Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters











Publication year range
1.
J Environ Sci (China) ; 148: 437-450, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095178

ABSTRACT

For environmental applications, it is crucial to rationally design and synthesize photocatalysts with positive exciton splitting and interfacial charge transfer. Here, a novel Ag-bridged dual Z-scheme Ag/g-C3N4/CoNi-LDH plasmonic heterojunction was successfully synthesized using a simple method, with the goal of overcoming the common drawbacks of traditional photocatalysts such as weak photoresponsivity, rapid combination of photo-generated carriers, and unstable structure. These materials were characterized by XRD, FT-IR, SEM, TEM UV-Vis/DRS, and XPS to verify the structure and stability of the heterostructure. The pristine LDH, g-C3N4, and Ag/g-C3N4/CoNi-LDH composite were investigated as photocatalysts for water remediation, an environmentally motivated process. Specifically, the photocatalytic degradation of tetracycline was studied as a model reaction. The performance of the supports and composite catalyst were determined by evaluating both the degradation and adsorption phenomenon. The influence of several experimental parameters such as catalyst loading, pH, and tetracycline concentration were evaluated. The current study provides important data for water treatment and similar environmental protection applications.


Subject(s)
Nanocomposites , Photolysis , Silver , Water Pollutants, Chemical , Water Purification , Nanocomposites/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Silver/chemistry , Catalysis , Nitriles/chemistry , Nitrogen Compounds/chemistry , Adsorption , Graphite
2.
Chem Asian J ; 19(15): e202400406, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38757796

ABSTRACT

Tetracycline (TC) is a commonly used antibiotic in human therapy and animal husbandry. Public concerns about TC residues inflated due to their negative impact on the environment, food, and human health concerns. To ensure human health and safety, there is a need for fluorogenic chemosensors that can easily detect TC antibiotics with high selectivity and sensitivity in the aqueous medium. This mini-review discusses the progress and achievements in several fluorometric antibiotic tetracycline detection methods. Fluorogenic chemosensors for tetracycline antibiotics with easy-to-use, high selectivity, and sensitivity have been essentially required to regulate food safety and secure human health and safety. Moreover, we gave more attention to the practical applicability of chemosensors for tetracycline antibiotics in food and water quality assessment. This article starts with a section that constitutes an overview of the problems of antibiotics and the typical features of traditional techniques of antibiotic detection. It then goes on to describe up-to-date optical methods for the selective detection and efficient removal of TC. These methods involve a variety of platforms, like tetraphenylethylene polymers, metal complexes, self-assembled CuNCs, and hydrogel. The article also discusses the practical applicability of chemosensors for tetracycline antibiotics in food and water quality.


Subject(s)
Anti-Bacterial Agents , Fluorescent Dyes , Tetracycline , Tetracycline/analysis , Fluorescent Dyes/chemistry , Anti-Bacterial Agents/analysis , Humans , Water/chemistry
3.
Talanta ; 276: 126231, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38788376

ABSTRACT

Extracellular polymeric substances (EPS), which were an important fraction of natural organic matter (NOM), played an important role in various environmental processes. However, the heterogeneity, complexity, and dynamics of EPS make their interactions with antibiotics elusive. Using advanced multispectral technology, this study examined how EPS interacts with different concentrations of tetracycline (TC) in the soil system. Our results demonstrated that protein-like (C1), fulvic-like (C2), and humic-like (C3) fractions were identified from EPS. Two-dimensional synchronous correlation spectroscopy (2D-SF-COS) indicated that the protein-like fraction gave faster responses than the fulvic-like fraction during the TC binding process. The sequence of structural changes in EPS due to TC binding was revealed by two-dimensional Fourier Transformation Infrared correlation spectroscopy (2D-FTIR-COS) as follows: 1550 > 1660 > 1395 > 1240 > 1087 cm-1. It is noteworthy that the sensitivity of the amide group to TC has been preserved, with its intensity gradually increasing to become the primary binding site for TC. The integration of hetero-2DCOS maps with moving window 2D correlation spectroscopy (MW2DCOS) provided a unique insight into understanding the correlation between EPS fractions and functional groups during the TC binding process. Moreover, molecular docking (MD) discovered that the extracellular proteins would provide plenty of binding sites with TC through salt bridges, hydrogen bonds, and π-π base-stacking forces. With these results, systematic investigations of the dynamic changes in EPS components under different concentrations of antibiotic exposure demonstrated the advanced capabilities of multispectral technology in examining intricate interactions with EPS in the soil environment.


Subject(s)
Escherichia coli , Extracellular Polymeric Substance Matrix , Molecular Docking Simulation , Tetracycline , Tetracycline/chemistry , Tetracycline/metabolism , Escherichia coli/metabolism , Escherichia coli/drug effects , Extracellular Polymeric Substance Matrix/metabolism , Extracellular Polymeric Substance Matrix/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Binding Sites , Spectroscopy, Fourier Transform Infrared
4.
Sci Rep ; 14(1): 4954, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38418921

ABSTRACT

In this study, TiO2 nanoparticles were employed as a photocatalyst for the degradation of tetracycline (TC) under visible light irradiation. The TiO2 nanoparticles were decorated on natural pyrite (TiO2/NP) and characterized using XRD, FTIR, and SEM-EDX methods. This study evaluated the impacts of various operational parameters such as pH, catalyst dosage, initial TC concentration, and light intensity on TC removal. The findings revealed that under optimal conditions (pH 7, catalyst: 2 g/L, TC: 30 mg/L, and light intensity: 60 mW/cm2), 100% of TC and 84% of TOC were removed within 180 min. The kinetics of TC elimination followed a first-order model. The dominant oxidation species involved in the photocatalytic elimination of TC was found to be ·OH radicals in the TiO2/NP system. The reuse experiments showed the high capability of the catalyst after four consecutive cycles. This study confirmed that the TiO2/NP system has high performance in photocatalytic TC removal under optimized experimental conditions.

5.
Environ Res ; 252(Pt 1): 118425, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38325789

ABSTRACT

This study employed hydrothermal carbonization (HTC) in conjunction with ZnCl2 activation and pyrolysis to produce biochar from one traditional Chinese medicine astragali radix (AR) residue. The resultant biochar was evaluated as a sustainable adsorbent for tetracycline (TC) elimination from water. The adsorption performance of TC on two micropore-rich AR biochars, AR@ZnCl2 (1370 m2 g-1) and HAR@ZnCl2 (1896 m2 g-1), was comprehensively evaluated using adsorption isotherms, kinetics, and thermodynamics. By virtue of pore diffusion, π-π interaction, electrostatic attraction, and hydrogen bonding, the prepared AR biochar showed exceptional adsorption properties for TC. Notably, the maximum adsorption capacity (930.3 mg g-1) of TC on HAR@ZnCl2 can be achieved when the adsorbent dosage is 0.5 g L-1 and C0 is 500 mg L-1 at 323 K. The TC adsorption on HAR@ZnCl2 took place spontaneously. Furthermore, the impact of competitive ions behavior is insignificant when coexisting ion concentrations fall within the 10-100 mg L-1 range. Additionally, the produced biochar illustrated good economic benefits, with a payback of 701 $ t-1. More importantly, even after ten cycles, HAR@ZnCl2 still presented great TC removal efficiency (above 77%), suggesting a good application prosperity. In summary, the effectiveness and sustainability of AR biochar, a biowaste-derived product, were demonstrated in its ability to remove antibiotics from water, showing great potential in wastewater treatment application.


Subject(s)
Charcoal , Drugs, Chinese Herbal , Tetracycline , Water Pollutants, Chemical , Adsorption , Charcoal/chemistry , Tetracycline/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Drugs, Chinese Herbal/chemistry , Anti-Bacterial Agents/chemistry , Water Purification/methods , Kinetics , Chlorides , Zinc Compounds
6.
Environ Pollut ; 344: 123305, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38195022

ABSTRACT

Iron sludge, produced during the drinking water treatment process, can be recycled as potential iron resource to create environmental functional material. In this study, sulfur-iron composites derived from iron sludge (S-Fe composites) was synthesized through sulfidation and carbonization, and used for the tetracycline (TC) removal under aerobic and anoxic conditions. The reactivities of these as-prepared products were strongly depended on pyrolysis temperatures. In particular, sulfidated nanoscale zero-valent iron loaded on carbon (S-nFe0@CIS) carbonized at 800 °C exhibited the highest TC removal efficiency with 86.6% within 30 min at circumneutral pH compared with other S-Fe composites. The crystalline structure of α-Fe0, FeSx and S0 as main active sites in S-nFe0@CIS promoted the degradation of TC. Moreover, the Fe/S molar ratios significantly affected the TC removal rates, which reached the best value as the optimal S/Fe of 0.27. The results illustrated that the optimized extent of sulfidation could facilitate electron transfer from nFe0 towards contaminants and accelerate Fe(III)/Fe(II) cycle in reaction system compared to bared nFe0@CIS. We revealed that removal of TC by S-nFe0@CIS in the presence of dissolved oxygen (DO) is mainly attributed to oxidation, adsorption and reduction pathways. Their contribution to TC removal were 31.6%, 25.2% and 28.8%, respectively. Furthermore, this adsorption-oxygenation with the formation of S-nFe0@CIS-TC* complexes was a surface-mediated process, in which DO was transformed by the structural FeSx on complex surface to •OH with the generation of H2O2 intermediate. The intermediates of TC and toxicity analysis indicate that less toxicity products generated through degradation process. This study provides a new reclamation of iron sludge and offers a new insight into the TC removal by S-nFe0@CIS under aerobic conditions.


Subject(s)
Sewage , Water Pollutants, Chemical , Iron/chemistry , Hydrogen Peroxide , Tetracycline/chemistry , Anti-Bacterial Agents/chemistry , Oxygen , Water Pollutants, Chemical/analysis
7.
Nanotechnology ; 35(14)2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38134436

ABSTRACT

Due to the misuse and overuse of the antibiotic tetracycline (TC), as well as its refractory degradability, it has become a stubborn environmental contaminant. In this study, a self-standing polyacrylonitrile-based ZIF-67@CNT/ACF aligned anodic membrane was fabricated by innovatively incorporating ZIF-67@CNT nanoparticles into an aligned carbon nanofiber (ACF) membrane to treat the TC. The flow-through nanoporous construction of the ZIF-67@CNT/ACF membrane reactor can compress the diffusion boundary layer on the electrode surface to enhance mass transfer under microscopic laminar flow, which can further enhance the degradation rate. In addition, the enhanced degradation performance also benefited from the significant electrooxidation capacity of the ZIF-67@CNT/ACF membrane. At the optimal electrocatalytic condition of 3.0 V applied potential and pH 6, the degradation rate reached 81% in 1 h for an initial TC concentration of 10 mg l-1. The refractory and highly toxic TC was electrochemically degraded into small non-toxic molecules. Our results indicate that electrocatalytic TC degradation can be enhanced by ZIF-67@CNT/ACF membrane.

8.
Environ Res ; 245: 117971, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38145740

ABSTRACT

In this study, activated carbon (WS-AC) was prepared from walnut shell. Nano-zero-valent iron (nZVI) was loaded on walnut shell activated carbon by liquid phase reduction method and used as catalyst (WS-AC/nZVI) to activate peroxymonosulfate (PMS) to efficiently degrade tetracycline (TC) in solution. The composite material with a mass ratio of WS-AC to nZVI of 1:1 has the highest catalytic performance for activating PMS to degrade TC. The results showed that under the conditions of TC concentration of 100 ppm, PMS dosage of 0.2 mM and WS-AC/nZVI dosage of 0.1 g/L, the removal efficiency of TC could reach 81%. Based on quenching experiments and electron spin resonance (EPR), it was verified that •OH, SO4•- and 1O2 bound on the catalyst surface were the main reactive oxygen species during the reaction. The intermediate products of TC were identified by liquid chromatography-mass spectrometry (HPLC-MS) and DFT calculation, and the possible degradation pathway of TC was proposed. The catalyst still maintained high removal efficiency of TC after four cycles of experiments, and the minimal iron loss on the surface of the catalyst indicated that it had good stability. The efficient and stable WS-AC/nZVI activated PMS showed great potential in the degradation of antibiotics.


Subject(s)
Juglans , Peroxides , Water Pollutants, Chemical , Charcoal , Iron/chemistry , Water Pollutants, Chemical/chemistry , Anti-Bacterial Agents , Tetracycline/chemistry
9.
Huan Jing Ke Xue ; 44(6): 3260-3269, 2023 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-37309944

ABSTRACT

To explore the mechanism and pathway for pollutant degradation in seawater by heterogeneous photocatalysts, the degradation of tetracycline (TC) in pure water and simulated seawater with different mesoporous TiO2 under the excitation of visible light was first investigated; then the effect of different salt ions on the photocatalytic degradation process was clarified. Combined with radical trapping experiments, electron spin resonance (ESR) spectroscopy, and intermediate product analysis, the main active species for photodegrading pollutants and the pathway of TC degradation in simulated seawater were investigated. The results showed that the photodegradation for TC in simulated seawater was significantly inhibited. Compared with the TC photodegradation in pure water, the reaction rate of the chiral mesoporous TiO2 photocatalyst for TC was reduced by approximately 70%, whereas the achiral mesoporous TiO2 photocatalyst could hardly degrade TC in seawater. Anions in simulated seawater had little effect on photodegradation, but Mg2+ and Ca2+ ions significantly inhibited the TC photodegradation process. Whether in water or simulated seawater, the active species generated by the catalyst after excitation by visible light were mainly holes, and each salt ion did not inhibit the generation of active species; thus, the degradation pathway both in simulated seawater and in water was the same. However, Mg2+ and Ca2+ would be enriched around the highly electronegative atoms in TC molecules, hindering the attack of holes to highly electronegative atoms in TC molecules, thereby inhibiting the photocatalytic degradation efficiency.

10.
J Environ Sci (China) ; 131: 123-140, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37225374

ABSTRACT

Rational design and synthesis of highly efficient and robust photocatalysts with positive exciton splitting and interfacial charge transfer for environmental applications is critical. Herein, aiming at overcoming the common shortcomings of traditional photocatalysts such as weak photoresponsivity, rapid combination of photo-generated carriers and unstable structure, a novel Ag-bridged dual Z-scheme g-C3N4/BiOI/AgI plasmonic heterojunction was successfully synthesized using a facile method. Results showed that Ag-AgI nanoparticles and three-dimensional (3D) BiOI microspheres were decorated highly uniformly on the 3D porous g-C3N4 nanosheet, resulting in a higher specific surface area and abundant active sites. The optimized 3D porous dual Z-scheme g-C3N4/BiOI/Ag-AgI manifested exceptional photocatalytic degradation efficiency of tetracycline (TC) in water with approximately 91.8% degradation efficiency within 165 min, outperforming majority of the reported g-C3N4-based photocatalysts. Moreover, g-C3N4/BiOI/Ag-AgI exhibited good stability in terms of activity and structure. In-depth radical scavenging and electron paramagnetic resonance (EPR) analyses confirmed the relative contributions of various scavengers. Mechanism analysis indicated that the improved photocatalytic performance and stability were ascribed to the highly ordered 3D porous framework, fast electron transfer of dual Z-scheme heterojunction, desirable photocatalytic performance of BiOI/AgI and synergistic effect of Ag plasmas. Therefore, the 3D porous Z-scheme g-C3N4/BiOI/Ag-AgI heterojunction had a good prospect for applications in water remediation. The current work provides new insight and useful guidance for designing novel structural photocatalysts for environment-related applications.


Subject(s)
Heterocyclic Compounds , Tetracycline , Anti-Bacterial Agents , Microspheres , Water
11.
Environ Sci Pollut Res Int ; 30(31): 77022-77031, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37249777

ABSTRACT

The endogenetic biochar-derived dissolved organic matter (BDOM) might interact with pollutants in the environment. In this study, tetracycline (TC) was selected as the representative pollutant, and corn straw biochar (pyrolyzed at 300 °C) was used as the adsorbent. Through batch experiments and microscopic characterization, the releasing kinetics of BDOM and its effect on TC adsorption on biochar were investigated. The results showed that BDOM with weaker aromaticity and higher molecular weight was preferentially released. BDOM release led to the decrease of specific surface area (from 4.02 to 1.83 m2/g), mesopore number, and aromaticity of biochar (H/C increased from 0.80 to 0.91) and consequently weakened the pore filling of TC on biochar, hydrophobic interaction, and π-π EDA (electron donor receptor) interaction between biochar and TC. In addition, the released BDOM could form a complex with TC in solution to prevent TC adsorption on biochar. Overall, the change in the structural properties of biochar caused by BDOM release had a greater impact on the inhibition of TC adsorption than that of BDOM and TC complexation in this study. Through EEM-PRARFAC, BDOM contained about 63% humic acid-like fluorescent component and 37% tryptophan-like fluorescent component; the former (logKb values were 7.31 and 6.48, respectively) had a stronger binding strength with TC than the latter (logKb was 6.45). The findings of this study could provide some useful evidence for the removal of organic pollutants in soil and water environments and biochar application in pollution remediation.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Dissolved Organic Matter , Adsorption , Anti-Bacterial Agents , Tetracycline/chemistry , Charcoal/chemistry , Kinetics
12.
Huan Jing Ke Xue ; 44(3): 1519-1527, 2023 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-36922212

ABSTRACT

Using cotton stalk as biomass raw material and phosphoric acid as a modifier, narrow pore distribution phosphorus-containing cotton stalk biochar (CSP) with a high surface area (1916 m2·g-1) and pore volume (1.3982 mL·g-1) was prepared through one-step carbonization, and the adsorption characteristics and mechanisms for tetracycline (TC) were investigated. The results showed that the TC adsorption capacity of CSP was up to 669 mg·g-1, which was 43.6 times that of unmodified cotton stalk carbon. FTIR, XPS, and isothermal adsorption studies showed that the high adsorption capacity of CSP for TC resulted from the joint action of complexation, hydrogen bonding, pore filling, and π-π dispersion forces, and the highly active phosphate ester group (P-O-C) endowed by phosphoric acid modification greatly enhanced the chemical interaction with TC molecules, which was the key factor for the significant increase in adsorption capacity. Isotherm and thermodynamic study further confirmed that chemical adsorption played a major role in the adsorption process, the adsorption process was spontaneous and endothermic, and the material had good regeneration performance. This study provides theoretical guidance for the preparation of modified biomass carbon with high adsorption performance to remove tetracycline antibiotic pollution.


Subject(s)
Carbon , Water Pollutants, Chemical , Carbon/chemistry , Phosphorus , Adsorption , Tetracycline/chemistry , Anti-Bacterial Agents , Charcoal/chemistry , Water Pollutants, Chemical/analysis , Kinetics
13.
Plant Physiol Biochem ; 196: 661-667, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36801528

ABSTRACT

Antibiotics are a kind of emerging contaminant in soil. Tetracycline (TC) and oxytetracycline (OTC) in soil are often detected, even with very high concentration in the soils of facility agriculture due to their good effect, low price and large usage. Copper (Cu) is common heavy metal pollutant in soil. The toxicity roles of TC, OTC and/or Cu in soil on a commonly consumed vegetable Capsicum annuum L. and its Cu accumulation were not clear till now. The results of pot experiment showed that the TC or OTC added in soil alone didn't produce poison effects for C. annuum after 6 weeks and 12 weeks growth reflected by some physiological index like SOD, CAT and APX activities changes, while the biomass changes affirmed them either. Cu contaminated soil significantly inhibited the growth of C. annuum. Furthermore, combined pollution of Cu with TC or OTC was with more serious suppression of C. annuum growth. The suppression role of OTC was heavier than TC in Cu and TC or OTC contaminated soil. Such phenomenon was relevant with the role of TC or OTC increased Cu concentration in C. annuum. The improvement role of TC or OTC on Cu accumulation in C. annuum caused by the increased extractable Cu concentration in soil. The study demonstrated that TC or OTC added in soil alone was without any toxicity to C. annuum. But they may aggravate the hurt of C. annuum caused by Cu through increased its accumulation from soil. Thus, such combine pollution should be avoided in safe agricultural product.


Subject(s)
Capsicum , Oxytetracycline , Soil Pollutants , Anti-Bacterial Agents , Copper/toxicity , Soil , Oxytetracycline/toxicity , Tetracycline , Soil Pollutants/toxicity , Soil Pollutants/analysis
14.
Environ Sci Pollut Res Int ; 30(14): 42165-42175, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36645597

ABSTRACT

The environmental fate and toxic effects of antibiotics such as tetracycline (TC) could be influenced by the ubiquitous dissolved organic matter (DOM). However, DOM from different origins has different hydrophilic and hydrophobic properties. It is still unknown the effects of hydrophilic and hydrophobic DOM on the toxic effect of TC. In this study, DOM with hydrophilicity and hydrophobicity was separated and used to investigate their roles in affecting TC toxicity to the photosynthesis of green algae Chlorella vulgaris. Results showed that 10 mg L-1 TC inhibited the efficiency of photosystem II (PSII) of C. vulgaris using light by hindering electron transfer from QA- to QB/QB-, and the O2 release rate of C. vulgaris decreased by a third after 12-h treatment of 10 mg L-1 TC, while both hydrophilic and hydrophobic DOM (20 mg L-1 TOC) alleviated TC toxicity to the photosynthesis of C. vulgaris. In the presence of hydrophilic or hydrophobic DOM, stable complex of TC-hydrophilic DOM or TC-hydrophobic DOM was formed immediately, due to the good affinity of both DOM for TC. Fourier transform infrared spectroscopy result showed that both hydrophilic and hydrophobic DOM could reduce C=O in TC to C-O, and isothermal titration calorimetry result suggested that reactions of both DOM with TC were exothermic (△H < 0) and spontaneous (△G < 0). Thereinto, the reaction constant (Ka) of TC reacting with hydrophobic DOM (Ka=9.70) was higher than that with hydrophilic DOM (Ka=8.93), indicating hydrophobic DOM with more chemical binding sites and accessible fractions for TC. The present study suggests that DOM, especially the hydrophobic DOM, is an important consideration in the environmental impact assessment of antibiotics.


Subject(s)
Chlorella vulgaris , Dissolved Organic Matter , Hydrophobic and Hydrophilic Interactions , Anti-Bacterial Agents , Photosynthesis , Tetracyclines
15.
Chemosphere ; 313: 137584, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36529164

ABSTRACT

In this study, tetracycline (TC) can be degraded in microbial fuel cells (MFCs) rapidly and efficiently for the synergistic effect of microbial metabolism and electrical stimulation. Different TC concentrations had different effects on the bioelectric performance of MFCs. Among them, 10 mg/L TC promoted the bioelectric properties of MFCs, the maximum power density reached 1744.4 ± 74.9 mW/cm2. In addition, we demonstrated that Geobacter and Chryseobacterium were the dominant species in the anode biofilm, while Azoarcus and Pseudomonas were the prominent species in the effluent, and the initial TC concentration affected the microbial community composition. Furthermore, the addition of TC increased the relative abundance of aadA3, sul1, adeF, cmlA, and tetC in reactors, indicating that a single antibiotic could promote the expression of self-related resistance as well as the expression of other ARGs. Moreover, the presence of TC can increase the relative content of mobile genetic elements (MGEs) and greatly increase the risk of antibiotic resistance genes (ARGs) spreading. Meanwhile, network analysis revealed that some microorganisms (such as Acidovorax caeni, Geobacter soil, and Pseudomonas thermotolerans) and MGEs may be potential hosts for multiple ARGs.


Subject(s)
Anti-Bacterial Agents , Bioelectric Energy Sources , Anti-Bacterial Agents/pharmacology , Wastewater , Tetracycline , Genes, Bacterial
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 290: 122248, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36580750

ABSTRACT

This paper reports a novel probe developed based on the tungsten trioxide quantum dots (WO3-x QDs) and molecularly imprinted polymers for the detection of trace tetracycline (TC) in the complex food matrix. Tungsten ion (W6+) in WO3-x QDs has a fluorescence enhancement effect on TC, and TC has a fluorescence quenching effect on WO3-x QDs. The blue emission of the WO3-x QDs (λem = 470 nm) as a reference and the yellow emission of the TC (λem = 550 nm) as a response were utilized for the ratiometric fluorescence detection. In order to improve its selectivity, the molecular imprinting technology was combined to construct molecularly imprinted ratiometric fluorescent probes (MIRFPs). Therefore, the MIRFPs can not only selectively detect TC, but also realize the visual detection from blue to yellow. Under the optimal conditions, the linear ranges of 0.01 âˆ¼ 10.0 µmol/L and 20.0 âˆ¼ 80.0 µmol/L were obtained with the limits of detection of 3.23 nmol/L and 6.37 µmol/L, respectively. Furthermore, the MIRFPs had been successfully applied to the detection of TC in milk and eggs. The satisfactory recoveries were in the range of 92.7 âˆ¼ 102.9 % with relative standard deviations (RSD, n = 3) below 1.59 %. This work offers a good strategy for the detection of food hazards.


Subject(s)
Molecular Imprinting , Quantum Dots , Tungsten , Tetracycline , Anti-Bacterial Agents , Spectrometry, Fluorescence , Fluorescent Dyes , Limit of Detection
17.
Chemosphere ; 312(Pt 1): 137184, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36400191

ABSTRACT

Tetracycline (TC) as an antibiotic with high consumption causes the spread of contamination in an aqueous solution. In recent decades, antibiotics are the main cause of hindering the growth of microorganisms. Also, they are one of the important groups of pharmaceuticals with extensive usage in human and veterinary medicine. In the first work of its kind, we used a suitable adsorbent of biodegradable hydroxyethylcellulose (HEC) with graphene oxide (GO) by crosslinking ethylene glycol dimethacrylate (EGDMA) and the Fe/Zn with mole ratio 1:1 bimetallic nanoparticles with HEC-GO support. The materials were identified using FTIR, FE-SEM, EDX, TEM, and TG- DSC analyses. The factors affecting the adsorption process (contact time, initial concentration of TC, solution pH, adsorbent dosage, and reaction temperature) were evaluated in a series of batch systems. The adsorption data showed that the high adsorption capacity was obtained on the HEC-GO and HEC-GO/Fe-Zn (mole ratio 1:1) nanocomposites at pH 3. Also, the contact time as the main factor affecting the adsorption process by adsorbents was investigated and the best contact time was 100 and 20 min. The TC removal percentages of both adsorbents were 85% and 95% for HEC-GO and HEC-GO/Fe-Zn, respectively. The maximum adsorption capacity for TC was evaluated by the isotherm models. The experimental data fitted well with the Langmuir model. In addition, pseudo-first-order, pseudo-second-order, intraparticle diffusion, and the Elovich models were applied to kinetic data. The data indicated that TC adsorption on HEC-GO and HEC-GO/Fe-Zn (mole ratio 1:1) followed the pseudo-second-order kinetic model. The thermodynamic parameters implied that the adsorption process was spontaneous and exothermic. Nano-biocomposite (HEC-GO/Fe-Zn) can be used as an adsorbent to remove water pollutants.


Subject(s)
Graphite , Nanoparticles , Water Pollutants, Chemical , Humans , Water Pollutants, Chemical/analysis , Graphite/chemistry , Adsorption , Tetracycline/chemistry , Anti-Bacterial Agents/chemistry , Water , Kinetics , Zinc , Hydrogen-Ion Concentration
18.
Huan Jing Ke Xue ; 43(10): 4511-4521, 2022 Oct 08.
Article in Chinese | MEDLINE | ID: mdl-36224137

ABSTRACT

As new pollutants, microplastics (MPs) can adsorb antibiotics in the water environment and migrate together as carriers. However, microplastics will age continuously in the environment, and their adsorption capacity and adsorption mechanism will change accordingly. With polyethylene (PE) and polystyrene (PS) as the target MPs, which were irradiated by ultraviolet (UV-254), the changes in the physical and chemical properties of MPs before and after aging, such as the color, surface morphology, and functional groups, were compared, and their effects on the adsorption of tetracycline (TC) as well as the related mechanism were explored. The results showed that the pseudo-second-order model could better fit the adsorption process, the adsorption equilibrium was reached within 24 hours, the adsorption capacity of aged MPs for TC was significantly higher than that of original MPs, and the adsorption capacity of PS was higher than that of PE. Langmuir and Freundlich isothermal adsorption equations could both describe the adsorption isothermal test data, and the adsorption of TC on MPs was a spontaneous and endothermic physical adsorption process, whereas aging had no obvious effect on the adsorption thermodynamic characteristics of MPs. With the increase in pH value, the adsorption capacity first increased and then decreased. The maximum adsorption capacity of MPs before and after aging was reached at pH=5. UV aging increased the specific surface area of MPs, generating oxygen-containing functional groups such as -C=O, -OH, and O=C=O, changing the physical and chemical properties of MPs, and thus changing the adsorption mechanism of MPs for TC. Compared with the original PE MPs, in addition to hydrophobic distribution, van der Waals forces, and electrostatic interactions, pore filling was also an important adsorption mechanism of aged PE. The main adsorption mechanisms of original PS microplastics were hydrophobic distribution, van der Waals forces, electrostatic interaction, and π-π interaction, whereas there was hydrogen bonding for aged PS.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Adsorption , Anti-Bacterial Agents , Microplastics , Oxygen , Plastics/chemistry , Polyethylene/chemistry , Polystyrenes/chemistry , Tetracycline , Water , Water Pollutants, Chemical/analysis
19.
Colloids Surf B Biointerfaces ; 219: 112833, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36108363

ABSTRACT

To fight the flourishment of drug-resistant bacteria caused by antibiotics and the dissemination of antibiotic resistance genes (ARGs), it is of great urgency to develop multifunctional non-antibiotic agents with residual antibiotics elimination, and ARGs dissemination inhibition properties. Herein, sodium dodecyl sulfate (SDS) was modified onto the surface of Fe2O3 @MoS2 by ultrasonic method to obtain the Z-scheme, multifunctional Fe2O3 @MoS2 @SDS nanocomposites. The Fe2O3 @MoS2 @SDS (weight ratio of Fe2O3 @MoS2 and SDS was 1:1) was selected as the optimal agent. Under NIR irradiation, the Fe2O3 @MoS2 @SDS had a photothermal conversion efficiency of 45.96%, and could generate plenty of reactive oxygen species (ROS) at the same time. Under the synergy of photothermal and photodynamic, the antibacterial efficiency of Fe2O3 @MoS2 @SDS to E. coli, MRSA and P. aeruginosa could reach 99.95%, 99.97% and 99.58%, respectively, indicating excellent photothermal-photodynamic therapy (PPT) effect. The Fe2O3 @MoS2 @SDS also displayed photocatalytic activity in degradation of tetracycline (TC). The degradation rate of TC could reach 92.3% after 2 h of visible light irradiation. The obtained results indicated that a promising Fe2O3 @MoS2 @SDS composite based multifunctional nanoplatform could be constructed for NIR induced bacterial inactivation, antibiotics degradation and ARGs dissemination inhibition.

20.
Int J Biol Macromol ; 198: 1-10, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34963621

ABSTRACT

Staphylococcus aureus (S. aureus) infection is difficult to fight, previous experimental reports have demonstrated thioridazine (TZ) and tetracycline (TC) is an inhibitor of S. aureus efflux pump NorA and autolysin Atl, respectively, here, by means of molecular docking and molecular dynamics simulation, we observed that thioridazine (TZ) and tetracycline (TC) blocked the binding of substrates to NorA and Atl, respectively, and reduced their activities, and our antibacterial susceptibility test and three-dimensional checkerboard method showed that the three-drug combination of antibiotic cloxacillin (CXN), TZ and TC had a synergistic anti-Staphylococcal activity in vitro, and α-Hemolysin tests and scanning electron microscopy showed that the three-drug combination and the subinhibitory concentration of the combination significantly inhibited the secretion of α-hemolysin relative to the number of membrane-derived vesicles produced by S. aureus. Whereas Western blot and pharmacological inhibition assays showed that the three-drug combination significantly inhibited the expression of MAPK/NF-κB/NLRP3 proteins in macrophages induced with S. aureus α-hemolysin. In vivo, the drug combination significantly reduced bacterial colony-forming unit counts in the viscera of a mouse peritonitis model of S. aureus infection, therapy reduced the primary inflammatory pathology and the bacteria-stimulated release of cytokines such as IL-1ß and TNF-α, and inhibited the expression of MAPK/NF-κB/NLRP3 proteins in peritoneal macrophages. Thus, the combination of efflux pump inhibitor, autolysis inhibitor and antibiotic, is a novel anti-Staphylococcal and anti-inflammatory strategy who owning good antibacterial activity and significant inhibiting staphylococcal α-hemolysin and inflammation.


Subject(s)
Staphylococcus aureus
SELECTION OF CITATIONS
SEARCH DETAIL