Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Struct Biotechnol J ; 20: 3615-3620, 2022.
Article in English | MEDLINE | ID: mdl-35860413

ABSTRACT

Meta-analysis is a method for enhancing statistical power through the integration of information from multiple studies. Various methods for integrating p-values (i.e., statistical significance), including Fisher's method under an independence assumption, the permutation method, and the decorrelation method, have been broadly used in bioinformatics and computational biotechnology studies. However, these methods have limitations related to statistical assumption, computing efficiency, and accuracy of statistical significance estimation. In this study, we proposed a numerical integration method and examined its theoretical properties. Simulation studies were conducted to evaluate its Type I error, statistical power, computational efficiency, and estimation accuracy, and the results were compared with those of other methods. The results demonstrate that our proposed method performs well in terms of Type I error, statistical power, computing efficiency (regardless of sample size), and statistical significance estimation accuracy. P-value data from multiple large-scale genome-wide association studies (GWASs) and transcriptome-wise association studies (TWASs) were analyzed. The results demonstrate that our proposed method can be used to identify critical genomic regions associated with rheumatoid arthritis and asthma, increase statistical significance in individual GWASs and TWASs, and control for false-positives more effectively than can Fisher's method under an independence assumption. We created the software package Pbine, available at GitHub (https://github.com/Yinchun-Lin/Pbine).

2.
Genes (Basel) ; 12(7)2021 07 08.
Article in English | MEDLINE | ID: mdl-34356065

ABSTRACT

BACKGROUND: Thousands of genetic variants have been associated with hematological traits, though target genes remain unknown at most loci. Moreover, limited analyses have been conducted in African ancestry and Hispanic/Latino populations; hematological trait associated variants more common in these populations have likely been missed. METHODS: To derive gene expression prediction models, we used ancestry-stratified datasets from the Multi-Ethnic Study of Atherosclerosis (MESA, including n = 229 African American and n = 381 Hispanic/Latino participants, monocytes) and the Depression Genes and Networks study (DGN, n = 922 European ancestry participants, whole blood). We then performed a transcriptome-wide association study (TWAS) for platelet count, hemoglobin, hematocrit, and white blood cell count in African (n = 27,955) and Hispanic/Latino (n = 28,324) ancestry participants. RESULTS: Our results revealed 24 suggestive signals (p < 1 × 10-4) that were conditionally distinct from known GWAS identified variants and successfully replicated these signals in European ancestry subjects from UK Biobank. We found modestly improved correlation of predicted and measured gene expression in an independent African American cohort (the Genetic Epidemiology Network of Arteriopathy (GENOA) study (n = 802), lymphoblastoid cell lines) using the larger DGN reference panel; however, some genes were well predicted using MESA but not DGN. CONCLUSIONS: These analyses demonstrate the importance of performing TWAS and other genetic analyses across diverse populations and of balancing sample size and ancestry background matching when selecting a TWAS reference panel.


Subject(s)
Black or African American/genetics , Blood Cells/pathology , Genetic Predisposition to Disease , Hispanic or Latino/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Transcriptome , Blood Cells/metabolism , Cohort Studies , Genome-Wide Association Study , Humans , Phenotype , White People/genetics
SELECTION OF CITATIONS
SEARCH DETAIL