACT

Polycystic ovary syndrome (PCOS) is a metabolic disease that affects the reproductive system, and its pathogenesis remains unresolved. Through the application of bioinformatics and molecular biology techniques, this study has identified a significant association between translocase of outer mitochondrial membrane 40 (TOMM40) and both PCOS and pan-cancers. The selection of PCOS biomarkers included TOMM40, which we found to be significantly decreased in the PCOS group both in vitro and in vivo, using molecular biology methods such as Western Blot as well as immunohistochemistry. Over-expression TOMM40 can rescue the effect on apoptosis rate and proliferation suppression induced by DHEA in KGN cells. TOMM40 as a biomarker for the diagnosis of PCOS. The pan-cancer analysis revealed an association between elevated TOMM40 expression in Uterine Corpus Endometrial Carcinoma and an unfavorable prognosis, while increased TOMM40 expression in six tumor types was linked to a favorable prognosis. Therefore, TOMM40 can be regarded as a promising biomarker for diagnosing both PCOS and pan-cancer.

3.
J Clin Med ; 13(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38892888

ABSTRACT

Aims: TOMM40 single nucleotide polymorphism (SNP) rs2075650 consists of allelic variation c.275-31A > G and it has been linked to Alzheimer disease, apolipoprotein and cholesterol levels and other risk factors. However, data on its role in cardiovascular disorders are lacking. The first aim of the study is to evaluate mortality according to TOMM40 genotype in a cohort of selected patients affected by advanced atherosclerosis. Second aim was to investigate the relationship between Xg and AA alleles and the presence of conduction disorders and implantation of defibrillator (ICD) or pacemaker (PM) in our cohort. Materials and Methods: We enrolled 276 patients (mean age 70.16 ± 7.96 years) affected by hemodynamic significant carotid stenosis and/or ischemia of the lower limbs of II or III stadium Fontaine. We divided the population into two groups according to the genotype (Xg and AA carriers). We evaluated several electrocardiographic and echocardiographic parameters, including heart rate, rhythm, presence of right and left bundle branch block (LBBB and RBBB), PR interval, QRS duration and morphology, QTc interval, and left ventricular ejection fraction (LVEF). We clinically followed these patients for 82.53 ± 30.02 months and we evaluated the incidence of cardiovascular events, number of deaths and PM/ICD implantations. Results: We did not find a difference in total mortality between Xg and AA carriers (16.3 % vs. 19.4%; p = 0.62). However, we found a higher mortality for fatal cardiovascular events in Xg carriers (8.2% vs. 4.4%; HR = 4.53, 95% CI 1.179-17.367; p = 0.04) with respect to AA carriers. We noted a higher percentage of LBBB in Xg carriers (10.2% vs. 3.1%, p = 0.027), which was statistically significant. Presence of right bundle branch block (RBBB) was also higher in Xg (10.2% vs. 4.4%, p = 0.10), but without reaching statistically significant difference compared to AA patients. We did not observe significant differences in heart rate, presence of sinus rhythm, number of device implantations, PR and QTc intervals, QRS duration and LVEF between the two groups. At the time of enrolment, we observed a tendency for device implant in Xg carriers at a younger age compared to AA carriers (58.50 ± 0.71 y vs. 72.14 ± 11.11 y, p = 0.10). During the follow-up, we noted no statistical difference for new device implantations in Xg respect to AA carriers (8.2% vs. 3.5%; HR = 2.384, 95% CI 0.718-7.922; p = 0.156). The tendency to implant Xg at a younger age compared to AA patients was confirmed during follow-up, but without reaching a significant difference(69.50 ± 2.89 y vs. 75.63 ± 8.35 y, p = 0.074). Finally, we pointed out that Xg carriers underwent device implantation 7.27 ± 4.43 years before AA (65.83 ± 6.11 years vs. 73.10 ± 10.39 years) and that difference reached a statistically significant difference (p = 0.049) when we considered all patients, from enrollment to follow-up. Conclusions: In our study we observed that TOMM40 Xg patients affected by advanced atherosclerosis have a higher incidence of developing fatal cardiovascular events, higher incidence of LBBB and an earlier age of PM or ICD implantations, as compared to AA carriers. Further studies will be needed to evaluate the genomic contribution of TOMM40 SNPs to cardiovascular deaths and cardiac conduction diseases.

4.
Iran J Public Health ; 53(3): 663-670, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38919296

ABSTRACT

Background: We aimed to investigate two polymorphisms, rs8106922 and rs157580 of TOMM40 in Alzheimer's disease (AD). Methods: In the present case-control research, we collected blood samples from 117 AD patients and 130 controls from Alzheimer's Hospital, residents of Tehran, Iran during the winter 2020 to autumn 2022. Following extraction of DNA, Genotyping of TOMM40 polymorphisms rs8106922 and rs157580 were examined by sequencing and ARMS/PCR approaches. We compared distributions of genotypes in both patient and healthy groups using the Chi-Square test. Results: Regarding rs157580, a statistically significant difference was observed in the GA genotype frequency between patient and healthy groups, in both univariate and multivariate modes with these results that have come respectively, and it can be regarded as a protection factor P<0.05).. No significant difference was observed in the frequency of A and G alleles between patient and healthy groups. Besides, concerning rs8106922, the AG genotype frequency in research groups in both univariate and multivariate cases, with these results that have come respectively was significantly different (P=0.003) & (P=0.009). Regarding GG genotype, a statistically significant difference was observed between the patient and healthy groups in both univariate and multivariate cases, respectively (P=0.419) & (P=0.425). Significant differences were observed in the G allele frequency for rs8106922 in the healthy and patient groups (P=0.007), it can be regarded as a potential protective factor. Conclusion: It is possible to consider the TOMM40 gene as one of the potential genes concerning Alzheimer's disease.

5.
Biochem Genet ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649557

ABSTRACT

Breast cancer (BRCA) is currently the most commonly diagnosed malignancy in women worldwide. Previous studies have demonstrated that mitophagy is important for the prevention and treatment of BRCA. However, few studies have focused on the individual mitochondrial autophagy-related genes (MARG) in human cancers. Based on bioinformatics analyses, TOMM40 was identified as a prognostic DEMARG (PDEMARGs); Kaplan-Meier (KM) survival analysis also indicates that TOMM40 can be useful as a prognostic indicator in BRCAs, with patients in the high expression group having a poorer prognosis. For 20 distinct cancer kinds, there were appreciable differences in the expression of TOMM40 between tumor and normal tissues; in addition, in 21 different cancer types, there were associations between the expression profile of TOMM40 and patient prognosis. Gene Set Enrichment Analysis (GSEA), functional enrichment analysis, and immunological and drug sensitivity analyses of TOMM40 have indicated its biological significance in pan-cancers. Knockdown of TOMM40 in MDA-MB-231 cells inhibited their proliferation, migration, and invasiveness. In conclusion, we found that TOMM40 has prognostic value in 21 cancers, including breast cancer, by bioinformatics analysis. Based on immune correlation analysis, TOMM40 may also be a potential immunotherapeutic target for the treatment of BRCA. Therefore, our results may provide researchers to further explore the role of MARGs, especially TOMM40, in the developmental process of breast cancer, which may provide new directions and targets for the improvement of prognosis of breast cancer patients and their treatment.

6.
J Cancer Res Clin Oncol ; 150(2): 48, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38285218

ABSTRACT

Osteosarcoma (OS) is the most common malignancy in children and adolescents and has a high probability of recurrence and metastasis. A growing number of studies have shown that neutrophil extracellular traps (NETs) are strongly associated with cancer metastasis, but in osteosarcoma, genes associated with NETs that promote osteosarcoma recurrence and metastasis remain to be explored. We systematically investigated the gene expression patterns of NETs in OS samples from the GEO database. NETs molecular typing was evaluated based on NETs expression profiles, and the association between NETs molecular subtypes and immune microenvironment and metastatic features were explored. Ultimately, we constructed a signature model and column line graph associated with metastasis prediction and screened possible potential drugs for metastatic osteosarcoma. We established two different molecular subtypes of NETs, which showed significant differences in metastatic status, metastasis time, tumor immune microenvironment, and biological effects. We also constructed a NETs-related gene metastasis signature(NRGMS) to assess the expression pattern of NETs in patients to predict metastatic recurrence in osteosarcoma patients. We screened for TOMM40 and FH associated with metastatic recurrence in osteosarcoma patients. Overall, this study constructs a predictive model for osteosarcoma metastasis of NETs-related genes, which is expected to provide new insights into the metastasis of osteosarcoma.


Subject(s)
Bone Neoplasms , Extracellular Traps , Neoplasms, Second Primary , Osteosarcoma , Adolescent , Child , Humans , Extracellular Traps/genetics , Osteosarcoma/genetics , Databases, Factual , Bone Neoplasms/genetics , Tumor Microenvironment/genetics
7.
Article in English | MEDLINE | ID: mdl-38231050

ABSTRACT

BACKGROUND: A link between cholesterol and endometrial cancer has been established, but current studies have been limited in their findings. We aimed to elucidate the causal relationship between cholesterol and endometrial cancer and to find prognostic genes for endometrial cancer. METHODS: We first explored the causal relationship between total cholesterol and endometrial cancer using two-sample Mendelian randomization and then obtained differential genes to screen for prognosis-related genes in endometrial cancer. Then, we utilized pan-cancer analysis based on RNA sequencing data to evaluate the expression pattern and immunological role of the Translocase of Outer Mitochondrial Membrane 40 (TOMM40). Through multiple transcriptome datasets and multi-omics in-depth analysis, we comprehensively explore the relationship of TOMM40 expression with clinicopathologic characteristics, clinical outcomes and mutations in endometrial cancer. Lastly, we systematically associated the TOMM40 with different cancers from immunological properties from numerous perspectives, such as immune cell infiltration, immune checkpoint inhibitors, immunotherapy, gene mutation load and microsatellite instability. RESULTS: We found a negative association between cholesterol and endometrial cancer. A total of 78 genes were enriched by relevant single nucleotide polymorphisms (SNPs), of which 12 upregulated genes and 5 downregulated genes in endometrial cancer. TOMM40 was found to be a prognostic gene associated with endometrial cancer by prognostic analysis. TOMM40 was found to be positively correlated with the infiltration of most immune cells and immunization checkpoints in a subsequent study. Meanwhile, TOMM40 also was an oncogene in many cancer types. High TOMM40 was associated with lower genome stability. CONCLUSION: The findings of our study indicate that the maintenance of normal total cholesterol metabolism is associated with a decreased risk of developing endometrial cancer. Moreover, TOMM40 may have potential as a prognostic indicator for endometrial cancer.

8.
Front Genet ; 14: 1203017, 2023.
Article in English | MEDLINE | ID: mdl-38028602

ABSTRACT

Research into the genetic underpinnings of neuropsychiatric illness has occurred at many levels. As more information accumulates, it appears that many approaches may each offer their unique perspective. The search for low penetrance and common variants, that may mediate risk, has necessitated the formation of many international consortia, to pool resources, and achieve the large sample sizes needed to discover these variants. There has been the parallel development of statistical methods to analyse large datasets and present summary statistics which allows data comparison across studies. Even so, the results of studies on well-characterised clinical datasets of modest sizes can be enlightening and provide important clues to understanding these complex disorders. We describe the use of common variants, at multiallelic loci like TOMM40 and APOE to study dementia, weighted genetic risk scores for alcohol-induced liver cirrhosis and whole exome sequencing to identify rare variants in genes like PLA2G6 in familial psychoses and schizophrenia in our Indian population.

9.
Int J Mol Sci ; 24(20)2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37895139

ABSTRACT

In this manuscript, we introduced a French EOAD patient in Korea who carried the presenilin-1 (PSEN1) Glu318Gly mutations with four possible risk variants, including sortilin-related receptor 1 (SORL1) Glu270Lys, ATP-binding cassette subfamily A member 7 (ABCA7) Val1946Met, translocase of outer mitochondrial membrane 40 (TOMM40) Arg239Trp, and granulin (GRN) Ala505Gly. The patient started to present memory decline and behavioral dysfunction in his early 60s. His brain imaging presented amyloid deposits by positron emission tomography (PET-CT). The multimer detection system (MDS) screening test for plasma for amyloid oligomers was also positive, which supported the AD diagnosis. It was verified that PSEN1 Glu318Gly itself may not impact amyloid production. However, additional variants were found in other AD and non-AD risk genes, as follows: SORL1 Glu270Lys was suggested as a risk mutation for AD and could increase amyloid peptide production and impair endosome functions. ABCA7 Val1946Met was a novel variant that was predicted to be damaging. The GRN Ala505Gly was a variant with uncertain significance; however, it may reduce the granulin levels in the plasma of dementia patients. Pathway analysis revealed that PSEN1 Glu318Gly may work as a risk factor along with the SORL1 and ABCA7 variants since pathway analysis revealed that PSEN1 could directly interact with them through amyloid-related and lipid metabolism pathways. TOMM40 and PSEN1 could have common mechanisms through mitochondrial dysfunction. It may be possible that PSEN1 Glu318Gly and GRN Ala505Gly would impact disease by impairing immune-related pathways, including microglia and astrocyte development, or NFkB-related pathways. Taken together, the five risk factors may contribute to disease-related pathways, including amyloid and lipid metabolism, or impair immune mechanisms.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/diagnosis , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/metabolism , Amyloidogenic Proteins/metabolism , ATP-Binding Cassette Transporters/genetics , Granulins/metabolism , LDL-Receptor Related Proteins/metabolism , Membrane Transport Proteins/genetics , Mutation , Positron Emission Tomography Computed Tomography , Presenilin-1/genetics , Presenilin-1/metabolism , Male , Middle Aged
10.
J Prev Alzheimers Dis ; 10(4): 886-894, 2023.
Article in English | MEDLINE | ID: mdl-37874111

ABSTRACT

BACKGROUND: The 523 poly-T length polymorphism (rs10524523) in TOMM40 has been reported to influence longitudinal cognitive test performance within APOE ε3/3 carriers. The results from prior studies are inconsistent. It is also unclear whether specific APOE and TOMM40 genotypes contribute to heterogeneity in longitudinal cognitive performance during the preclinical stages of AD. OBJECTIVES: To determine the effects of these genes on longitudinal cognitive change in early preclinical stages of AD, we used the clinical trial data from the recently concluded TOMMORROW study to examine the effects of APOE and TOMM40 genotypes on neuropsychological test performance. DESIGN: A phase 3, double-blind, placebo-controlled, randomized clinical trial. SETTING: Academic affiliated and private research clinics in Australia, Germany, Switzerland, the UK, and the USA. PARTICIPANTS: Cognitively normal older adults aged 65 to 83. INTERVENTION: Pioglitazone tablet. MEASUREMENTS: Participants from the TOMMORROW trial were stratified based on APOE genotype (APOE ε3/3, APOE ε3/4, APOE ε4/4). APOE ε3/3 carriers were further stratified by TOMM40'523 genotype. The final analysis dataset consists of 1,330 APOE ε3/3 carriers and 7,001 visits. Linear mixed models were used to compare the rates of decline in cognition across APOE groups and the APOE ε3/3 carriers with different TOMM40'523 genotypes. RESULTS: APOE ε3/4 and APOE ε4/4 genotypes compared with the APOE ε3/3 genotype were associated with worse performance on measures of global cognition, episodic memory, and expressive language. Further, over the four years of observation, the APOE ε3/3 carriers with the TOMM40'523-S/S genotype showed better global cognition and accelerated rates of cognitive decline on tests of global cognition, executive function, and attentional processing compared to APOE ε3/3 carriers with TOMM40'523-S/VL and VL/VL genotypes and compared to the APOE ε3/4 and APOE ε4/4 carriers. CONCLUSIONS: We suggest that both APOE and TOMM40 genotypes may independently contribute to cognitive heterogeneity in the pre-MCI stages of AD. Controlling for this genetic variability will be important in clinical trials designed to slow the rate of cognitive decline and/or prevent symptom onset in preclinical AD.


Subject(s)
Apolipoprotein E4 , Apolipoproteins E , Aged , Humans , Apolipoprotein E3/genetics , Apolipoprotein E4/genetics , Apolipoproteins E/genetics , Cognition , Genotype , Mitochondrial Precursor Protein Import Complex Proteins
11.
Neurobiol Aging ; 132: 131-144, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37804609

ABSTRACT

Both the APOE ε4 and TOMM40 rs10524523 ("523") genes have been associated with risk for Alzheimer's disease (AD) and neuroimaging biomarkers of AD. No studies have investigated the relationship of TOMM40'523-APOE ε4 on the structural complexity of the brain in AD individuals. We quantified brain morphology and multiple cortical attributes in individuals with mild cognitive impairment (MCI) and AD, then tested whether APOE ε4 or TOMM40 poly-T genotypes were related to AD morphological biomarkers in cognitively unimpaired (CU) and MCI/AD individuals. We identified several AD-specific phenotypes in brain morphology and found that TOMM40 poly-T short alleles are associated with early, AD-specific brain morphological differences in healthy aging. We observed decreased cortical thickness, sulcal depth, and fractal dimension in CU individuals with the poly-T short alleles. Moreover, in MCI/AD participants, the APOE ε4 (TOMM40 L) individuals had a higher rate of gene-related morphological markers indicative of AD. Our data suggest that TOMM40'523 is associated with early brain structure variations in the precuneus, temporal, and limbic cortices.


Subject(s)
Alzheimer Disease , Humans , Haplotypes , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Apolipoprotein E4/genetics , Genotype , Phenotype , Biomarkers , Mitochondrial Precursor Protein Import Complex Proteins
12.
J Alzheimers Dis ; 95(4): 1697-1707, 2023.
Article in English | MEDLINE | ID: mdl-37718796

ABSTRACT

BACKGROUND: TOMM40 '523 has been associated with cognitive performance and risk for developing Alzheimer's disease independent of the effect of APOE genotype. Few studies have considered the longitudinal effect of this genotype on change in cognition over time. OBJECTIVE: Our objective was to evaluate the relationship between TOMM40 genotype status and change in cognitive performance in the TOMMORROW study, which was designed to prospectively evaluate an algorithm that includes TOMM40 '523 for genetic risk for conversion to mild cognitive impairment. METHODS: We used latent growth curve models to estimate the effect of TOMM40 allele carrier (short, very long) status on the intercept and slope of change in cognitive performance in four broad cognitive domains (attention, memory, executive function, and language) and a combined overall cognitive score over 30 months. RESULTS: TOMM40 very long allele carriers had significantly lower baseline performance for the combined overall cognitive function score (B = -0.088, p = 0.034) and for the executive function domain score (B = -0.143, p = 0.013). Slopes for TOMM40 very long carriers had significantly greater increases over time for the executive function domain score only. In sensitivity analyses, the results for executive function were observed in participants who remained clinically stable, but not in those who progressed clinically over the study duration. CONCLUSIONS: Our results add to the growing body of evidence that TOMM40, in the absence of APOEɛ4, may contribute to cognitive changes with aging and dementia and support the view that mitochondrial function is an important contributor to Alzheimer's disease risk.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Homozygote , Alzheimer Disease/genetics , Executive Function , Genotype , Cognitive Dysfunction/genetics , Cognition , Apolipoproteins E/genetics , Mitochondrial Precursor Protein Import Complex Proteins
13.
J Alzheimers Dis ; 94(4): 1563-1576, 2023.
Article in English | MEDLINE | ID: mdl-37458041

ABSTRACT

BACKGROUND: The human chromosome 19q13.32 is a gene rich region and has been associated with multiple phenotypes, including late onset Alzheimer's disease (LOAD) and other age-related conditions. OBJECTIVE: Here we developed the first humanized mouse model that contains the entire TOMM40 and APOE genes with all intronic and intergenic sequences including the upstream and downstream regions. Thus, the mouse model carries the human TOMM40 and APOE genes and their intact regulatory sequences. METHODS: We generated the APOE-TOMM40 humanized mouse model in which the entire mouse region was replaced with the human (h)APOE-TOMM40 loci including their upstream and downstream flanking regulatory sequences using recombineering technologies. We then measured the expression of the human TOMM40 and APOE genes in the mice brain, liver, and spleen tissues using TaqMan based mRNA expression assays. RESULTS: We investigated the effects of the '523' polyT genotype (S/S or VL/VL), sex, and age on the human TOMM40- and APOE-mRNAs expression levels using our new humanized mouse model. The analysis revealed tissue specific and shared effects of the '523' polyT genotype, sex, and age on the regulation of the human TOMM40 and APOE genes. Noteworthy, the regulatory effect of the '523' polyT genotype was observed for all studied organs. CONCLUSION: The model offers new opportunities for basic science, translational, and preclinical drug discovery studies focused on the APOE genomic region in relation to LOAD and other conditions in adulthood.


Subject(s)
Alzheimer Disease , Apolipoproteins E , Humans , Animals , Mice , Apolipoproteins E/genetics , Genotype , Phenotype , Introns , Gene Expression , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Genetic Predisposition to Disease , Mitochondrial Precursor Protein Import Complex Proteins
14.
Int J Mol Sci ; 24(13)2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37445616

ABSTRACT

The Apolipoprotein E (APOE) locus has garnered significant clinical interest because of its association with Alzheimer's disease (AD) and longevity. This genetic association appears across multiple genes in the APOE locus. Despite the apparent differences between AD and longevity, both conditions share a commonality of aging-related changes in mitochondrial function. This commonality is likely due to accumulative biological effects partly exerted by the APOE locus. In this study, we investigated changes in mitochondrial structure/function-related markers using oxidative stress-induced human cellular models and postmortem brains (PMBs) from individuals with AD and normal controls. Our results reveal a range of expressional alterations, either upregulated or downregulated, in these genes in response to oxidative stress. In contrast, we consistently observed an upregulation of multiple APOE locus genes in all cellular models and AD PMBs. Additionally, the effects of AD status on mitochondrial DNA copy number (mtDNA CN) varied depending on APOE genotype. Our findings imply a potential coregulation of APOE locus genes possibly occurring within the same topologically associating domain (TAD) of the 3D chromosome conformation. The coordinated expression of APOE locus genes could impact mitochondrial function, contributing to the development of AD or longevity. Our study underscores the significant role of the APOE locus in modulating mitochondrial function and provides valuable insights into the underlying mechanisms of AD and aging, emphasizing the importance of this locus in clinical research.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Apolipoproteins E/genetics , Aging/genetics , Aging/metabolism , Genotype , Mitochondria/genetics , Mitochondria/metabolism , Apolipoprotein E4/genetics
15.
Hum Cell ; 36(4): 1548-1563, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37266867

ABSTRACT

In-depth studies on the pathogenesis of endometrial cancer (EC) are critical because of the increasing global incidence of EC. Mitophagy, a mitochondrial quality control process, plays an important role in carcinogenesis and tumor progression. This study aimed to develop a novel mitophagy-based signature to predict the tumorigenesis and prognosis of EC. Data was downloaded from The Cancer Genome Atlas and Gene Expression Omnibus databases, and 29 mitophagy-related genes were downloaded from the Pathway Unification Database. EC patients were classified into two risk groups based on the two-key- gene signature, TOMM40 and MFN1, which were constructed using Cox regression analysis. A better prognosis was noted in the low-risk group. The model was validated for four aspects: clinical features, mutation status, clinical therapeutic response, and immune cell infiltration status. Moreover, according to the contribution to the risk model, TOMM40 was selected for further in vitro experiments. The silencing of TOMM40 inhibited mitochondrial degradation; suppressed cell proliferation; induced cell apoptosis and G1 phase cell cycle arrest; inhibited migration, invasion, and epithelial-mesenchymal transition; and suppressed cell stemness. In conclusion, the mitophagy-related risk score provides a novel perspective for survival and drug selection during the individual treatment of EC patients. TOMM40 serves as an oncogene in EC and promotes tumor progression via a mitophagy-related pathway. Thus, TOMM40 is a potential therapeutic target in EC.


Subject(s)
Endometrial Neoplasms , Mitophagy , Humans , Female , Mitophagy/genetics , Cell Transformation, Neoplastic , Carcinogenesis/genetics , Endometrial Neoplasms/genetics , Endometrial Neoplasms/therapy , Oncogenes
16.
Mol Genet Genomics ; 298(4): 965-976, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37209156

ABSTRACT

Choreoacanthocytosis, one of the forms of neuroacanthocytosis, is caused by mutations in vacuolar protein sorting-associated protein A (VPS13A), and is often misdiagnosed with other form of neuroacanthocytosis with discrete genetic defects. The phenotypic variations among the patients with VPS13A mutations significantly obfuscates the understanding of the disease and treatment strategies. In this study, two unrelated cases were identified, exhibiting the core phenotype of neuroacanthocytosis but with considerable clinical heterogeneity. Case 1 presented with an additional Parkinsonism phenotype, whereas seizures were evident in case 2. To decipher the genetic basis, whole exome sequencing followed by validation with Sanger sequencing was performed. A known homozygous pathogenic nonsense mutation (c.799C > T; p.R267X) in exon 11 of the VPS13A gene was identified in case 1 that resulted in a truncated protein. A novel missense mutation (c.9263T > G; p.M3088R) in exon 69 of VPS13A identified in case 2 was predicted as pathogenic. In silico analysis of the p.M3088R mutation at the C-terminus of VPS13A suggests a loss of interaction with TOMM40 and may disrupt mitochondrial localization. We also observed an increase in mitochondrial DNA copy numbers in case 2. Mutation analysis revealed benign heterozygous variants in interacting partners of VPS13A such as VAPA in case 1. Our study confirmed the cases as ChAc and identified the novel homozygous variant of VPS13A (c.9263T > G; p.M3088R) within the mutation spectrum of VPS13A-associated ChAc. Furthermore, mutations in VPS13A and co-mutations in its potential interacting partner(s) might contribute to the diverse clinical manifestations of ChAc, which requires further study.


Subject(s)
Neuroacanthocytosis , Humans , Neuroacanthocytosis/genetics , Neuroacanthocytosis/pathology , Exome Sequencing , Genes, Modifier , Mutation , Codon, Nonsense/genetics , Vesicular Transport Proteins/genetics
17.
FASEB J ; 37(5): e22890, 2023 05.
Article in English | MEDLINE | ID: mdl-37002885

ABSTRACT

Amyloid-ß (Aß) peptide is accumulated in the mitochondria and has been shown to play a central role in the development of Alzheimer's disease (AD). It has been shown that exposure of neurons to aggregated Aß can result in damaged mitochondria and dysregulated mitophagy, indicating that changes in the Aß content of mitochondria may affect the levels of mitophagy and interfere with the progression of AD. However, the direct influence of mitochondrial Aß on mitophagy has not been elucidated. In the present study, the effect of the mitochondria-specific Aß was assessed following a direct change of Aß content in the mitochondria. We directly change mitochondrial Aß by transfecting cells with mitochondria-associated plasmids, including the mitochondrial outer membrane protein translocase 22 (TOMM22) and 40 (TOMM40) or presequence protease (PreP) overexpression plasmids. The changes in the levels of mitophagy were assessed by TEM, Western blot, mito-Keima construct, organelle tracker, and probe JC-1 assay. We demonstrated that increased mitochondrial Aß content enhance mitophagy levels; overexpression of PreP could reverse the mitochondrial Aß-induced mitophagy levels in vivo and in vitro by reversing the levels of reactive oxygen species (ROS) and the mitochondrial membrane potential. The data provide novel insight into the role of mitochondria-specific Aß in the progression of AD pathophysiology.


Subject(s)
Alzheimer Disease , Mitophagy , Humans , Amyloid beta-Peptides/metabolism , Mitochondria/metabolism , Alzheimer Disease/metabolism , Peptide Hydrolases/metabolism
18.
Int J Mol Sci ; 24(4)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36835494

ABSTRACT

Translocase of outer mitochondrial membrane 40 (TOMM40) is located in the outer membrane of mitochondria. TOMM40 is essential for protein import into mitochondria. TOMM40 genetic variants are believed to increase the risk of Alzheimer's disease (AD) in different populations. In this study, three exonic variants (rs772262361, rs157581, and rs11556505) and three intronic variants (rs157582, rs184017, and rs2075650) of the TOMM40 gene were identified from Taiwanese AD patients using next-generation sequencing. Associations between the three TOMM40 exonic variants and AD susceptibility were further evaluated in another AD cohort. Our results showed that rs157581 (c.339T > C, p.Phe113Leu, F113L) and rs11556505 (c.393C > T, p.Phe131Leu, F131L) were associated with an increased risk of AD. We further utilized cell models to examine the role of TOMM40 variation in mitochondrial dysfunction that causes microglial activation and neuroinflammation. When expressed in BV2 microglial cells, the AD-associated mutant (F113L) or (F131L) TOMM40 induced mitochondrial dysfunction and oxidative stress-induced activation of microglia and NLRP3 inflammasome. Pro-inflammatory TNF-α, IL-1ß, and IL-6 released by mutant (F113L) or (F131L) TOMM40-activated BV2 microglial cells caused cell death of hippocampal neurons. Taiwanese AD patients carrying TOMM40 missense (F113L) or (F131L) variants displayed an increased plasma level of inflammatory cytokines IL-6, IL-18, IL-33, and COX-2. Our results provide evidence that TOMM40 exonic variants, including rs157581 (F113L) and rs11556505 (F131L), increase the AD risk of the Taiwanese population. Further studies suggest that AD-associated mutant (F113L) or (F131L) TOMM40 cause the neurotoxicity of hippocampal neurons by inducing the activation of microglia and NLRP3 inflammasome and the release of pro-inflammatory cytokines.


Subject(s)
Alzheimer Disease , Mitochondrial Precursor Protein Import Complex Proteins , Neuroinflammatory Diseases , Humans , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Inflammasomes/metabolism , Interleukin-6/metabolism , Microglia/metabolism , Mitochondrial Precursor Protein Import Complex Proteins/genetics , Neuroinflammatory Diseases/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Genetic Variation
19.
J Cell Biochem ; 124(1): 118-126, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36436137

ABSTRACT

Alzheimer's disease (AD) is one of the most serious neurodegenerative diseases in the world and has a strong genetic predisposition. At present, there is still no effective method for the early diagnosis and prevention of AD. Accumulating evidence shows the association of several loci with AD risk, such as apolipoprotein E (APOE) and translocase of outer mitochondrial membrane 40 (TOMM40). However, for routine disease diagnosis in clinics, genotype detection methods based on gene sequencing technology are time-consuming and excessively costly. Thus, in this study, we developed a high-sensitivity, low-cost, and convenient single nucleotide polymorphism (SNP) detection assay method based on allele-specific quantitative polymerase chain reaction (AS-qPCR) technology, which can be used to determine the SNP genotype in APOE and TOMM40. A total of 40 patients were recruited from the outpatient department of the memory clinic of Dongzhimen Hospital, Beijing University of Chinese Medicine. The SNP detection assay method includes three steps. First, positive plasmids with different genotypes (TT/CC/TC) in APOE rs429358, rs7412, and TOMM40 rs11556505 were prepared. Second, 3'-T/3'-C primers were designed to amplify these positive plasmids for each SNP site. Finally, we calculated the log10 of the copy number ratio for each positive plasmid, and the genotype interpretation interval was established. Based on this method, we investigated whether the SNPs in 40 patients could be accurately calculated using AS-qPCR technology. The accuracy of SNP detection was verified by PCR-Pooling sequencing. The results showed that SNP genotypes assessed by AS-qPCR technology corresponded perfectly to the results obtained by conventional DNA sequencing. We have developed a genotype detection method for AD based on AS-qPCR, which can be performed easily, rapidly, accurately, and at low cost. The method will contribute to the early diagnosis of patients with late-onset Alzheimer's and the detection of large clinical samples in the future.


Subject(s)
Alzheimer Disease , Polymorphism, Single Nucleotide , Humans , Alzheimer Disease/diagnosis , Alzheimer Disease/genetics , Alleles , Genetic Predisposition to Disease , Genotype , Apolipoproteins E/genetics
20.
Cells ; 13(1)2023 12 28.
Article in English | MEDLINE | ID: mdl-38201273

ABSTRACT

Recent advancements in genome analysis technology have revealed the presence of read-through transcripts in which transcription continues by skipping the polyA signal. We here identified and characterized a new read-through transcript, TOMM40-APOE. With cDNA amplification from THP-1 cells, the TOMM40-APOE3 product was successfully generated. We also generated TOMM40-APOE4, another isoform, by introducing point mutations. Notably, while APOE3 and APOE4 exhibited extracellular secretion, both TOMM40-APOE3 and TOMM40-APOE4 were localized exclusively to the mitochondria. But functionally, they did not affect mitochondrial membrane potential. Cell death induction studies illustrated increased cell death with TOMM40-APOE3 and TOMM40-APOE4, and we did not find any difference in cellular function between the two isoforms. These findings indicated that the new mitochondrial protein TOMM40-APOE has cell toxic ability.


Subject(s)
Apolipoprotein E4 , Apolipoproteins E , Apolipoprotein E3 , Cell Death , DNA, Complementary
SELECTION OF CITATIONS
SEARCH DETAIL