Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Front Genet ; 15: 1352063, 2024.
Article in English | MEDLINE | ID: mdl-38450199

ABSTRACT

Introduction: TULP1 exemplifies the remarkable clinical and genetic heterogeneity observed in inherited retinal dystrophies. Our research describes the clinical and molecular characteristics of a patient manifesting an atypical retinal dystrophy pattern, marked by the identification of both a previously unreported and a rarely encountered TULP1 variant. Methods: Whole-exome sequencing was performed to identify potential causative variants. The pathogenicity of the identified TULP1 variants was evaluated through in silico predictors and a minigene splice assay, specifically designed to assess the effect of the unreported TULP1 variant. Results: We identified two TULP1 gene variants in a patient exhibiting unusual and symmetrical alterations in both retinas, characterized by an increase in autofluorescence along the distribution of retinal vessels. These variants included a known rare missense variant, c.1376T>C, and a novel splice site variant, c.822G>T. For the latter variant (c.822G>T), we conducted a minigene splice assay that demonstrated the incorporation of a premature stop codon. This finding suggests a likely activation of the nonsense-mediated mRNA decay mechanism, ultimately resulting in the absence of protein production from this allele. Segregation analysis confirmed that these variants were in trans. Discussion: Our data support that individuals with biallelic TULP1 variants may present with a unique pattern of macular degeneration and periarteriolar vascular pigmentation. This study highlights the importance of further clinical and molecular characterization of TULP1 variants to elucidate genotype-phenotype correlations in the context of inherited retinal dystrophies.

2.
Prog Retin Eye Res ; 100: 101244, 2024 May.
Article in English | MEDLINE | ID: mdl-38278208

ABSTRACT

Inherited retinal diseases (IRD) are a leading cause of blindness in the working age population and in children. The scope of this review is to familiarise clinicians and scientists with the current landscape of molecular genetics, clinical phenotype, retinal imaging and therapeutic prospects/completed trials in IRD. Herein we present in a comprehensive and concise manner: (i) macular dystrophies (Stargardt disease (ABCA4), X-linked retinoschisis (RS1), Best disease (BEST1), PRPH2-associated pattern dystrophy, Sorsby fundus dystrophy (TIMP3), and autosomal dominant drusen (EFEMP1)), (ii) cone and cone-rod dystrophies (GUCA1A, PRPH2, ABCA4, KCNV2 and RPGR), (iii) predominant rod or rod-cone dystrophies (retinitis pigmentosa, enhanced S-Cone syndrome (NR2E3), Bietti crystalline corneoretinal dystrophy (CYP4V2)), (iv) Leber congenital amaurosis/early-onset severe retinal dystrophy (GUCY2D, CEP290, CRB1, RDH12, RPE65, TULP1, AIPL1 and NMNAT1), (v) cone dysfunction syndromes (achromatopsia (CNGA3, CNGB3, PDE6C, PDE6H, GNAT2, ATF6), X-linked cone dysfunction with myopia and dichromacy (Bornholm Eye disease; OPN1LW/OPN1MW array), oligocone trichromacy, and blue-cone monochromatism (OPN1LW/OPN1MW array)). Whilst we use the aforementioned classical phenotypic groupings, a key feature of IRD is that it is characterised by tremendous heterogeneity and variable expressivity, with several of the above genes associated with a range of phenotypes.


Subject(s)
Eye Diseases, Hereditary , Retinal Diseases , Humans , Cone-Rod Dystrophies/genetics , Cone-Rod Dystrophies/physiopathology , Eye Diseases, Hereditary/genetics , Eye Diseases, Hereditary/physiopathology , Genotype , Leber Congenital Amaurosis/genetics , Leber Congenital Amaurosis/therapy , Leber Congenital Amaurosis/physiopathology , Molecular Biology , Phenotype , Retinal Diseases/genetics , Retinal Diseases/physiopathology , Retinal Diseases/therapy
3.
BMC Ophthalmol ; 23(1): 205, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37165311

ABSTRACT

BACKGROUND: Retinitis Pigmentosa (RP) is a clinically and genetically progressive retinal dystrophy associated with severe visual impairments and sometimes blindness, the most common syndromic form of which is Usher syndrome (USH). This study aimed to further increase understanding of the spectrum of RP in the Khyber Pakhtunkhwa region of Pakistan. METHODOLOGY: Four consanguineous families of Pashtun ethnic group were investigated which were referred by the local collaborating ophthalmologists. In total 42 individuals in four families were recruited and investigated using whole exome and dideoxy sequencing. Among them, 20 were affected individuals including 6 in both family 1 and 2, 5 in family 3 and 3 in family 4. RESULT: Pathogenic gene variants were identified in all four families, including two in cone dystrophy and RP genes in the same family (PDE6C; c.480delG, p.Asn161ThrfsTer33 and TULP1; c.238 C > T, p.Gln80Ter) with double-homozygous individuals presenting with more severe disease. Other pathogenic variants were identified in MERTK (c.2194C > T, p.Arg732Ter), RHO (c.448G > A, p.Glu150Lys) associated with non-syndromic RP, and MYO7A (c.487G > A, p.Gly163Arg) associated with USH. In addition, the reported variants were of clinical significance as the PDE6C variant was detected novel, whereas TULP1, MERTK, and MYO7A variants were detected rare and first time found segregating with retinal dystrophies in Pakistani consanguineous families. CONCLUSIONS: This study increases knowledge of the genetic basis of retinal dystrophies in families from Pakistan providing information important for genetic testing and diagnostic provision particularly from the Khyber Pakhtunkhwa region.


Subject(s)
Retinal Dystrophies , Retinitis Pigmentosa , Humans , Consanguinity , Pakistan , c-Mer Tyrosine Kinase/genetics , Mutation , Retinal Dystrophies/genetics , Retinitis Pigmentosa/diagnosis , Pedigree , DNA Mutational Analysis
4.
Int J Mol Sci ; 24(3)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36769033

ABSTRACT

Biallelic pathogenic variants in TULP1 are mostly associated with severe rod-driven inherited retinal degeneration. In this study, we analyzed clinical heterogeneity in 17 patients and characterized the underlying biallelic variants in TULP1. All patients underwent thorough ophthalmological examinations. Minigene assays and structural analyses were performed to assess the consequences of splice variants and missense variants. Three patients were diagnosed with Leber congenital amaurosis, nine with early onset retinitis pigmentosa, two with retinitis pigmentosa with an onset in adulthood, one with cone dystrophy, and two with cone-rod dystrophy. Seventeen different alleles were identified, namely eight missense variants, six nonsense variants, one in-frame deletion variant, and two splice site variants. For the latter two, minigene assays revealed aberrant transcripts containing frameshifts and premature termination codons. Structural analysis and molecular modeling suggested different degrees of structural destabilization for the missense variants. In conclusion, we report the largest cohort of patients with TULP1-associated IRD published to date. Most of the patients exhibited rod-driven disease, yet a fraction of the patients exhibited cone-driven disease. Our data support the hypothesis that TULP1 variants do not fold properly and thus trigger unfolded protein response, resulting in photoreceptor death.


Subject(s)
Retinal Dystrophies , Retinitis Pigmentosa , Humans , Retinal Dystrophies/genetics , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/diagnosis , Phenotype , Retinal Cone Photoreceptor Cells/metabolism , Mutation, Missense , Mutation , Pedigree , Eye Proteins/genetics , Eye Proteins/metabolism
5.
Acta Ophthalmol ; 101(2): 215-221, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36128853

ABSTRACT

PURPOSE: To report clinical features and potential disease markers of inherited retinal dystrophy (IRD) caused by the biallelic c.148delG variant in the tubby-like protein 1 (TULP1) gene. METHODS: A retrospective observational study of 16 IRD patients carrying a homozygous pathogenic TULP1 c.148delG variant. Clinical data including fundus spectral-domain optical coherence tomography (SD-OCT) were assessed. A meta-analysis of visual acuity of previously reported other pathogenic TULP1 variants was performed for reference. RESULTS: The biallelic TULP1 variant c.148delG was associated with infantile and early childhood onset IRD. Retinal ophthalmoscopy was primarily normal converting to peripheral pigmentary retinopathy and maculopathy characterized by progressive extra-foveal loss of the ellipsoid zone (EZ), the outer plexiform layer (OPL), and the outer nuclear layer (ONL) bands in the SD-OCT images. The horizontal width of the foveal EZ showed significant regression with the best-corrected visual acuity (BCVA) of the eye (p < 0.0001, R2  = 0.541, F = 26.0), the age of the patient (p < 0.0001, R2  = 0.433, F = 16.8), and mild correlation with the foveal OPL-ONL thickness (p = 0.014, R2  = 0.245, F = 7.2). Modelling of the BCVA data suggested a mean annual loss of logMAR 0.027. The level of visual loss was similar to that previously reported in patients carrying other truncating TULP1 variants. CONCLUSIONS: This study describes the progression of TULP1 IRD suggesting a potential time window for therapeutic interventions. The width of the foveal EZ and the thickness of the foveal OPL-ONL layers could serve as biomarkers of the disease stage.


Subject(s)
Retinal Dystrophies , Child, Preschool , Humans , Biomarkers , Eye Proteins/genetics , Fundus Oculi , Observational Studies as Topic , Retina , Retinal Dystrophies/diagnosis , Retinal Dystrophies/genetics , Retinitis Pigmentosa/genetics , Tomography, Optical Coherence/methods
6.
Cureus ; 14(1): e21709, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35145825

ABSTRACT

Cancer-associated retinopathy (CAR) is a potentially blinding disease triggered by autoimmunity to cancer antigens at distant sites. It may masquerade as immune-related adverse events from the use of immune checkpoint inhibitors (ICIs). We present a patient with an underlying tubby-related protein 1 (TULP1) cancer-associated retinopathy who lost vision following initiation of atezolizumab for small-cell lung cancer. This 75-year-old man presented with no light perception, paramacular and peripheral retinal pigmentary changes, attenuated outer retina, and extinguished rod and cone responses. The visual loss followed the induction of atezolizumab therapy. Possible atezolizumab-associated acute macular neuroretinopathy was considered, and atezolizumab was discontinued. Vision improved on oral corticosteroid and deteriorated when corticosteroid was tapered quickly. Retinal autoantibody serology testing was negative for both anti-recoverin and anti-enolase and was positive for anti-TULP1 autoantibodies. Re-induction of atezolizumab concomitant with high-dose oral and intravitreal corticosteroids resulted in visual recovery at the three-month follow-up. These findings suggest that ICI therapy for cancer can exacerbate the retinal dysfunction in a patient with underlying autoimmunity from cancer. Patients with a high risk of CAR may need to be evaluated for retinal autoantibodies before initiation of ICI.

7.
Ophthalmic Genet ; 43(2): 277-281, 2022 04.
Article in English | MEDLINE | ID: mdl-34865612

ABSTRACT

PURPOSE: To report on two rare and one novel TULP1 pathogenic variants in two patients associated with a previously uncharacterized phenotype of retinal degeneration. METHODS: Case report. RESULTS: A 4 year-old and a 19 year-old female presented with reduced vision and bilateral bull's eye maculopathy. In both patients, a unique pattern of perivascular retinal degeneration was noted. Electroretinography was consistent with a cone-rod dystrophy. Sequence analysis identified pathogenic variants in the TULP1 gene c.1087 G > A, p.(Gly363Arg); c.1568 G > A, p.(Cys523Tyr); and c.821delA, p.(Lys274ArgfsTer36). CONCLUSION: Patients with TULP1-related retinal dystrophy can have a distinctive retinopathy with a unique pattern of macular degeneration and periarteriolar vascular pigmentation.


Subject(s)
Eye Proteins , Retinal Dystrophies , Electroretinography , Eye Proteins/genetics , Female , Humans , Pedigree , Phenotype , Retinal Dystrophies/diagnosis , Retinal Dystrophies/genetics , Tomography, Optical Coherence
8.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-958499

ABSTRACT

Objective:To identify 3 the disease-causing genes and mutations of Leber congenital amaurosis (LCA), and to study the correlation of phenotype and genotype.Methods:A retrospective study. Four LCA patients and seven family members who were diagnosed by eye examination in Ning Xia Eye Hospital of People's Hospital of Ningxia Hui Autonomous Region from January to December 2021 were included in the study. Four patients were from 3 unrelated families. Detailed collection of medical history and family history were received. Related ophthalmologic examination were collected and genomic DNA was extracted from peripheral blood. Whole-exome sequencing method was used for genetic diagnosis. The identified variant was confirmed with Sanger sequencing. Potential pathogenic mutation was analyzed using software and conserved domain analysis and performed co-separated analysis between the family member and the proband.Results:Of the 4 patients, 1 patient was males and 3 patients were females; the age was from 4 to 18 years. Nystagmus were seen in 3 cases, finger pressing eyes and night blindness was seen in 1 cases; electroretinogram showed 4 cases of extinction or near extinction. The foveal reflection was visible in all eyes, and there was no obvious abnormality in the peripheral retina. One eye had strong reflection signal with raised ellipsoid in macular area; two eyes had weak reflection signal faintly visible between retinal layers; 1 eye had increased blood vessel branches, peripheral retinal non-perfusion area with capillary leakage; annular strong autofluorescence in macular area 4 eyes. No obvious abnormality was found in the phenotypes of family members. Genetic testing showed that the proband of pedigree 1 (Ⅱ-1) was found a homozygous missense mutation in c.640A>T (p.C214S) (M1) of PRPH2 gene. The proband of pedigree 2 (Ⅱ-2) was found compound heterozygous mutation in c.1256G>A(p.R419Q) (M2) and c.1A>C (p.M1L) (M3) of TULP1 gene. The proband 3 (Ⅱ-1) and her sister (Ⅱ-2) were both found compound heterozygous mutation in c.1943T>C (p.L648P) (M4) and c.380C>T (p.P127L) (M5) of GUCY2D gene. The parents and sister (Ⅱ-1) of the proband in family 2 and the parents of the proband in family 3 were all carriers of the corresponding heterozygous variant. M1, M3, M4, M5 were novel mutations and unreported. The genotype and disease phenotype were co-segregated within the family. According to the analysis of pedigree and genetic testing results, all 3 families were autosomal recessive inheritance. The amino acid conservation analysis found that M1, M2, M3, M4, and M5 were highly conserved among species. The results of bioinformatics analysis were all pathogenic variants. Conclusions:PRPH2 gene M1, TULP1 gene M3, and GUCY2D gene M4, M5 were novel mutations and not been reported in the literature and database. This research expanded the gene mutation spectrum of LCA. The patients with LCA have available characterristics, including onset age, varying ocular fundus and severe visual impairment.

9.
Int J Mol Sci ; 22(15)2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34360830

ABSTRACT

Photoreceptors are highly compartmentalized cells with large amounts of proteins synthesized in the inner segment (IS) and transported to the outer segment (OS) and synaptic terminal. Tulp1 is a photoreceptor-specific protein localized to the IS and synapse. In the absence of Tulp1, several OS-specific proteins are mislocalized and synaptic vesicle recycling is impaired. To better understand the involvement of Tulp1 in protein trafficking, our approach in the current study was to physically isolate Tulp1-containing photoreceptor compartments by serial tangential sectioning of retinas and to identify compartment-specific Tulp1 binding partners by immunoprecipitation followed by liquid chromatography tandem mass spectrometry. Our results indicate that Tulp1 has two distinct interactomes. We report the identification of: (1) an IS-specific interaction between Tulp1 and the motor protein Kinesin family member 3a (Kif3a), (2) a synaptic-specific interaction between Tulp1 and the scaffold protein Ribeye, and (3) an interaction between Tulp1 and the cytoskeletal protein microtubule-associated protein 1B (MAP1B) in both compartments. Immunolocalization studies in the wild-type retina indicate that Tulp1 and its binding partners co-localize to their respective compartments. Our observations are compatible with Tulp1 functioning in protein trafficking in multiple photoreceptor compartments, likely as an adapter molecule linking vesicles to molecular motors and the cytoskeletal scaffold.


Subject(s)
Alcohol Oxidoreductases/metabolism , Co-Repressor Proteins/metabolism , Eye Proteins/metabolism , Kinesins/metabolism , Microtubule-Associated Proteins/metabolism , Photoreceptor Cells, Vertebrate/metabolism , Protein Transport , Animals , Chromatography, Liquid , Cilia , Eye Proteins/genetics , Immunoprecipitation , Mice , Mice, Knockout , Protein Binding , Proteomics , Rats , Synapses , Tandem Mass Spectrometry
10.
J Biol Chem ; 296: 100073, 2021.
Article in English | MEDLINE | ID: mdl-33187986

ABSTRACT

Tubby-like proteins (TULPs) are characterized by a conserved C-terminal domain that binds phosphoinositides. Collectively, mammalian TULP1-4 proteins play essential roles in intracellular transport, cell differentiation, signaling, and motility. Yet, little is known about how the function of these proteins is regulated in cells. Here, we present the protein-protein interaction network of TULP3, a protein that is responsible for the trafficking of G-protein-coupled receptors to cilia and whose aberrant expression is associated with severe developmental disorders and polycystic kidney disease. We identify several protein interaction nodes linked to TULP3 that include enzymes involved in acetylation and ubiquitination. We show that acetylation of two key lysine residues on TULP3 by p300 increases TULP3 protein abundance and that deacetylation of these sites by HDAC1 decreases protein levels. Furthermore, we show that one of these sites is ubiquitinated in the absence of acetylation and that acetylation inversely correlates with ubiquitination of TULP3. This mechanism is evidently conserved across species and is active in zebrafish during development. Finally, we identify this same regulatory module in TULP1, TULP2, and TULP4 and demonstrate that the stability of these proteins is similarly modulated by an acetylation switch. This study unveils a signaling pathway that links nuclear enzymes to ciliary membrane receptors via TULP3, describes a dynamic mechanism for the regulation of all tubby-like proteins, and explores how to exploit it pharmacologically using drugs.


Subject(s)
Eye Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , p300-CBP Transcription Factors/metabolism , Acetylation , Eye Proteins/genetics , HEK293 Cells , HeLa Cells , Histone Deacetylase 1/genetics , Histone Deacetylase 1/metabolism , Humans , Intracellular Signaling Peptides and Proteins/genetics , Protein Stability , p300-CBP Transcription Factors/genetics
11.
Int J Mol Sci ; 21(22)2020 Nov 17.
Article in English | MEDLINE | ID: mdl-33213002

ABSTRACT

Photoreceptor disc component (PRCD) is a small protein which is exclusively localized to photoreceptor outer segments, and is involved in the formation of photoreceptor outer segment discs. Mutations in PRCD are associated with retinal degeneration in humans, mice, and dogs. The purpose of this work was to identify PRCD-binding proteins in the retina. PRCD protein-protein interactions were identified when implementing the Ras recruitment system (RRS), a cytoplasmic-based yeast two-hybrid system, on a bovine retina cDNA library. An interaction between PRCD and tubby-like protein 1 (TULP1) was identified. Co-immunoprecipitation in transfected mammalian cells confirmed that PRCD interacts with TULP1, as well as with its homolog, TUB. These interactions were mediated by TULP1 and TUB highly conserved C-terminal tubby domain. PRCD localization was altered in the retinas of TULP1- and TUB-deficient mice. These results show that TULP1 and TUB, which are involved in the vesicular trafficking of several photoreceptor proteins from the inner segment to the outer segment, are also required for PRCD exclusive localization to photoreceptor outer segment discs.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Eye Proteins/metabolism , Membrane Proteins/metabolism , Photoreceptor Cells, Vertebrate/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , COS Cells , Chlorocebus aethiops , Eye Proteins/genetics , Membrane Proteins/genetics , Mice , Mice, Knockout
12.
Front Neurosci ; 14: 891, 2020.
Article in English | MEDLINE | ID: mdl-32973439

ABSTRACT

With marketing approval of the first ocular gene therapy, and other gene therapies in clinical trial, treatments for inherited retinal degenerations (IRDs) have become a reality. Biallelic mutations in the tubby like protein 1 gene (TULP1) are causative of IRDs in humans; a mouse knock-out model (Tulp1-/-) is characterized by a similar disease phenotype. We developed a Tulp1 supplementation therapy for Tulp1-/- mice. Utilizing subretinal AAV2/5 delivery at postnatal day (p)2-3 and rhodopsin-kinase promoter (GRK1P) we targeted Tulp1 to photoreceptor cells exploring three doses, 2.2E9, 3.7E8, and 1.2E8 vgs. Tulp1 mRNA and TULP1 protein were assessed by RT-qPCR, western blot and immunocytochemistry, and visual function by electroretinography. Our results indicate that TULP1 was expressed in photoreceptors; achieved levels of Tulp1 mRNA and protein were similar to wild type levels at p20. However, the thickness of the outer nuclear layer (ONL) did not improve in treated Tulp1-/- mice. There was a small and transient electroretinography benefit in the treated retinas at 4 weeks of age (not observed by 6 weeks) when using 3.7E8 vg dose. Dark-adapted mixed rod and cone a- and b-wave amplitudes were 24.3 ± 13.5 µV and 52.2 ± 31.7 µV in treated Tulp1-/- mice, which were significantly different (p < 0.001, t-test), from those detected in untreated eyes (7.1 ± 7.0 µV and 9.4 ± 15.1 µV, respectively). Our results indicate that Tulp1 supplementation in photoreceptors may not be sufficient to provide robust benefit in Tulp1-/- mice. As such, further studies are required to fine tune the Tulp1 supplementation therapy, which, in principle, should rescue the Tulp1-/- phenotype.

13.
Front Neurosci ; 14: 656, 2020.
Article in English | MEDLINE | ID: mdl-32655363

ABSTRACT

Mutations in tubby like protein 1 gene (TULP1) are causative of early-onset recessive inherited retinal degenerations (IRDs); similarly, the Tulp1-/- mouse is also characterized by a rapid IRD. Tulp1 mRNA and protein expression was analyzed in wild type mouse retinas and expression data sets (NCBI) during early postnatal development. Comparative histology was undertaken in Tulp1-/-, rhodopsin-/- (Rho-/-) and retinal degeneration slow-/- (Rds-/-) mouse retinas. Bioinformatic analysis of predicted TULP1 interactors and IRD genes was performed. Peak expression of Tulp1 in healthy mouse retinas was detected at p8; of note, TULP1 was detected in both the outer and inner retina. Bioinformatic analysis indicated Tulp1 expression in retinal progenitor, photoreceptor and non-photoreceptor cells. While common features of photoreceptor degeneration were detected in Tulp1-/-, Rho-/-, and Rds-/- retinas, other alterations in bipolar, amacrine and ganglion cells were specific to Tulp1-/- mice. Additionally, predicted TULP1 interactors differed in various retinal cell types and new functions for TULP1 were suggested. A pilot bioinformatic analysis indicated that in a similar fashion to Tulp1, many other IRD genes were expressed in both inner and outer retinal cells at p4-p7. Our data indicate that expression of Tulp1 extends to multiple retinal cell types; lack of TULP1 may lead to primary degeneration not only of photoreceptor but also non-photoreceptor cells. Predicted interactors suggest widespread retinal functions for TULP1. Early and widespread expression of TULP1 and some other IRD genes in both the inner and outer retina highlights potential hurdles in the development of treatments for these IRDs.

14.
Prog Retin Eye Res ; 77: 100827, 2020 07.
Article in English | MEDLINE | ID: mdl-31899291

ABSTRACT

Due to improved phenotyping and genetic characterization, the field of 'incurable' and 'blinding' inherited retinal diseases (IRDs) has moved substantially forward. Decades of ascertainment of IRD patient data from Philadelphia and Toronto centers illustrate the progress from Mendelian genetic types to molecular diagnoses. Molecular genetics have been used not only to clarify diagnoses and to direct counseling but also to enable the first clinical trials of gene-based treatment in these diseases. An overview of the recent reports of gene augmentation clinical trials by subretinal injections is used to reflect on the reasons why there has been limited success in this early venture into therapy. These first-in human experiences have taught that there is a need for advancing the techniques of delivery of the gene products - not only for refining further subretinal trials, but also for evaluating intravitreal delivery. Candidate IRDs for intravitreal gene delivery are then suggested to illustrate some of the disorders that may be amenable to improvement of remaining central vision with the least photoreceptor trauma. A more detailed understanding of the human IRDs to be considered for therapy and the calculated potential for efficacy should be among the routine prerequisites for initiating a clinical trial.


Subject(s)
Clinical Trials as Topic , Eye Diseases, Hereditary/therapy , Genetic Therapy/methods , Gene Transfer Techniques , Humans , Leber Congenital Amaurosis/therapy , Retinal Degeneration/therapy , Retinitis Pigmentosa/therapy
15.
Mol Genet Genomic Med ; 7(6): e660, 2019 06.
Article in English | MEDLINE | ID: mdl-30950243

ABSTRACT

BACKGROUND: Early-onset photoreceptor dystrophies are a major cause of irreversible visual impairment in children and young adults. This clinically heterogeneous group of disorders can be caused by mutations in many genes. Nevertheless, to date, 30%-40% of cases remain genetically unexplained. In view of expanding therapeutic options, it is essential to obtain a molecular diagnosis in these patients as well. In this study, we aimed to identify the genetic cause in two siblings with genetically unexplained retinal disease. METHODS: Whole exome sequencing was performed to identify the causative variants in two siblings in whom a single pathogenic variant in TULP1 was found previously. Patients were clinically evaluated, including assessment of the medical history, slit-lamp biomicroscopy, and ophthalmoscopy. In addition, a functional analysis of the putative splice variant in TULP1 was performed using a midigene assay. RESULTS: Clinical assessment showed a typical early-onset photoreceptor dystrophy in both the patients. Whole exome sequencing identified two pathogenic variants in TULP1, a c.1445G>A (p.(Arg482Gln)) missense mutation and an intronic c.718+23G>A variant. Segregation analysis confirmed that both siblings were compound heterozygous for the TULP1 c.718+23G>A and c.1445G>A variants, while the unaffected parents were heterozygous. The midigene assay for the c.718+23G>A variant confirmed an elongation of exon 7 leading to a frameshift. CONCLUSION: Here, we report the first near-exon RNA splice variant that is not present in a consensus splice site sequence in TULP1, which was found in a compound heterozygous manner with a previously described pathogenic TULP1 variant in two patients with an early-onset photoreceptor dystrophy. We provide proof of pathogenicity for this splice variant by performing an in vitro midigene splice assay, and highlight the importance of analysis of noncoding regions beyond the noncanonical splice sites in patients with inherited retinal diseases.


Subject(s)
Cone Dystrophy/genetics , Eye Proteins/genetics , Adolescent , Child , Cone Dystrophy/metabolism , Exome , Exons , Eye Proteins/metabolism , Female , Frameshift Mutation , Homozygote , Humans , Male , Mutation , Pedigree , RNA , RNA Splice Sites/genetics , RNA Splicing/genetics , Retinal Rod Photoreceptor Cells/metabolism , Siblings , Exome Sequencing/methods
16.
J Transl Med ; 16(1): 145, 2018 05 29.
Article in English | MEDLINE | ID: mdl-29843741

ABSTRACT

BACKGROUND: Retinitis pigmentosa (RP) is the most common form of inherited retinal dystrophy presenting remarkable genetic heterogeneity. Genetic annotations would help with better clinical assessments and benefit gene therapy, and therefore should be recommended for RP patients. This report reveals the disease causing mutations in two RP pedigrees with confusing inheritance patterns using whole exome sequencing (WES). METHODS: Twenty-five participants including eight patients from two families were recruited and received comprehensive ophthalmic evaluations. WES was applied for mutation identification. Bioinformatics annotations, intrafamilial co-segregation tests, and in silico analyses were subsequently conducted for mutation verification. RESULTS: All patients were clinically diagnosed with RP. The first family included two siblings born to parents with consanguineous marriage; however, no potential pathogenic variant was found shared by both patients. Further analysis revealed that the female patient carried a recurrent homozygous C8ORF37 p.W185*, while the male patient had hemizygous OFD1 p.T120A. The second family was found to segregate mutations in two genes, TULP1 and RP1. Two patients born to consanguineous marriage carried homozygous TULP1 p.R419W, while a recurrent heterozygous RP1 p.L762Yfs*17 was found in another four patients presenting an autosomal dominant inheritance pattern. Crystal structural analysis further indicated that the substitution from arginine to tryptophan at the highly conserved residue 419 of TULP1 could lead to the elimination of two hydrogen bonds between residue 419 and residues V488 and S534. All four genes, including C8ORF37, OFD1, TULP1 and RP1, have been previously implicated in RP etiology. CONCLUSIONS: Our study demonstrates the coexistence of diverse inheritance modes and mutations affecting distinct disease causing genes in two RP families with consanguineous marriage. Our data provide novel insights into assessments of complicated pedigrees, reinforce the genetic complexity of RP, and highlight the need for extensive molecular evaluations in such challenging families with diverse inheritance modes and mutations.


Subject(s)
Inheritance Patterns/genetics , Mutation/genetics , Pedigree , Retinal Dystrophies/genetics , Adult , Aged, 80 and over , Base Sequence , Computational Biology , Family , Female , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Young Adult
17.
J Neurosci ; 36(8): 2473-93, 2016 Feb 24.
Article in English | MEDLINE | ID: mdl-26911694

ABSTRACT

Mutations in the Tulp1 gene cause severe, early-onset retinitis pigmentosa (RP14) in humans. In the retina, Tulp1 is mainly expressed in photoreceptors that use ribbon synapses to communicate with the inner retina. In the present study, we demonstrate that Tulp1 is highly enriched in the periactive zone of photoreceptor presynaptic terminals where Tulp1 colocalizes with major endocytic proteins close to the synaptic ribbon. Analyses of Tulp1 knock-out mice demonstrate that Tulp1 is essential to keep endocytic proteins enriched at the periactive zone and to maintain high levels of endocytic activity close to the synaptic ribbon. Moreover, we have discovered a novel interaction between Tulp1 and the synaptic ribbon protein RIBEYE, which is important to maintain synaptic ribbon integrity. The current findings suggest a new model for Tulp1-mediated localization of the endocytic machinery at the periactive zone of ribbon synapses and offer a new rationale and mechanism for vision loss associated with genetic defects in Tulp1.


Subject(s)
Endocytosis/physiology , Eye Proteins/metabolism , Photoreceptor Cells/metabolism , Synapses/metabolism , Amino Acid Sequence , Animals , Cattle , Eye Proteins/analysis , Eye Proteins/genetics , Female , HEK293 Cells , Humans , Male , Mice , Mice, Knockout , Molecular Sequence Data , Organ Culture Techniques , Photoreceptor Cells/chemistry , Retina/chemistry , Retina/metabolism , Synapses/chemistry , Synapses/genetics
18.
Adv Exp Med Biol ; 854: 223-30, 2016.
Article in English | MEDLINE | ID: mdl-26427415

ABSTRACT

Mutations in the TULP1 gene are associated with early-onset retinitis pigmentosa (RP); however, the molecular mechanisms related to the deleterious effects of TULP1 mutations remains unknown. Several studies have shown that misfolded proteins secondary to genetic mutations can accumulate within the endoplasmic reticulum (ER), causing activation of the unfolded protein response (UPR) complex followed by cellular apoptosis. We hypothesize that TULP1 mutations produce misfolded protein products that accumulate in the ER and induce cellular apoptosis via the UPR. To test our hypothesis, we first performed three in-silico analyses of TULP1 missense mutations (I459K, R420P and F491L), which predicted misfolded protein products. Subsequently, the three mutant TULP1-GFP constructs and wild-type (wt) TULP1-GFP were transiently transfected into hTERT-RPE-1 cells. Staining of cells using ER tracker followed by confocal microscopy showed wt-TULP1 localized predominantly to the cytoplasm and plasma membrane. In contrast, all three mutant TULP1 proteins revealed cytoplasmic punctate staining which co-localized with the ER. Furthermore, western blot analysis of cells expressing mutant TULP1 proteins revealed induction of downstream targets of the ER-UPR complex, including BiP/GPR-78, phosphorylated-PERK (Thr980) and CHOP. Our in-vitro analyses suggest that mutant TULP1 proteins are misfolded and accumulate within the ER leading to induction of the UPR stress response complex.


Subject(s)
Endoplasmic Reticulum/metabolism , Eye Proteins/genetics , Mutation, Missense , Unfolded Protein Response/genetics , Apoptosis/genetics , Blotting, Western , Cell Line , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress/genetics , Eye Proteins/chemistry , Eye Proteins/metabolism , Heat-Shock Proteins/metabolism , Humans , Microscopy, Confocal , Phosphorylation/genetics , Protein Folding , Transcription Factor CHOP/metabolism , eIF-2 Kinase/metabolism
19.
Ophthalmic Genet ; 36(4): 333-8, 2015.
Article in English | MEDLINE | ID: mdl-24547928

ABSTRACT

BACKGROUND: Leber congenital amaurosis (LCA) is a severe form of retinal dystrophy with marked underlying genetic heterogeneity. Until recently, allele-specific assays and Sanger sequencing of targeted segments were the only available approaches for attempted genetic diagnosis in this condition. A broader next-generation sequencing (NGS) strategy, such as whole exome sequencing, provides an improved molecular genetic diagnostic capacity for patients with these conditions. MATERIALS AND METHODS: In a child with LCA, an allele-specific assay analyzing 135 known LCA-causing variations, followed by targeted segment sequencing of 61 regions in 14 causative genes was performed. Subsequently, exome sequencing was undertaken in the proband, unaffected consanguineous parents and two unaffected siblings. Bioinformatic analysis used two independent pipelines, BWA-GATK and SOAP, followed by Annovar and SnpEff to annotate the variants. RESULTS: No disease-causing variants were found using the allele-specific or targeted segment Sanger sequencing assays. Analysis of variants in the exome sequence data revealed a novel homozygous nonsense mutation (c.1081C > T, p.Arg361*) in TULP1, a gene with roles in photoreceptor function where mutations were previously shown to cause LCA and retinitis pigmentosa. The identified homozygous variant was the top candidate using both bioinformatic pipelines. CONCLUSIONS: This study highlights the value of the broad sequencing strategy of exome sequencing for disease gene identification in LCA, over other existing methods. NGS is particularly beneficial in LCA where there are a large number of causative disease genes, few distinguishing clinical features for precise candidate disease gene selection, and few mutation hotspots in any of the known disease genes.


Subject(s)
Codon, Nonsense , Eye Proteins/genetics , Leber Congenital Amaurosis/genetics , Amino Acid Sequence , Base Sequence , Child , Consanguinity , DNA Mutational Analysis , Electroretinography , Exome/genetics , Female , High-Throughput Nucleotide Sequencing , Humans , Leber Congenital Amaurosis/diagnosis , Leber Congenital Amaurosis/physiopathology , Molecular Sequence Data , Pedigree , Polymorphism, Single Nucleotide , Visual Acuity/physiology
SELECTION OF CITATIONS
SEARCH DETAIL