Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Chromosoma ; 127(4): 437-459, 2018 12.
Article in English | MEDLINE | ID: mdl-29907896

ABSTRACT

Recombination, synapsis, chromosome segregation and gene expression are co-ordinately regulated during meiosis to ensure successful execution of this specialised cell division. Studies with multiple mutant mouse lines have shown that mouse spermatocytes possess quality control checkpoints that eliminate cells with persistent defects in chromosome synapsis. In addition, studies on Trip13mod/mod mice suggest that pachytene spermatocytes that successfully complete chromosome synapsis can undergo meiotic arrest in response to defects in recombination. Here, we present additional support for a meiotic recombination-dependent checkpoint using a different mutant mouse line, Tex19.1-/-. The appearance of early recombination foci is delayed in Tex19.1-/- spermatocytes during leptotene/zygotene, but some Tex19.1-/- spermatocytes still successfully synapse their chromosomes and we show that these spermatocytes are enriched for early recombination foci. Furthermore, we show that patterns of axis elongation, chromatin modifications and histone H1t expression are also all co-ordinately skewed towards earlier substages of pachytene in these autosomally synapsed Tex19.1-/- spermatocytes. We also show that this skew towards earlier pachytene substages occurs in the absence of elevated spermatocyte death in the population, that spermatocytes with features of early pachytene are present in late stage Tex19.1-/- testis tubules and that the delay in histone H1t expression in response to loss of Tex19.1 does not occur in a Spo11 mutant background. Taken together, these data suggest that a recombination-dependent checkpoint may be able to modulate pachytene progression in mouse spermatocytes to accommodate some types of recombination defect.


Subject(s)
Nuclear Proteins/genetics , Pachytene Stage/genetics , Recombination, Genetic , Spermatocytes/cytology , ATPases Associated with Diverse Cellular Activities/genetics , Animals , Cell Cycle Proteins/genetics , Chromatin/genetics , Chromatin/metabolism , Chromosome Pairing/genetics , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/metabolism , Histones/genetics , Histones/metabolism , Male , Meiosis , Mice, Inbred C57BL , Mice, Knockout , Protein Processing, Post-Translational/genetics , RNA-Binding Proteins , Seminiferous Tubules/metabolism , Seminiferous Tubules/pathology , Spermatocytes/physiology
2.
Elife ; 62017 08 14.
Article in English | MEDLINE | ID: mdl-28806172

ABSTRACT

Mobilization of retrotransposons to new genomic locations is a significant driver of mammalian genome evolution, but these mutagenic events can also cause genetic disorders. In humans, retrotransposon mobilization is mediated primarily by proteins encoded by LINE-1 (L1) retrotransposons, which mobilize in pluripotent cells early in development. Here we show that TEX19.1, which is induced by developmentally programmed DNA hypomethylation, can directly interact with the L1-encoded protein L1-ORF1p, stimulate its polyubiquitylation and degradation, and restrict L1 mobilization. We also show that TEX19.1 likely acts, at least in part, through promoting the activity of the E3 ubiquitin ligase UBR2 towards L1-ORF1p. Moreover, loss of Tex19.1 increases L1-ORF1p levels and L1 mobilization in pluripotent mouse embryonic stem cells, implying that Tex19.1 prevents de novo retrotransposition in the pluripotent phase of the germline cycle. These data show that post-translational regulation of L1 retrotransposons plays a key role in maintaining trans-generational genome stability in mammals.


Subject(s)
Long Interspersed Nucleotide Elements , Mouse Embryonic Stem Cells/physiology , Nuclear Proteins/metabolism , RNA-Binding Proteins/metabolism , Recombination, Genetic , Animals , Gene Knockout Techniques , Mice , Nuclear Proteins/genetics , Protein Binding , Proteolysis , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL