Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Res (Thessalon) ; 28(1): 8, 2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33691804

ABSTRACT

BACKGROUND: Microcystins are emerging marine biotoxins, produced by potentially toxic cyanobacteria. Their presence has been reported in aquatic animals in Greek freshwater, while data are few in marine environments. Since the climate change induces eutrophication and harmful algal blooms in coastal marine ecosystems affecting the public health, further research on microcystins' presence in marine waters is required. The aim of this study was to examine the potential presence of microcystins in mussels Mytilus galloprovincialis in the largest farming areas in Thermaikos gulf, in Northern Greece, and to investigate their temporal and spatial distribution, adding to the knowledge of microcystins presence in Greek Mediterranean mussels. RESULTS: A 4-year microcystins' assessment was conducted from 2013 to 2016, in farmed Mediterranean mussels M. galloprovincialis, in five sampling areas in Thermaikos gulf, in northern Greece, where the 90% of the Greek mussels' farming activities is located. The isolation of potentially toxic cyanobacteria was confirmed by molecular methods. An initial screening was performed with a qualitative and quantitative direct monoclonal (DM) ELISA and results above 1 ng g-1 were confirmed for the occurrence of the most common microcystins-RR, -LR and -YR, by Ultra High Performance Liquid Chromatography (UHPLC) coupled with a high- resolution mass spectrometer (HRMS) (Orbitrap analyzer). Microcystin-RR and microcystin-LR were detected, while the intensity of microcystin-YR was below the method detection limit. Most samples that exhibited concentrations above 1 ng g-1 were detected during the warm seasons of the year and especially in spring. Results indicated an overestimation of the ELISA method, since concentrations ranged between 0.70 ± 0.15 ng g-1 and 53.90 ± 3.18 ng g-1, while the confirmation denoted that the levels of microcystins were 6 to 22 times lower. CONCLUSIONS: Microcystin-RR and microcystin-LR were detected for the first time in mussel M. galloprovincialis, harvested from farms in Thermaikos gulf, in Central Macedonia, Greece. Their presence was linked to potentially toxic cyanobacteria. Bioaccumulation was observed in digestive gland, while the concentrations in muscles were found extremely low. Samples with levels above 1 ng g-1 were observed mostly during spring, confirming the seasonal distribution of microcystins. The comparison of the results by the ELISA and the LC-Orbitrap MS method indicated an overestimation of concentration by the ELISA method.

2.
Mar Environ Res ; 155: 104889, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32072991

ABSTRACT

Mycobacterium sp. and Haplosporidium pinnae constitute invasive parasite species of bivalves, reported for the first time in the present study in the Aegean Sea and Thermaikos Gulf, respectively. During the last years, the endangered fan mussel (Pinna nobilis) experienced several mortality events in the Mediterranean Sea that caused deaths to 90% or more of their populations and have been attributed to infections by these pathogens. In Greece, two mass mortality events have been recently reported, namely in the Gulf of Kalloni and in Limnos island. In the present study we investigated the presence of both pathogens in P. nobilis from these marine areas as well as from Thermaikos Gulf using both histopathological microscopy and molecular markers. The detected parasite DNA was further quantified in the three populations utilizing a real time qPCR. Histopathological results indicated the presence of a Mycobacterium species alongside with the existence of the Haplosporidian parasite, which was identified in all mortality events in the Mediterranean Sea. The parasite was present in different phases mostly on the digestive gland epithelium. Phylogenetic analysis confirmed the taxonomy of the Haplosporidian parasite as the recently described Haplosporidium pinnae, whereas it failed to identify the Mycobacteria parasite at species level. While Mycobacterium sp. was detected in all examined specimens, H. pinnae was not detected in all diseased fan mussels. Interestingly, monitoring of P. nobilis population from Thermaikos Gulf, an estuary of extremely high importance for bivalve production, revealed the presence of both pathogens in a few specimens in higher quantity but with no symptoms of the disease. Besides, all the specimens from Thermaikos Gulf had inflammatory responses similarly to moribund specimens from mortality events.


Subject(s)
Bivalvia/microbiology , Bivalvia/parasitology , Haplosporida/isolation & purification , Introduced Species , Mycobacterium/isolation & purification , Animals , Endangered Species , Greece , Islands , Mediterranean Sea , Phylogeny
3.
Mar Environ Res ; 142: 116-123, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30309669

ABSTRACT

Global warming may accelerate growth and distribution of pathogens influencing aquatic organisms' diseases and human health. Despite the extensive research, the biology, cellular development and life cycle and of Marteilia sp. parasites as well as the influence of parasitic infection on the hosts are not fully understood. The aim of this study was to investigate the effect of Marteilia sp. prevalence and infection intensity on mussels' growth rate and morphometric characteristics under natural conditions in Thermaikos Gulf, a major bivalve production area in Greece, during a five-month growth period. The length, width, height and weight of the infected mussels were significantly lower compared to non-infected and the decrease was proportional to the intensity of mussel infection by the parasite. Moreover, the estimation of allometric relations between length, height, width and weight revealed significantly lower growth of mussel wet weight in relation to shell length for infected mussels compared to healthy ones. The negative effect of marteiliosis on the shell length growth rate of infected mussels was also confirmed by von Bertalanffy equations.


Subject(s)
Mytilus/growth & development , Mytilus/parasitology , Rhizaria/physiology , Animals , Body Size , Greece , Oceans and Seas
4.
Front Plant Sci ; 9: 96, 2018.
Article in English | MEDLINE | ID: mdl-29467777

ABSTRACT

Recent research studies have highlighted the decrease in the coverage of Mediterranean seagrasses due to mainly anthropogenic activities. The lack of data on the distribution of these significant aquatic plants complicates the quantification of their decreasing tendency. While Mediterranean seagrasses are declining, satellite remote sensing technology is growing at an unprecedented pace, resulting in a wealth of spaceborne image time series. Here, we exploit recent advances in high spatial resolution sensors and machine learning to study Mediterranean seagrasses. We process a multispectral RapidEye time series between 2011 and 2016 to detect interannual seagrass dynamics in 888 submerged hectares of the Thermaikos Gulf, NW Aegean Sea, Greece (eastern Mediterranean Sea). We assess the extent change of two Mediterranean seagrass species, the dominant Posidonia oceanica and Cymodocea nodosa, following atmospheric and analytical water column correction, as well as machine learning classification, using Random Forests, of the RapidEye time series. Prior corrections are necessary to untangle the initially weak signal of the submerged seagrass habitats from satellite imagery. The central results of this study show that P. oceanica seagrass area has declined by 4.1%, with a trend of -11.2 ha/yr, while C. nodosa seagrass area has increased by 17.7% with a trend of +18 ha/yr throughout the 5-year study period. Trends of change in spatial distribution of seagrasses in the Thermaikos Gulf site are in line with reported trends in the Mediterranean. Our presented methodology could be a time- and cost-effective method toward the quantitative ecological assessment of seagrass dynamics elsewhere in the future. From small meadows to whole coastlines, knowledge of aquatic plant dynamics could resolve decline or growth trends and accurately highlight key units for future restoration, management, and conservation.

5.
Mar Pollut Bull ; 134: 197-209, 2018 Sep.
Article in English | MEDLINE | ID: mdl-28676173

ABSTRACT

Mediterranean seagrasses have been hailed for their numerous ecosystem services, yet they are undergoing a decline in their coverage. The major complication with resolving this tendency is the sparsity of data on their overall distribution. This study addresses the suitability of the recently launched Sentinel-2 satellite for mapping the distribution of Mediterranean seagrass meadows. A comprehensive methodology is presented which applies atmospheric and analytical water column corrections and compares the performance of three different supervised classifiers. Remote sensing of the Thermaikos Gulf, northwestern Aegean Sea (Greece, eastern Mediterranean Sea) reveals that the utilization of Support Vector Machines on water column corrected reflectances yields best accuracies. Two Mediterranean seagrasses, Posidonia oceanica and Cymodocea nodosa, cover a total submerged area of 1.48km2 between depths of 1.4-16.5m. With its 10-m spatial resolution and 5-day revisit frequency, Sentinel-2 imagery can mitigate the Mediterranean seagrass distribution data gap and allow better management and conservation in the future in a retrospective, time- and cost-effective fashion.


Subject(s)
Alismatales/physiology , Environmental Monitoring/methods , Satellite Communications , Ecosystem , Greece , Image Processing, Computer-Assisted , Mediterranean Sea , Retrospective Studies , Support Vector Machine
6.
Sci Total Environ ; 533: 133-43, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26151657

ABSTRACT

A radiological model for (137)Cs and (90)Sr dispersion in the marine environment of the Thermaikos Gulf, Greece, and the river catchments draining into the Gulf, is presented. The model, developed and implemented within the MOIRA-PLUS decision support system, integrates appropriate site-specific information. The model's performance has been tested using the available empirical (137)Cs activity concentration data in abiotic and biotic components of the gulf since the Chernobyl accident. Further, this paper describes the results of a modelling exercise performed within the IAEA's EMRAS II international modelling programme to estimate the environmental sensitivity of this characteristic Mediterranean coastal marine environment following radioactive contamination. The radiation doses to humans after a single hypothetical instantaneous deposition of 1000 Bq m(-2), assuming that all of their food intake from the marine pathway comes from the local environment, were calculated. The obtained results are consistent with estimates from other models for different coastal marine environments in the frame of the above-mentioned EMRAS exercise.


Subject(s)
Cesium Radioisotopes/analysis , Models, Chemical , Radiation Monitoring/methods , Strontium Radioisotopes/analysis , Water Pollutants, Radioactive/analysis , Greece
7.
J Biol Res (Thessalon) ; 21(1): 10, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25984493

ABSTRACT

BACKGROUND: Spatio-temporal patterns on benthic molluscan macrofauna structure and function (feeding guilds) were investigated in a commercial fishing ground in Thermaikos Gulf (N Aegean Sea). Fishery management measures in this area include a trawling period of 8 months per year (October to May). Macrofauna samples were collected before and after 30 and 120 days of the commencement of the trawling period (temporal axis) along a southward transect (spatial axis) and down through the sediment profile (vertical axis). RESULTS: Main results revealed no recognizable changes in community diversity and structure at temporal scales. This finding can probably be attributed to the fact that the examined communities are subjected to continuous disturbances deriving from multiple natural and anthropogenic stressors acting simultaneously in Thermaikos Gulf. Molluscan assemblages were already stressed before the commencement of the trawling period, indicating that the time period in which bottom trawling is prohibited is not sufficient for the recovery of benthic communities. Significant shifts in the trophic structure of molluscan assemblages were also detected. The direct mortality of herbivorous species and the loss of filter feeding organisms may be attributed to the passage of the fishing gear and to sediment re-suspension, respectively. Trawling disturbance may have created the observed vertical patterns of the community structure since hauling induces profound changes in the geochemical profile of the sediment. CONCLUSIONS: Our findings sustained the notion that bottom trawling, alongside with other types of human induced stressors, can have considerable effects on the structure and function of the benthic domain. Therefore, our results highlighted the need of an Ecosystem Based Fishery Management (EBFM) perspective in Thermaikos Gulf to ensure both fisheries and ecosystem sustainability.

8.
Chemosphere ; 93(9): 2187-94, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24016626

ABSTRACT

The content of total arsenic and arsenic compounds in the dominant seaweed species in the Thermaikos Gulf, Northern Aegean Sea was determined in samples collected in different seasons. Total arsenic was determined by acid digestion followed by ICP-MS. Arsenic speciation was analyzed by water extraction followed by LC-ICP-MS. Total arsenic concentrations in the seaweeds ranged from 1.39 to 55.0 mg kg(-1). Cystoseira species and Codium fragile showed the highest total As contents, while Ulva species (U. intestinalis, U. rigida,U. fasciata) had the lowest Arsenosugars, the most common arsenic species in seaweeds, were found in all samples, and glycerol-arsenosugar was the most common form; however, phosphate-arsenosugar and sulfate-arsenosugar were also present. Inorganic arsenic was measured in seven algae species and detected in another. Arsenate was the most abundant species in Cystoseira barbata (27.0 mg kg(-1)). Arsenobetaine was measured in only one sample. Methylated arsenic species were measured at very low concentrations. The information should contribute to further understanding the presence of arsenic compounds in dominant seaweeds from the Thermaikos Gulf.


Subject(s)
Arsenicals/analysis , Environmental Monitoring , Seaweed/chemistry , Water Pollutants, Chemical/analysis , Chlorophyta/chemistry , Greece , Mediterranean Sea , Phaeophyceae/chemistry , Ulva/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL