Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
Add more filters










Publication year range
1.
Cureus ; 16(7): e64699, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39156326

ABSTRACT

AIM: The study aims to assess the effect of surface treatments by chemical agents on the retentive strengths of crowns fabricated from polymethylmethacrylate (PMMA) reinforced with graphene nanoparticles adhesively bonded to abutments after thermocycling. SETTINGS AND DESIGN: In vitro comparative study. MATERIALS AND METHODS: This study is composed of four groups - one control, one treated with 99% pure etchant acetone solution, one treated with 15 wt% potassium hydrogen fluoride solution, and the last group treated with a combination of both solutions. RESULTS: The results showed that the mean load in Group A is 228.46±3.16, Group B is 252.57±7.14, Group C is 184.51±6.61, and Group D is 211.03±2.54. The mean score is highest for Group B followed by Group A and Group D, and it is least for Group C. One-way analysis of variance (ANOVA) detected highly significant differences (p<0.01) among the four groups. CONCLUSION: It can be concluded that acetone is the best chemical etchant solution for crowns fabricated from G-CAM discs (Graphenano Dental, Graphenano Nanotechnologies, Spain).

2.
Cureus ; 16(7): e64933, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39156374

ABSTRACT

Background Choosing the optimal aligner material on the market is crucial to ensure constant forces for tooth displacement. Processes like manufacturing and intraoral usage can result in the degradation of certain properties, which can affect the overall efficacy of treatment. Objective The objective of the study is to compare the surface roughness and flexural modulus of two aligner materials following the processes of thermoforming and aging. Materials and methods Two groups of 12 samples each were tested: Group 1 consisted of polyethylene terephthalate glycol (PET-G) and Group 2 of zendura-polyurethane (PU). The groups were tested at three time points: T0 - pre-thermoformed; T1 - after thermoforming; T2 - after thermoforming and aging. The surface roughness and the flexural modulus were evaluated. One-way ANOVA followed by a Bonferroni post hoc test was conducted to compare the changes within each group across the three times. An independent t-test was done to compare the values between the two groups at each time point. The statistical tests were performed using SPSS software version 26 (IBM Corp., Armonk, NY, USA). P-values >0.05 were considered statistically significant. Results There was a significant change in the surface roughness post-aging in Group 2 (p=0.03) and flexural strength within Group 1 (p=0.031) and Group 2 (p=0.06) across the three time points. Comparing the changes within the three time points in Group 1, significant changes were observed between T0-T1 (p=0.045) and T0-T2 (p=0.07). In Group 2, significant changes were observed between T0-T2 (p=0.012). Comparing the flexural strength between the two groups, significant differences were observed at T0 (p=0.012) and T1 (p=0.001). Conclusion The aging process affected the surface roughness in Zendura (PU). The thermoforming and aging process resulted in reduced flexural strength in both Zendura (PU) and Duran groups (PET-G).

3.
Materials (Basel) ; 17(15)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39124430

ABSTRACT

Despite the rise in popularity of ceramic braces for adults, the risk of enamel microcracks (EMCs) upon removal remains a significant drawback for both dental professionals and patients. Our study aimed to assess the effects of thermocycling, pre-curing, and co-curing techniques with different bonding agents on the enamel surface of teeth after the removal of ceramic brackets. We also examined the incidence, quantity, length, and direction of EMCs on tooth surfaces. Additionally, the adhesive remnant index (ARI) scores and orthodontic bracket bond failure modes were evaluated and compared. The study divided 40 extracted upper canine teeth into ten groups for further analysis. Two groups had intact enamel as the negative control, while the remaining groups had orthodontic ceramic brackets bonded using different bonding agents and curing techniques. Thermocycling was performed in five groups, and ARI was assessed after debonding. The study findings were statistically significant (p < 0.05) in demonstrating the impact of curing techniques on EMCs and debonding outcomes. Seventh-generation bonding agents resulted in complete adhesive removal (ARI = 0). The microcracks' incidence, number, and length showed insignificant results. Differences in ARI between thermocycler and non-thermocycler samples were insignificant. Both co-curing and pre-curing techniques yielded comparable ARI results. This study highlights the importance of using advanced bonding agents to minimize enamel damage during ceramic bracket debonding.

4.
Clin Exp Dent Res ; 10(4): e918, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38970231

ABSTRACT

AIMS AND OBJECTIVES: To evaluate the effect of coffee thermocycling on color stability and translucency of CAD-CAM polychromatic high translucent zirconia compared with lithium disilicate glass ceramic. METHODS: Sixteen rectangular plates (14 × 16 × 1.0 mm) of two ceramic materials (IPS E.max CAD (IEC), IPS E.max ZirCAD Prime [IZP]) were prepared. Each specimen was measured for color coordinates using a spectrophotometer following 30,000 cycles of coffee thermocycling. CIELAB formula was used to determine color and translucency differences (ΔE and ΔTP). The means of ΔE and ΔTP were compared using independent samples t-test and were evaluated using their respective 50%:50% perceptibility and acceptability thresholds (PT and AT). One-way analysis of variance was performed to evaluate the translucency parameter (TP) and surface roughness (Ra) of each material. RESULTS: Mean ΔE values of IEC (4.69) and IZP (4.64) were higher than the AT (ΔE ≤ 2.7) with no significant difference found between the two groups (p = 0.202). Considering the TP, only IEC showed a statistically significant increase in TP value (p < 0.001). However, the mean ΔTP of IEC (3.25) remained within the range of acceptability (1.3 < ΔTP ≤ 4.4). CONCLUSIONS: Within the limitations of this current study, the color stability of all materials was clinically affected by coffee thermocycling. In terms of translucency, only lithium disilicate glass ceramic was influenced by coffee thermocycling. High translucent zirconia had superior translucency stability compared to lithium disilicate glass ceramic.


Subject(s)
Ceramics , Coffee , Color , Computer-Aided Design , Dental Porcelain , Materials Testing , Surface Properties , Zirconium , Ceramics/chemistry , Dental Porcelain/chemistry , Zirconium/chemistry , Coffee/chemistry , Humans , Spectrophotometry , Dental Materials/chemistry
5.
Clin Oral Investig ; 28(8): 430, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012388

ABSTRACT

OBJECTIVES: This in vitro study examined the marginal integrity of experimental composite materials doped with bioactive glass (BG). MATERIALS AND METHODS: Class-II MOD cavities were prepared and restored with one of the following composite materials: a commercial composite material as a reference (Filtek Supreme XTE), an experimental composite doped with BG 45S5 (C-20), and an experimental composite doped with a fluoride-containing BG (F-20). Six experimental groups (n = 8) were used, as each of the three composites was applied with (+) or without (-) a universal adhesive (Adper Scotchbond Multipurpose). All specimens were subjected to thermocycling (10,000 x, 5-55 °C) and then additionally stored in artificial saliva for eight weeks. Scanning electron micrographs of the mesial and the distal box were taken at three time points (initial, after thermocycling, and after eight weeks of storage in artificial saliva). The margins were classified as "continuous" and "non-continuous" and the percentage of continuous margins (PCM) was statistically analyzed (α = 0.05). RESULTS: In most experimental groups, thermocycling led to a significant decrease in PCM, while the additional 8-week aging had no significant effect. F-20 + performed significantly better (p = 0.005) after 8 weeks storage in artificial saliva than the reference material with adhesive, while no statistically significant differences were observed at the other two time points. C-20 + exhibited significantly better PCM than the reference material with adhesive after thermocycling (p = 0.026) and after 8 weeks (p = 0.003). CONCLUSIONS: Overall, the experimental composites with BG showed at least as good marginal adaptation as the commercial reference, with an indication of possible re-sealing of marginal gaps. CLINICAL RELEVANCE: Maintaining or improving the marginal integrity of composite restorations is important to prevent microleakage and its likely consequences such as pulp irritation and secondary caries.


Subject(s)
Composite Resins , Dental Marginal Adaptation , Dental Restoration, Permanent , Glass , Materials Testing , Microscopy, Electron, Scanning , Saliva, Artificial , Surface Properties , Composite Resins/chemistry , In Vitro Techniques , Glass/chemistry , Dental Restoration, Permanent/methods , Saliva, Artificial/chemistry , Humans , Dental Cavity Preparation , Ceramics/chemistry , Resin Cements/chemistry , Fluorides/chemistry
6.
Materials (Basel) ; 17(13)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38998179

ABSTRACT

Adhesion of zirconia is difficult; thus, etching agents using several different methods are being developed. We investigated the effects of surface treatment with commercially available etching agents on the bond strength between zirconia and resin cement and compared them with those achieved using air abrasion alone. We used 100 zirconia blocks, of which 20 blocks remained untreated, 20 blocks were sandblasted, and 60 blocks were acid-etched using three different zirconia-etching systems: Zircos-E etching (strong-acid etching), smart etching (acid etching after air abrasion), and cloud etching (acid etching under a hot stream). Each group was subjected to a bonding procedure with dual-polymerized resin cement, and then 50 specimens were thermocycled. The shear bond strengths between the resin cement and zirconia before and after the thermocycling were evaluated. We observed that in the groups that did not undergo thermocycling, specimens surface-treated with solution did not show a significant increase in shear bond strength compared to the sandblasted specimens (p > 0.05). Among the thermocycled groups, the smart-etched specimens showed the highest shear bond strength. In the short term, various etching agents did not show a significant increase in bond strength compared to sandblasting alone, but in the long term, smart etching showed stability in bond strength (p < 0.05).

7.
Materials (Basel) ; 17(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38998243

ABSTRACT

Dental technology has developed materials for prosthetics that are very similar to natural teeth and offer a good balance between durability and esthetics; however, some of these materials are not very color-stable under the influence of external factors. Therefore, the aim of this study is to determine and compare the color change (∆E00) of different esthetic monolithic monochromatic CAD/CAM materials after they have been thermocycled and treated with staining solutions. The color parameters were determined using a spectrophotometer on a white and black background. Five CAD/CAM materials were used for this study-CAD/CAM nanoceramic (GC Cerasmart270), CAD/CAM lithium disilicate ceramic (IPS e.max CAD), CAD/CAM polymer (Telio CAD), CAD/CAM composite (Tetric CAD) and CAD/CAM polymer-infiltrated ceramic (Vita Enamic). The test specimens produced were divided into groups and were thermocycled in distilled water. They were then stored for four weeks at 37 °C in either distilled water as a control liquid, black tea, instant coffee or red wine. The aim is also to evaluate the color changes as a function of the exposure time of the staining solutions. The results obtained were analyzed statistically. All CAD/CAM materials tend to discolor to varying degrees. Among the factors contributing to discoloration, red wine proved to be the most significant influencing factor. The conclusion from the results is that the color change is influenced by the type of material, the staining solution, the sample thickness, the color background and the aging time.

8.
Cureus ; 16(5): e61097, 2024 May.
Article in English | MEDLINE | ID: mdl-38919249

ABSTRACT

Introduction Fixed prosthodontic treatment involves the replacement of missing tooth structures with a variety of materials. Several newer metal-free ceramics have been developed in recent years to meet patients' aesthetic needs. The long-term performance of all ceramics, however, is unknown, necessitating a continuous evaluation of the materials' strength. Aim The aim of this study was to compare and evaluate the fracture resistance of IPS E max pressable crowns and graphene crowns, which are luted with Rely X U200 self-adhesive resin cement on the respective dies, as well as thermocycling of IPS E max pressable crowns and thermocycling of graphene crowns. The current review was conducted as an in vitro examination at the Division of Prosthodontics, GSL Dental School, Rajahmundry, Andhra Pradesh, India. Materials and methods On a typodont tooth, a shoulder finish line design was prepared and incisal reduction was performed. The tooth was scanned, designed, and milled to produce 18 metal dies made of cobalt-chrome alloy. These metal dies produced a total of (n=36) all-ceramic crowns, which were divided into two groups based on crown type: 18 IPS E max crowns and 18 graphene crowns. The participants were once again divided into two subgroups within each group, with the purpose of assessing fracture resistance. This evaluation was conducted using a universal testing machine both before and after subjecting the specimens to thermocycling. The obtained data were sent for statistical analysis. Results Fracture resistance values were reduced after thermocycling of both IPS E max and Graphene crowns. Without thermocycling, the fracture resistance values of IPS E max crowns were higher than those of graphene crowns. Conclusions The fracture resistance of IPS E max crowns exhibited a statistically significant increase when compared to graphene crowns. Additionally, it was shown that the fracture resistance of both materials was reduced upon exposure to thermocycling.

9.
BMC Oral Health ; 24(1): 744, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937719

ABSTRACT

BACKGROUND: The translucency of different zirconia generations at each time point after thermocycling aging is still lacking. METHODS: Four zirconia materials were used with a total of 60 samples produced from monolithic third generation (5Y) 5 mol% yttria-stabilized zirconia polycrystalline ceramic and fourth generation zirconia (4Y) 4 mol% yttria-stabilized zirconia polycrystalline ceramic, represented by [group1:[CM-5Y] Ceramill Zolid fx (3rd generation zirconia) (Amann Girrbach, Koblach, Austria), group 2:[CM-4Y] Ceramill Zolid HT + (4th generation zirconia) (Amann Girrbach, Koblach, Austria), group 3:[CC-5Y] Cercon XT/ML (Dentsply Sirona, Germany) (3rd generation), and group 4:[CC-4Y] Cercon HT/ML (Dentsply Sirona, Germany) (4th generation)]. The L*a*b* figures were measured by using a spectrophotometer at baseline and after 10,000, 30,000, and 50,000 cycles of thermocycling. At each interval, the translucency of the samples was estimated by using the translucency formula CIEDE2000. The Scheffe post-hoc compared differences among each of the four materials. The Repeated measures ANOVA tested the differences between the materials at each of the different thermocycling intervals (p < .001). Data analyses were evaluated at a significance level of p < .05 (CI 95%). RESULTS: Two-way ANOVA revealed that at baseline the third and fourth generation's zirconia showed statistically significant differences in translucency (P < .001). Translucency values at baseline and after thermocycling exhibited statistically significant changes (p = .003). At each of the time interval; CM-4Y had the highest translucency values followed by CM-5Y, CC-4Y and CC-5Y had the least translucency values. CONCLUSIONS: The third and fourth generations of zirconia displayed different translucencies. Thermocycling affected the translucency of both third and fourth generations of zirconia. At each of the time intervals group 2:[CM-4Y] had the highest TP followed by group1:[CM-5Y], while, group 3:[CC-5Y] and group 4:[CC-4Y] had the least TP.


Subject(s)
Materials Testing , Zirconium , Zirconium/chemistry , Time Factors , Yttrium/chemistry , Spectrophotometry , Dental Materials/chemistry , Light , Surface Properties , Color , Temperature , Humans , Dental Porcelain/chemistry
10.
J Dent ; 147: 105119, 2024 08.
Article in English | MEDLINE | ID: mdl-38852694

ABSTRACT

OBJECTIVES: This study aimed to evaluate the shear bond strength and failure behavior between cobalt-chromium (Co-Cr) alloy and different types of denture base resins (DBRs) over time. METHODS: Seventy-two disk-shaped specimens (8 mm in diameter and 2 mm in thickness) were manufactured using a selective laser melting technology-based metal 3D printer. Three types of DBRs were used: heat-cure (HEA group), cold-cure (COL group), and 3D-printable (TDP group) DBRs (n = 12 per group). Each DBR specimen was fabricated as a 5 mm × 5 mm × 5 mm cube model. The specimens of the TDP group were manufactured using a digital light processing technology-based 3D printer. Half of the DBRs were stored in distilled water at 37 °C for 24 h, whereas the remaining half underwent thermocycling for 10,000 cycles. Shear bond strength was measured using a universal testing machine; failure modes were observed, and metal surfaces were evaluated using energy dispersive spectrometry. RESULTS: The shear bond strength did not differ between the DBR types within the non-thermocycled groups. Contrarily, the TDP group exhibited inferior strength compared to the HEA group (P = 0.008) after thermocycling. All three types of DBRs exhibited a significant decrease in the shear bond strength and an increased tendency toward adhesive failure after thermocycling. CONCLUSIONS: The bond strength between 3D-printable DBRs and Co-Cr alloy was comparable to that of heat-and cold-cure DBRs before thermocycling. However, it exhibited a considerable weakening in comparison to heat-cure DBRs after simulated short-term use. CLINICAL SIGNIFICANCE: The application of 3D-printable DBR in metal framework-incorporated removable partial dentures may be feasible during the early phase of the treatment. However, its application is currently limited because the bond strength between the 3D-printable DBR and metal may weaken after short-term use. Further studies on methods to increase the bond strength between these heterogeneous materials are required.


Subject(s)
Chromium Alloys , Dental Bonding , Dental Materials , Dental Stress Analysis , Denture Bases , Materials Testing , Printing, Three-Dimensional , Shear Strength , Chromium Alloys/chemistry , Dental Materials/chemistry , Surface Properties , Humans , Stress, Mechanical , Dental Restoration Failure
11.
Cureus ; 16(3): e56078, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38618398

ABSTRACT

Background and objective Glass ionomer cement (GIC), also known as polyalkenoate cement, has been extensively used in dentistry for both luting and restorative purposes. Despite being the first choice for aesthetic restorations due to their chemical bonding ability to teeth, GICs have faced challenges such as low mechanical properties, abrasion resistance, and sensitivity to moisture, leading to the search for improved materials.  This study aims to assess the effects of thermocycling on the compressive, flexural strength, and microhardness of green-mediated nanocomposite-modified GIC in comparison to traditional GIC. Methodology Green-mediated nanoparticles, consisting of chitosan, titanium, zirconia, and hydroxyapatite (Ch-Ti-Zr-HA), were synthesized using a one-pot synthesis technique to form nanocomposites. These nanocomposites were then incorporated into GIC specimens in varying concentrations (3%, 5%, and 10%), denoted as Group I, Group II, and Group III, respectively. Group IV served as the control, consisting of conventional GIC. To assess the performance of the novel restorative materials over an extended period, compressive strength, flexural strength, and microhardness were measured before and after thermocycling using a universal material testing machine. Furthermore, scanning electron microscopy (SEM) analysis was carried out following the thermocycling process. The collected data were subjected to statistical analysis through one-way analysis of variance (ANOVA) and paired t-tests. Results  The findings demonstrated that, in comparison to the control group, both the mean compressive strength and flexural strength, as well as hardness, were notably higher for the 10% and 5% nanocomposite-modified GIC specimens before and after thermocycling (P < 0.05). Notably, there was no notable difference observed between the 5% and 10% concentrations (P > 0.05). These results suggest that incorporating green-mediated nanocomposites (Ch-Ti-Zr-HA) modified GIC at either 5% or 10% concentration levels leads to improved mechanical properties, indicating their potential as promising alternatives in dental restorative materials. Conclusions Based on our findings, it can be inferred that the 10% and 5% concentrations of green-mediated (Ch-Ti-Zr-HA) modified GIC exhibit superior compressive and flexural strength compared to conventional GIC. Additionally, analysis of the scanning electron microscope (SEM) morphology revealed that green-mediated GIC displays smoother surface characteristics in contrast to conventional GIC. These results underscore the potential advantages of utilizing green-mediated nanocomposite-modified GIC in dental applications, suggesting enhanced mechanical properties and surface quality over conventional.

12.
Clin Implant Dent Relat Res ; 26(4): 679-687, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38680076

ABSTRACT

OBJECTIVE: To investigate the effects of sterilization, conditioning method, and thermal aging on the retentive strength of two-piece zirconia abutments. MATERIALS AND METHODS: In total, 128 stock zirconia abutments were divided into four groups (n = 32) according to the conditioning parameters: (A) air-abrasion using 50 µm alumina particles/1.0 bar, (B) 50 µm/2.0 bar, (C) 100 µm/1.0 bar, and (D) 100 µm/2.0 bar. All abutments were bonded onto titanium bases using DTK adhesive resin and stored in water bath (37°C) for 72 h. Each group was subdivided into two subgroups (n = 16), group 1 was disinfected, whereas group 2 followed disinfection and autoclave sterilization. Half of the specimens of each subgroup (n&#x02009;=&#x02009;8) was directly subjected to the axial retention test (groups N), while the other half was first subjected to 150&#x02009;days of thermocycling followed by retention test (groups T). Statistical analysis was performed with three-way ANOVA, additional statistical analysis was performed by using separate one-way ANOVAs followed by the Tukey's post-hoc test for post hoc pairwise comparisons among groups. RESULTS: The highest median retention strength was recorded for group B2N (1390 N), whereas the lowest strength was recorded for group C1T (688 N). No significant interaction (p ≥ 0.05) was detected between the different variables; conditioning method, sterilization, and the thermal cycling regarding the effect on the resulting retention. However, the sterilization always showed a positive effect. Thermocycling presented an adversely significant effect only in the absence of sterilization (p < 0.05), with the exception of subgroups A. For the sterilized groups, thermocycling had no statistically significant effect on the retention. CONCLUSION: Steam autoclaving increased the retention of hybrid zirconia abutments. DTK adhesive resin for two-piece zirconia abutments performed well after sterilization and thermocycling.


Subject(s)
Dental Abutments , Sterilization , Zirconium , Zirconium/chemistry , Sterilization/methods , Materials Testing , Dental Stress Analysis , Dental Prosthesis Retention , Hot Temperature , Titanium/chemistry , Surface Properties , Humans
13.
Rev. Asoc. Odontol. Argent ; 112(1): 1120412, ene.-abr. 2024. ilus, tab
Article in Spanish | LILACS | ID: biblio-1563272

ABSTRACT

Objetivo: Cuando las resinas compuestas son expuestas a procesos de envejecimiento naturales en boca, como es el ciclaje térmico, pueden sufrir un deterioro en sus propiedades ópticas. El objetivo de este estudio fue evaluar la influencia del envejecimiento térmico sobre la estabilidad del color de dos resinas compuestas. Materiales y métodos: Se confeccionaron 120 pas- tillas de resinas compuestas, divididas en dos grupos: uno de resina Spectra Smart (n=60) y otro de resina Filtex Z350 XT (n=60). Estas muestras fueron sometidas a distintos regíme- nes de ciclaje térmico de 0, 10.000, 20.000 y 30.000 ciclos con temperaturas de entre 5 ºC +/- 2 ºC y 55 ºC +/- 2 °C. Los parámetros de color CIE L*a*b* de cada muestra se mi- dieron con un espectrofotómetro antes y después del proceso de envejecimiento. Las diferencias de color se calcularon me- diante la fórmula CIELAB (ΔE). Los datos fueron analizados estadísticamente usando la prueba no paramétrica de Kruskal Wallis y de U-Mann Whitney. Resultados: Los distintos regímenes de termociclado produjeron cambios de color estadísticamente significativos en ambos materiales. El material que tuvo menor estabilidad cromática fue Spectra Smart aunque sin diferencias estadísti- camente significativas. Conclusión: El envejecimiento térmico simulado a tres años afecta la estabilidad de color de las muestras, tanto de las resinas Spectra Smart, como de Filtex Z350 XT, sin alcanzar los valores que clínicamente determinarían la necesidad del reemplazo de las restauraciones (AU)


Aim: When composite resins are exposed to natural ag- ing processes in the mouth, such as the thermal cycling, they may suffer a deterioration in their optical properties. The aim of this study was to evaluate the influence of thermal aging on the color stability of two composite resins. Materials and methods: 120 composite resins tablets were made, divided into two groups: one of Spectra Smart res- in (n=60) and another of Filtex Z350 XT resin (n=60). These were subjected to different thermal cycle regimes of 0, 10,000, 20,000 and 30,000 cycles with temperature between 5 °C +/- 2 °C and 60 °C +/- 2 °C. The CIE L*a*b* color parameters of each sample were measured with a spectrophotometer before and after the aging process. Color differences were calculat- ed using the CIELAB formula (ΔE). The data were statisti- cally analyzed using the non-parametric Kruskal Wallis and U-Mann Whitney tests. Results: The different thermocycling regimes produce statistically significant color changes in both materials. The material that had the least chromatic stability was Spectra Smart, although without statistically significant differences. Conclusion: Simulated 3 year thermal aging affects the color stability of the samples, both Spectra Smart resins and Filtex Z350 XT, without reaching the values that would clini- cally determine the need to replace the restorations (AU)


Subject(s)
Thermodynamics , Composite Resins/chemistry , Hot Temperature/adverse effects , Spectrophotometry/methods , Materials Testing/methods , Data Interpretation, Statistical
14.
Cureus ; 16(2): e54517, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38516425

ABSTRACT

Background Discoloration affects glass ionomer cement (GIC) color stability due to its brittle nature and microporosity. To counter this, incorporating alternative materials is essential for maintaining color stability. Aim This study aims to determine the color stability and gloss of GIC modified with bioactive chitosan, titanium, zirconia, and hydroxyapatite nanoparticles before and after artificial aging. Materials and methods  The study was conducted at Saveetha Research Centre, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, located in Chennai, India. Green-mediated chitosan, titanium, zirconia, and hydroxyapatite (Ch-Ti-Zr-HA) nanoparticles were synthesized using the one-pot synthesis technique. Forty-eight disc-shaped specimens were prepared by incorporating the obtained nanoparticles (nanocomposite) into the GIC, with a diameter of 5 mm and thickness of 2 mm. The specimens were prepared in different concentrations (3%, 5%, and 10%) designated as group I, group II, and group III, respectively. Group IV, serving as the control, consisted of conventional GIC without any modifications. Following preparation, scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) microanalysis confirmed sample elements, and the specimens were submerged in distilled water for a duration of 24 hours prior to the commencement of testing. Subsequently, the specimens underwent artificial aging (thermocycling), between temperatures of 5°C and 55°C, for a total of 30,000 cycles, with a 30-second dwell time. Color change and gloss characteristics were assessed both after 24 hours and following thermocycling using a spectrophotometer and glossometer, respectively. The average color change parameter (ΔE) was measured using Adobe Photoshop. The data obtained were subjected to statistical analysis using an unpaired t-test. Results Significant color stability variations were observed post thermocycling (P = 0.001). Group 2 (5%) exhibited minimal delta E difference (0.508 ± 0.105), indicating superior color stability, while group 4 (control) had maximum difference (1.15 ± 0.187), indicating lower stability. Gloss tests confirmed GIC's polishability, where there were significant differences among all the groups. Conclusion It can be concluded that 5% nanoparticle-modified GIC has better color stability and gloss than conventional GIC. Further studies are needed to analyze the color stability and gloss through dentifrices and other beverages.

15.
Biosens Bioelectron ; 253: 116167, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38422813

ABSTRACT

Digital polymerase chain reaction (dPCR) is extensively used for highly sensitive disease diagnosis due to its single-molecule detection ability. However, current dPCR systems require intricate DNA sample distribution, rely on cumbersome external heaters, and exhibit sluggish thermal cycling, hampering efficiency and speed of the dPCR process. Herein, we presented the development of a microwell array based dPCR system featuring an integrated self-heating dPCR chip. By utilizing hydrodynamic and electrothermal simulations, the chip's structure is optimized, resulting in improved partitioning within microwells and uniform thermal distribution. Through strategic hydrophilic/hydrophobic modifications on the chip's surface, we effectively secured the compartmentalization of sample within the microwells by employing an overlaying oil phase, which renders homogeneity and independence of samples in the microwells. To achieve precise, stable, uniform, and rapid self-heating of the chip, the ITO heating layer and the temperature control algorithm are deliberately designed. With a capacity of 22,500 microwells that can be easily expanded, the system successfully quantified EGFR plasmid solutions, exhibiting a dynamic linear range of 105 and a detection limit of 10 copies per reaction. To further validate its performance, we employed the dPCR platform for quantitative detection of BCR-ABL1 mutation gene fragments, where its performance was compared against the QuantStudio 3D, and the self-heating dPCR system demonstrated similar analytical accuracy to the commercial dPCR system. Notably, the individual chip is produced on a semiconductor manufacturing line, benefiting from mass production capabilities, so the chips are cost-effective and conducive to widespread adoption and accessibility.


Subject(s)
Biosensing Techniques , Heating , Algorithms , Hydrodynamics , Mutation
16.
Dent Mater ; 40(4): 608-618, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38369405

ABSTRACT

OBJECTIVE: The current dental resin composites often suffer from polymerization shrinkage, which can lead to microleakage and potentially result in recurring tooth decay. This study presents the synthesis of a novel monomer, (3,9-diethyl-1,5,7,11-tetraoxaspiro[5,5]undecane-3,9-diyl)bis(methylene) bis((2-(3-(prop-1-en-2-yl)phenyl)propan-2-yl)carbamate) (DDTU-IDI), and evaluates its effect in the formulation of low-shrinkage dental resin composites. METHODS: DDTU-IDI was synthesized through a two-step reaction route, with the initial synthesis of the required raw material monomer 3,9-diethyl-3,9-dihydroxymethyl-1,5,7,11-tetraoxaspiro-[5,5] undecane (DDTU). The structures were confirmed using Fourier-transform infrared (FT-IR) spectroscopy and hydrogen nuclear magnetic resonance (1HNMR) spectroscopy. Subsequently, DDTU-IDI was incorporated into Bis-GMA-based composites at varying weight percentages (5, 10, 15, and 20 wt%). The polymerization reaction, degree of conversion, polymerization shrinkage, mechanical properties, physicochemical properties and biocompatibility of the low-shrinkage composites were thoroughly evaluated. Furthermore, the mechanical properties were assessed after a thermal cycling test with 10,000 cycles to determine the stability. RESULTS: The addition of DDTU-IDI at 10, 15, and 20 wt% significantly reduced the polymerization volumetric shrinkage of the experimental resin composites, without compromising the degree of conversion, mechanical and physicochemical properties. Remarkably, at a monomer content of 20 wt%, the polymerization shrinkage was reduced to 1.83 ± 0.53%. Composites containing 10, 15, and 20 wt% DDTU-IDI exhibited lower water sorption and higher contact angle. Following thermal cycling, the composites exhibited no significant decrease in mechanical properties, except for the flexural properties. SIGNIFICANCE: DDTU-IDI has favorable potential as a component which could produce volume expansion and increase rigidity in the development of low-shrinkage dental resin composites. The development of low-shrinkage composites containing DDTU-IDI appears to be a promising strategy for reducing polymerization shrinkage, thereby potentially enhancing the longevity of dental restorations.


Subject(s)
Alkanes , Methacrylates , Polymethacrylic Acids , Methacrylates/chemistry , Polymethacrylic Acids/chemistry , Spectroscopy, Fourier Transform Infrared , Polyethylene Glycols/chemistry , Materials Testing , Composite Resins/chemistry , Bisphenol A-Glycidyl Methacrylate/chemistry , Polymerization
17.
BMC Oral Health ; 24(1): 267, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38395828

ABSTRACT

BACKGROUND: Studies investigating thermocycling effect on surface topography and fracture toughness of resins used in digitally manufactured denture bases are few. The study aimed to assess the impact of thermocycling on surface topography and fracture toughness of materials used for digitally manufactured denture bases. METHODS: Water sorption, solubility, hardness, surface roughness, and fracture toughness of both three-dimensional (3D)-printed and computer-aided design, computer-aided manufacturing (CAD-CAM) milled specimens (n = 50) were assessed both prior to and following 2000 thermocycles, simulating 2 years of clinical aging. Surface hardness (n = 10) was measured using a Vickers hardness testing machine, surface roughness (n = 10) was determined by a contact profilometer, and fracture toughness (n = 20) was measured using the 3-point bend test, then studying the fractured surfaces was done via a scanning electron microscope (SEM). Prior to and following thermocycling, water sorption and solubility (n = 10) were assessed. Normally distributed data was tested using two-way repeated ANOVA and two-way ANOVA, while Mann Whitney U test and the Wilcoxon signed ranks test were used to analyze data that was not normally distributed (α < 0.05). RESULTS: Following thermocycling, Vickers hardness and fracture toughness of both groups declined, with a significant reduction in values of the 3D-printed resin (P < .001). The 3D-printed denture base resins had a rougher surface following thermocycling with a significant difference (P < .001). The sorption and solubility of water of both materials were not affected by thermocycling. CONCLUSIONS: Before and after thermocycling, milled specimens had lower surface roughness and a greater degree of hardness and fracture toughness than 3D-printed specimens. Thermocycling lowered hardness and fracture toughness, and increased surface roughness in both groups, but had no effect on water sorption and solubility.


Subject(s)
Computer-Aided Design , Denture Bases , Humans , Materials Testing , Surface Properties , Water
18.
J Dent Sci ; 19(1): 32-38, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38303863

ABSTRACT

Background/purpose: Polyetheretherketone (PEEK) is a highly sought-after thermoplastic due to its exceptional mechanical properties and biocompatibility. However, bonding PEEK to indirect composite resin (ICR) or denture-based resin (DBR) can be challenging. Laser engraving technology has shown potential to improve bonding for other materials; thus, this study aims to evaluate its effectiveness for PEEK. Materials and methods: The experiment involved preparing ingot-shaped PEEK samples, which were then categorized into four groups based on the treatment method employed: without treatment, air abrasion, sulfuric acid etching, and laser engraving (LS). Subsequently, the samples were bonded to ICR or DBR, and their shear bond strength (SBS) was tested with or without thermocycling using a universal testing machine. Furthermore, the failure mode was observed, with statistical analyses conducted to compare the results. Results: The grid-like microslit structure of LS group displayed the highest SBS for bonding PEEK to ICR or DBR (P < 0.05). During the bonding of PEEK to ICR, resin residue and penetration into the microslits were frequently observed in the LS group, indicating cohesive failure. However, when PEEK was bonded to DBR, mixture failure was frequently observed without thermocycling. After thermocycling, only the LS group showed cohesive failure, while the majority of specimens exhibited mixture failure. Conclusion: Laser engraving significantly improves the SBS between PEEK and both ICR and DBR. Furthermore, it was observed that resin had penetrated the microslits, indicating that laser engraving has great potential as a surface treatment method.

19.
Dent Mater J ; 43(1): 90-96, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38148022

ABSTRACT

This study aimed to evaluate the thermocycling effect on the retentive force of 3 different retentive inserts in 3 denture attachments (Blue, Pink, Clear retentive inserts in LOCATOR; Blue, Pink, Clear retentive inserts in LOCATOR R-Tx; and White, Yellow, Green retentive inserts in Novaloc) (n=10). Maximum retentive force of each retentive insert was evaluated at baseline, 7-day water storage, and after 5,000-, and 10,000- cycle thermocycling. The water absorption percentage of the retentive inserts was also determined. Comparing between baseline and 7-day water storage, the retentive forces of the LOCATOR and LOCATOR R-Tx groups were significantly reduced (p<0.05), while the retentive force of the Novaloc group was significantly increased (p<0.05). Comparing between 7-day water storage and 10,000-cycle thermocycling, the retentive force of most retentive inserts remained unchanged (p>0.05). The water absorption percentage of the LOCATOR and LOCATOR R-Tx groups was significantly greater than that of the Novaloc group (p<0.05).


Subject(s)
Denture Retention , Water , Denture, Overlay , Dental Stress Analysis , Dental Prosthesis, Implant-Supported
20.
Polymers (Basel) ; 15(23)2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38232021

ABSTRACT

Three-dimensional (3D)-printed occlusal splints are becoming more prevalent in the treatment of tooth substance loss due to their fast and cost-effective production. The purpose of this in vitro study was to investigate whether the mechanical properties (tensile strength-TS, modulus of elasticity in tension-ME, and Vickers hardness-HV) vary between the materials (printed dimethacrylate-based resins: Keyprint KeySplint soft-KEY, Luxaprint Ortho Plus-LUX, V-Print splint-VPR, printed methacrylate-based resins Freeprint splint 2.0-FRE, and milled methacrylate-based material, CLEAR splint-CLE), and the influence of aging processes (extraoral storage conditions and nightly or daily use) was examined. The printed methacrylate-based resins (FRE, LUX, and VPR) had much higher TS (43.7-48.5 MPa compared to 12.3-13.3 MPa), higher ME (2.01-2.37 GPa compared to 0.43-0.72 GPa), and higher HV (11.8-15.0 HV compared to 3.3-3.5 HV) than both of the methacrylate-based resins (KEY and CLE) after the production process. Although the TS, ME, and HV of the printed dimethacrylate resins (FRE, LUX, and VPR) decreased significantly under humid conditions with possibly elevated temperatures (thermocycling as well as 37 °C), these mechanical properties were significantly higher than both methacrylate-based resins (KEY and CLE). Therefore, printed dimethacrylate resins should be used rather than methacrylate-based resins for high expected masticatory forces, low wall thicknesses, or very long wearing times (≥6 months).

SELECTION OF CITATIONS
SEARCH DETAIL