Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
CNS Neurosci Ther ; 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37650344

ABSTRACT

BACKGROUND: TUB-like protein 4 (TULP4) is one of the distant members of tubby family proteins, whose function remains largely unknown. In the present study, we intend to identify the role of TULP4 in schizophrenia from human samples and animal models. METHODS: Whole-exome sequencing was used to detect the four schizophrenia families collected. In different cell lines, the effects of identified variants in TULP4 gene on its expression and localization were analyzed. Knockdown models in utero and adult mice were employed to investigate the role of Tulp4 on neuronal migration and schizophrenia-related behavior. Subsequently, co-IP assays were used to search for proteins that interact with TULP4 and the effects of mutants on the molecular function of TULP4. RESULTS: For the first time, we identified five rare variants in TULP4 from schizophrenia families, of which three significantly reduced TULP4 protein expression. Knockdown the expression of Tulp4 delayed neuronal migration during embryological development and consequently triggered abnormal behaviors in adult mice, including impaired sensorimotor gating and cognitive dysfunction. Furthermore, we confirmed that TULP4 is involved in the formation of a novel E3 ligase through interaction with CUL5-ELOB/C-RNF7 and the three deleterious variants affected the binding amount of TULP4 and CUL5 to a certain extent. CONCLUSIONS: Together, we believe TULP4 plays an important role in neurodevelopment and subsequent schizophrenic-related phenotypes through its E3 ubiquitin ligase function.

3.
J Biol Chem ; 296: 100073, 2021.
Article in English | MEDLINE | ID: mdl-33187986

ABSTRACT

Tubby-like proteins (TULPs) are characterized by a conserved C-terminal domain that binds phosphoinositides. Collectively, mammalian TULP1-4 proteins play essential roles in intracellular transport, cell differentiation, signaling, and motility. Yet, little is known about how the function of these proteins is regulated in cells. Here, we present the protein-protein interaction network of TULP3, a protein that is responsible for the trafficking of G-protein-coupled receptors to cilia and whose aberrant expression is associated with severe developmental disorders and polycystic kidney disease. We identify several protein interaction nodes linked to TULP3 that include enzymes involved in acetylation and ubiquitination. We show that acetylation of two key lysine residues on TULP3 by p300 increases TULP3 protein abundance and that deacetylation of these sites by HDAC1 decreases protein levels. Furthermore, we show that one of these sites is ubiquitinated in the absence of acetylation and that acetylation inversely correlates with ubiquitination of TULP3. This mechanism is evidently conserved across species and is active in zebrafish during development. Finally, we identify this same regulatory module in TULP1, TULP2, and TULP4 and demonstrate that the stability of these proteins is similarly modulated by an acetylation switch. This study unveils a signaling pathway that links nuclear enzymes to ciliary membrane receptors via TULP3, describes a dynamic mechanism for the regulation of all tubby-like proteins, and explores how to exploit it pharmacologically using drugs.


Subject(s)
Eye Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , p300-CBP Transcription Factors/metabolism , Acetylation , Eye Proteins/genetics , HEK293 Cells , HeLa Cells , Histone Deacetylase 1/genetics , Histone Deacetylase 1/metabolism , Humans , Intracellular Signaling Peptides and Proteins/genetics , Protein Stability , p300-CBP Transcription Factors/genetics
4.
Biochem Biophys Res Commun ; 482(4): 814-820, 2017 Jan 22.
Article in English | MEDLINE | ID: mdl-27888110

ABSTRACT

Tubby domain superfamily protein (TUSP) is a distant member of the Tubby-like protein (TULP) family. Although other TULPs play important roles in sensation, metabolism, and development, the molecular functions of TUSP are completely unknown. Here, we explore the function of TUSP in the Drosophila nervous system where it is expressed in all neurons. Tusp mutant flies exhibit a temperature-sensitive paralysis. This paralysis can be rescued by tissue-specific expression of Tusp in the giant fibers and peripherally synapsing interneurons of the giant fiber system, a well-characterized neuronal circuit that mediates rapid escape behavior in flies. Consistent with this paralytic phenotype, we observed a profound reduction in the assembly of the ternary 7S SNARE complex that is required for neurotransmitter release despite seeing no changes in the expression of each individual SNARE complex component. Together, these data suggest TUSP is a novel regulator of SNARE assembly and, therefore, of neurotransmitter release.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/physiology , SNARE Proteins/metabolism , Animals , Animals, Genetically Modified , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Heat-Shock Response , Hot Temperature , Locomotion , Mutation , Nerve Net/physiology , Neurons/physiology , Synapses/physiology
SELECTION OF CITATIONS
SEARCH DETAIL