Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Oecologia ; 193(3): 731-748, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32737568

ABSTRACT

Gross rates of nitrogen (N) turnover inform about the total N release and consumption. We investigated how plant diversity affects gross N mineralization, microbial ammonium (NH4+) consumption and gross inorganic N immobilization in grasslands via isotopic pool dilution. The field experiment included 74 plots with 1-16 plant species and 1-4 plant functional groups (legumes, grasses, tall herbs, small herbs). We determined soil pH, shoot height, root, shoot and microbial biomass, and C and N concentrations in soil, microbial biomass, roots and shoots. Structural equation modeling (SEM) showed that increasing plant species richness significantly decreased gross N mineralization and microbial NH4+ consumption rates via increased root C:N ratios. Root C:N ratios increased because of the replacement of legumes (low C:N ratios) by small herbs (high C:N ratios) and an increasing shoot height, which was positively related with root C:N ratios, with increasing species richness. However, in our SEM remained an unexplained direct negative path from species richness to both N turnover rates. The presence of legumes increased gross N mineralization, microbial NH4+ consumption and gross inorganic N immobilization rates likely because of improved N supply by N2 fixation. The positive effect of small herbs on microbial NH4+ consumption and gross inorganic N immobilization could be attributed to their increased rhizodeposition, stimulating microbial growth. Our results demonstrate that increasing root C:N ratios with increasing species richness slow down the N cycle but also that there must be additional, still unidentified processes behind the species richness effect potentially including changed microbial community composition.


Subject(s)
Ammonium Compounds , Nitrogen , Biodiversity , Biomass , Grassland , Soil
2.
Ecology ; 97(8): 2044-2054, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27859204

ABSTRACT

The impact of species richness and functional diversity of plants on ecosystem water vapor fluxes has been little investigated. To address this knowledge gap, we combined a lysimeter setup in a controlled environment facility (Ecotron) with large ecosystem samples/monoliths originating from a long-term biodiversity experiment (The Jena Experiment) and a modeling approach. Our goals were (1) quantifying the impact of plant species richness (four vs. 16 species) on day- and nighttime ecosystem water vapor fluxes; (2) partitioning ecosystem evapotranspiration into evaporation and plant transpiration using the Shuttleworth and Wallace (SW) energy partitioning model; and (3) identifying the most parsimonious predictors of water vapor fluxes using plant functional-trait-based metrics such as functional diversity and community weighted means. Daytime measured and modeled evapotranspiration were significantly higher in the higher plant diversity treatment, suggesting increased water acquisition. The SW model suggests that, at low plant species richness, a higher proportion of the available energy was diverted to evaporation (a non-productive flux), while, at higher species richness, the proportion of ecosystem transpiration (a productivity-related water flux) increased. While it is well established that LAI controls ecosystem transpiration, here we also identified that the diversity of leaf nitrogen concentration among species in a community is a consistent predictor of ecosystem water vapor fluxes during daytime. The results provide evidence that, at the peak of the growing season, higher leaf area index (LAI) and lower percentage of bare ground at high plant diversity diverts more of the available water to transpiration, a flux closely coupled with photosynthesis and productivity. Higher rates of transpiration presumably contribute to the positive effect of diversity on productivity.


Subject(s)
Biodiversity , Grassland , Plants , Ecology , Ecosystem , Models, Theoretical , Steam , Water
3.
Ecol Lett ; 18(12): 1356-65, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26415778

ABSTRACT

Plant species richness (PSR) increases nutrient uptake which depletes bioavailable nutrient pools in soil. No such relationship between plant uptake and availability in soil was found for phosphorus (P). We explored PSR effects on P mobilisation [phosphatase activity (PA)] in soil. PA increased with PSR. The positive PSR effect was not solely due to an increase in Corg concentrations because PSR remained significant if related to PA:Corg . An increase in PA per unit Corg increases the probability of the temporal and spatial match between substrate, enzyme and microorganism potentially serving as an adaption to competition. Carbon use efficiency of microorganisms (Cmic :Corg ) increased with increasing PSR while enzyme exudation efficiency (PA:Cmic ) remained constant. These findings suggest the need for efficient C rather than P cycling underlying the relationship between PSR and PA. Our results indicate that the coupling between C and P cycling in soil becomes tighter with increasing PSR.


Subject(s)
Bacterial Proteins/metabolism , Biodiversity , Phosphoric Monoester Hydrolases/metabolism , Plant Physiological Phenomena , Soil Microbiology , Germany , Phosphorus/metabolism , Plant Roots/metabolism , Rhizosphere , Soil/chemistry
4.
Glob Chang Biol ; 19(9): 2795-803, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23606531

ABSTRACT

Human activities are decreasing biodiversity and changing the climate worldwide. Both global change drivers have been shown to affect ecosystem functioning, but they may also act in concert in a non-additive way. We studied early-stage litter mass loss rates and soil microbial properties (basal respiration and microbial biomass) during the summer season in response to plant species richness and summer drought in a large grassland biodiversity experiment, the Jena Experiment, Germany. In line with our expectations, decreasing plant diversity and summer drought decreased litter mass loss rates and soil microbial properties. In contrast to our hypotheses, however, this was only true for mass loss of standard litter (wheat straw) used in all plots, and not for plant community-specific litter mass loss. We found no interactive effects between global change drivers, that is, drought reduced litter mass loss rates and soil microbial properties irrespective of plant diversity. High mass loss rates of plant community-specific litter and low responsiveness to drought relative to the standard litter indicate that soil microbial communities were adapted to decomposing community-specific plant litter material including lower susceptibility to dry conditions during summer months. Moreover, higher microbial enzymatic diversity at high plant diversity may have caused elevated mass loss of standard litter. Our results indicate that plant diversity loss and summer drought independently impede soil processes. However, soil decomposer communities may be highly adapted to decomposing plant community-specific litter material, even in situations of environmental stress. Results of standard litter mass loss moreover suggest that decomposer communities under diverse plant communities are able to cope with a greater variety of plant inputs possibly making them less responsive to biotic changes.


Subject(s)
Biodiversity , Droughts , Plants/classification , Soil Microbiology , Biomass , Germany , Water/analysis
SELECTION OF CITATIONS
SEARCH DETAIL