Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 920: 170876, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38367733

ABSTRACT

Seasonal ice cover plays a crucial role in shaping the physical characteristics of lakes in cold and arid regions. Moreover, the ice significantly affects the level and quality of dissolved organic matter (DOM) in the water column. We utilized spectroscopy and mass spectrometry to analyze the molecular composition and distribution of DOM in ice cores and under-ice water in Daihai Lake. We identified the main environmental factors affecting DOM migration through structural equation modelling (SEM). The freezing process created a repulsive effect on DOM, with water samples demonstrating a greater DOM content than ice. The dominant part of the DOM in the ice cores was mainly comprised of protein-like materials (71.45 %), whereas water consisted of humus-like materials (54.81 %). The average molecular weight of the ice cover DOM (m/z = 396.77) was smaller than in the under-ice water (m/z = 405.42). While low-molecular and low-aromatic protein-like material tended to be trapped in the ice layer during ice formation, large-molecular and highly aromatic humic substances were more easily expelled into the water. Interestingly, condensed aromatic hydrocarbons were found to occur less frequently in the ice phase (11 %) compared to the aqueous phase (13 %). Both the lipid and protein/aliphatic compound structures exhibited slightly higher ratios in the ice (6 % and 8 %, respectively) than in water (1 % and 5 %, respectively). SEM between the ice cover environment and DOM indicated that the ice can influence the distribution pattern of DOM through the regulation of internal solute factors and other chemicals. The nature of the DOM and the rate of ice growth also play critical roles in determining the distribution mechanism of DOM for ice and water. The pollutant distribution characteristics and migration patterns between ice and water are essential for comprehending environmental water pollution and promoting pollution management and protection measures in cold region lakes.

2.
Huan Jing Ke Xue ; 44(9): 4915-4926, 2023 Sep 08.
Article in Chinese | MEDLINE | ID: mdl-37699810

ABSTRACT

Chemical oxygen demand (COD) is an important index used to assess organic oxygen consumption pollution. To explore COD composition in the natural water in Baiyangdian Lake, the main composition, source, and influencing factors of oxygen-consuming organic substances in the water body were revealed through physical continuous classification, three-dimensional fluorescence, and other methods. The results showed that the COD of the two waters was affected by dissolved organic substances (protein-like and humus-like organic matters) with size of less than 220 nm (59%-93%), and inorganic substances had little effect on COD. The source of organic matter in overlying water was primarily affected by endophytic vegetation decomposition, sediment release (the release flux of TOC was in the range of 1.55-2.28 mg·(m2·d)-1), and other endogenous sources (biological index>0.8), as well as by land-based sources such as reed platform and artificial pollution (1.4

3.
Waste Manag ; 144: 357-365, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35436715

ABSTRACT

Composting is an important method for treating and recycling organic waste, and the use of microbial inoculants can increase the efficiency of composting. Herein, we illustrate an approach that integrate 16S rRNA amplicon metagenomics and selective culture of thermophilic bacteria for the development of inoculants to improve manure composting. The 16S rRNA amplicon sequencing analysis revealed that Firmicutes and Actinobacteria were dominant in the composting mixture, and that different microbial hubs succeeded during the thermophilic stage. All isolated thermophilic bacteria were affiliated with the order Bacillales, such as Geobacillus, Bacillus, and Aeribacillus. These isolated thermophilic bacteria were grouped into 11 phylotypes, which shared >99% sequence identity to 0.15% to 5.32% of 16S rRNA reads by the amplicon sequencing. Three of these phylotypes transiently enriched during the thermophilic stage. Six thermophilic bacteria were selected from the three phylotypes to obtain seven microbial inoculants. Five out of seven of the microbial inoculants enhanced the thermophilic stage of composting by 16.9% to 52.2%. Three-dimensional excitation emission matrix analysis further revealed that two inoculants (Thermoactinomyces intermedius and Ureibacillus thermophilus) stimulated humification. Additionally, the 16S rRNA amplicon sequencing analysis revealed that inoculation with thermophilic bacteria enhanced the succession of the microbial community during composting. In conclusion, 16S rRNA amplicon metagenomics is a useful tool for the development of microbial inoculants to enhance manure composting.


Subject(s)
Agricultural Inoculants , Composting , Agricultural Inoculants/genetics , Manure/microbiology , Metagenomics , RNA, Ribosomal, 16S/genetics , Soil
4.
Chemosphere ; 293: 133608, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35033510

ABSTRACT

The role of humic substances (HS) during sludge treatment has been the focus in recent years. Quantification of HS in sludge dissolved organic matter (DOM) and the chemical and structural characterization of HS data are the prerequisite for understanding their role during different sludge treatment processes. Currently, a number of published articles inadequately acknowledge fundamental principles of analysis methods both in terms of experimental approach and data analysis. Therefore, a more comprehensive and detailed description of the experimental methods and the data analysis are needed. In this study, the current used methods for HS quantification in DOM of sludge had been tested for different calibration and sludge DOM samples. The results indicated that the current methods showed overestimated and contradictory results for HS quantification in sludge DOM. To be specific, using the modified Lowry method, different values were obtained depending on the humic acids used for calibration, and false negative results were observed for some sludge samples. By using the relative amount of HS (based on dissolved organic carbon (DOC)) to total sludge DOM (based on DOC), variations among the results of different analysis methods for the same sample were high. According to the calculated Bray-Curtis dissimilarity indexes, the results for HS quantification obtained by three-dimensional excitation emission matrix (3D-EEM), either with spectra analysis methods by peak picking, fluorescence region integration (both region volume and area integration), or PARAllel FACtor analysis showed higher degrees of dissimilarity to those quantified by size exclusion liquid chromatography or XAD-8 method. The selection of fluorescence regions for HS seemed to be the determining factor for overestimation obtained by the 3D-EEM technique. In future work, strategies, like a consistent terminology of HS, the use of an internal standard sample, and the related standardized operation for HS quantification in sludge DOM need to be established.


Subject(s)
Humic Substances , Sewage , Dissolved Organic Matter , Factor Analysis, Statistical , Humic Substances/analysis , Spectrometry, Fluorescence/methods
5.
Chemosphere ; 295: 133193, 2022 May.
Article in English | MEDLINE | ID: mdl-34971627

ABSTRACT

Chlorination is the most common disinfection technology used to treat wastewater effluent discharged into receiving aquatic environments. Effluent organic matter (EfOM) abundant in wastewater is a well-known photosensitizer and it greatly affects phototransformation of antibiotics in water. However, effects of chlorination on the characteristics and photochemical properties of EfOM have not been studied in sufficient detail. This paper investigated effects of chlorination on the characteristics of EfOM, and its impact on the phototransformation of sulfamethoxazole (SMX). Correlations between the EfOM characteristics and steady-state concentrations of reactive intermediates (RI) formed in the system were established. Chlorination was shown to preferentially remove the aromatic protein-like substances in EfOM, and the incorporation of chlorine into followed by the cleavage of the aromatic rings in EfOM molecules led to the formation of low molecular aliphatic organic matter. Both unaltered and chlorinated EfOM promoted the photodegradation of SMX whose rate constant in the wastewater was 1.32-1.65 times higher than that in pH 8 phosphate buffer. However, the rate of SMX photodegradation decreased at higher chlorination concentrations. The photodegradation of SMX was found to proceed through direct photolysis and oxidation by the RIs generated from EfOM and the self-sensitization of SMX. The steady-state concentrations of ·OH, 1O2 and 3EfOM* were 2.15-5.50 × 10-16, 0.42-1.51 × 10-13, and 2.54-5.82 × 10-14 M in unaltered and chlorinated wastewater. The steady-state concentrations of ·OH were well correlated with the removal of the fluorescence regional integration (ΔFRI) for humic-like and soluble microbial products (SMPs), while the photodegradation rate constant of SMX and the steady-state concentration of 1O2 and 3EfOM* showed good correlations with ΔFRI for tryptophan and fulvic-like substances. Six transformation products (TPs) of SMX were identified. These findings provide new insights into the photochemical properties of chlorinated EfOM in the aquatic environments and its roles in the degradation of antibiotics and other trace-level pharmaceuticals.


Subject(s)
Wastewater , Water Pollutants, Chemical , Halogenation , Photolysis , Sulfamethoxazole , Wastewater/chemistry , Water Pollutants, Chemical/analysis
6.
Sci Total Environ ; 805: 150198, 2022 Jan 20.
Article in English | MEDLINE | ID: mdl-34537712

ABSTRACT

Dissolved organic matter (DOM) represents the most mobile and reactive pool of soil organic matter (SOM). Climate changes, such as global warming and altered precipitation exert considerable influences on the quality and quantity of soil DOM. However, rare reports have focused on the interactive effects of soil warming and increased precipitation. In the present study, we conducted a 90-day incubation experiment to investigate how the concentration, source and chemical composition of DOM from an Alfisol respond to the variations of temperatures (15, 30 and 45 °C) and moistures (40%, 60%, and 80% of saturated soil water content). Four DOM components were identified through fluorescence excitation emission matrix (EEM)-parallel factor analysis (PARAFAC). Increased temperature alone aggravated the decomposition of plant-derived aromatic components (C2 and C4) but promoted the accumulation of microbial-derived aliphatic carbon (C1) and tryptophan-like component (C3). Increased fungi/bacteria ratio with warming was responsible for the decomposition of plant-derived components. Warming-induced disassociation of Ca-bearing mineral to colloidal Ca facilitated the accrual of microbial-derived aliphatic DOM. Humidification alone and humidification + warming significantly increased the concentration of DOM and the percentage of plant-derived aromatic carbon (C2, C4), which was attributed to the release of Fe-bearing mineral-OC. Based on the above findings along with the results of two-way ANOVA and Variation partition analysis, we infer that moisture will play a dominant role in regulating the chemical composition of DOM in Alfisols under both warming and humidification which in turn impact global C cycling and the ultimate climate.


Subject(s)
Soil , Water Quality , Carbon , Humic Substances/analysis , Spectrometry, Fluorescence , Temperature , Water
7.
Environ Sci Pollut Res Int ; 28(46): 65743-65751, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34322795

ABSTRACT

To improve the understanding of dissolved organic nitrogen (DON) variation characteristics in a biological aerated filter (BAF) used for drinking water treatment, this study investigated the effects of gas-water ratios (0, 0.5:1, 2:1, and 10:1), a controlling factor of BAF operation, on DON characteristics. The dissolved organic carbon (DOC) removal efficiency in the BAF was consistent with DON concentration and increased as the gas-water ratio increased to a certain point, above which the increase gradually decreased. The optimal gas-water ratio in this study was considered to be 2:1 from the perspective of DOC removal and DON reduction. Use of fluorescence regional integration (FRI) and parallel factor (PARAFAC) model to analyze the effects of the gas-water ratio on the spectral characteristics of DON revealed that humic acid-like substances were not sensitive to the gas-water ratio, while protein-like substances were more sensitive. Increasing the gas-water ratio was beneficial to the reduction of biodegradable DON. Correlation analysis showed that the results obtained using FRI were consistent with those obtained using the PARAFAC model under different gas-water ratios.


Subject(s)
Drinking Water , Water Purification , Humic Substances/analysis , Nitrogen/analysis , Spectrometry, Fluorescence
8.
Huan Jing Ke Xue ; 42(8): 3730-3742, 2021 Aug 08.
Article in Chinese | MEDLINE | ID: mdl-34309259

ABSTRACT

The sources and distribution of dissolved organic matter (DOM) in the interstitial water of Baiyangdian Lake sediments were analyzed using the ultraviolet-visible absorption spectrum (UV-vis) method and three-dimensional excitation emission matrix fluorescence spectroscopy-parallel factor analysis (EEM-PARAFAC). Results showed that the DOM concentrations and molecular weight were significantly higher in summer than in spring and autumn, based on a254 and E2/E3 values. Three protein-like substance (C1, C2, and C3) and two humic-like substances (C4, C5) were identified with the PARAFAC model. Moreover, protein-like substances accounted for the majority of DOM, reaching (63.56±16.07)%. Total DOM fluorescence intensity, the fluorescence intensity of each component, and the relative abundance exhibited significant spatial variation among the different functional zones in Baiyangdian Lake. Protein-like substances were mainly found in the breeding area, whereas humic-like substances mainly occurred in the natural area. The high BIX, FI, ß:α, and low HIX indicated that DOM in sediment interstitial water exhibited low humification and highly autochthonous characteristics. Moreover, the perfect regression equations between water quality and the fluorescent components could provide a useful reference for managers aiming to protect the ecosystem of Baiyangdian Lake.


Subject(s)
Dissolved Organic Matter , Lakes , Ecosystem , Humic Substances/analysis , Spectrometry, Fluorescence , Water , Water Quality
9.
Huan Jing Ke Xue ; 42(8): 3743-3752, 2021 Aug 08.
Article in Chinese | MEDLINE | ID: mdl-34309260

ABSTRACT

The sources and spatial variations of dissolved organic matter (DOM) in summer water of inflow rivers (FL, HB, QY, ZH, and NF) along the Chaohu Lake watershed were analyzed using the ultraviolet-visible absorption spectrum (UV-vis) method and three-dimensional excitation emission matrix fluorescence spectroscopy-parallel factor analysis (EEM-PARAFAC). The specific ultraviolet absorbance of DOM at 254 nm in the NF river was lower than in other rivers, and the spectral slope ratio (SR) of the NF river was higher than that of the HB river. This showed that the urban runoff inputs reduce the aromaticity of DOM in the NF river water, but has little effect on the molecular weight. The high fluorescence index (FI) and biological index, and the low humification index, indicated the main autochthonous sources of the DOM in the NF river. Four humic-like components (C1-C4), comprising terrestrial organic matter (C1, C3, and C4) and microbial degradation products (C2), and two protein-like components (C5 and C6) were identified as the main sources of DOM in the inflow rivers along the Chaohu Lake watershed. The dissolved organic carbon and DOM fluorescence components in the river water exhibited spatial variation along the direction of flow. The DOM in water from FL, HB, QY, and ZH was sourced from soil runoff inputs, whereas in NF water, it was mainly sourced from urban runoff and wastewater treatment plant effluents.


Subject(s)
Lakes , Rivers , Lakes/analysis , Seasons , Spectrometry, Fluorescence , Water , Water Quality
10.
Huan Jing Ke Xue ; 42(3): 1391-1402, 2021 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-33742936

ABSTRACT

To explore the influence of storm runoff on reservoir organic matter during the flood season, the Lijiahe Reservoir was selected to analyze variations in the content and components of dissolved organic matter (DOM) during four periods (before runoff, flood peak period, 1 week after runoff, and 6 weeks after runoff) using three-dimensional fluorescence spectroscopy parallel factor analysis (EEMs-PARAFAC) and ultraviolet-visible (UV-Vis) spectra. The results showed that:① the turbidity and DOC content of the reservoir increased significantly during the flood peak period (P<0.01) and gradually decreased thereafter; ② the UV-Vis spectrum characteristics showed that a(254) and a(355) were significantly increased in the flood peak period (P<0.01) while E2/E3 and E3/E4 were significantly decreased (P<0.01), indicating that the concentration, relative molecular weight, and degree of DOM humification in the reservoir were increased by storm runoff; ③ four DOM components were identified as terrestrial humus (C1 and C2), microbial humus (C3), and a tryptophan-like component (C4). The fluorescence intensity of the C1-C3 components increased significantly during the flood peak period (P<0.05), indicating that the increase in the DOM humic-like component was caused by the storm runoff. At the same time, a decrease in the fluorescence intensity of the C1-C4 components was observed after the flood peak period, indicating that DOM continuously settled and degraded after runoff; and ④ Pearson's correlation analyses showed that DOM fluorescence intensity and turbidity were significantly correlated (r>0.467, P<0.05), indicating that the observed decrease in DOM content was related to the sedimentation of suspended solids. A principal component analysis (PCA) showed that the water quality in the reservoir reflected the observed characteristics during the different runoff periods. Overall, this study reveals the effects of the storm runoff on DOM content and its components over the short and long term, providing scientific support for the management of drinking water quality.

11.
Water Res ; 191: 116792, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33401165

ABSTRACT

Biodegradation of dissolved organic matter (DOM) plays a key role in regulating both production of greenhouse gases and accumulation and stabilisation of soil organic matter (SOM). However, the mechanisms by which natural vegetation restoration affects the extent, rate, and temperature sensitivity of DOM biodegradation are poorly understood. Elucidating these mechanisms is important for SOM management, especially in light of future climate warming scenarios. In this study, a laboratory DOM solution incubation experiment was conducted to comprehensively investigate the effects of temperature and natural vegetation restoration spanning a period of 160 y on DOM biodegradation in the Loess Plateau, China. The results indicated that dissolved organic C (DOC) biodegradation significantly decreased with vegetation restoration after an incubation period of 60 d. Further, biodegradation of dissolved organic N (DON) and dissolved organic P (DOP) significantly decreased after farmland abandonment. Specifically, the lowest values were observed in pioneer (Populus davidiana) and mingled (Populus davidiana and Quercus liaotungensis) forests. Generally, an increase in temperature significantly promoted the biodegradation of DOC, DON, and DOP by enhancing the microbial utilisation efficiencies of recalcitrant humic substrates (i.e., low-molecular-weight humic materials). Our results suggest that DOM biodegradability and its temperature sensitivity were regulated by DOM substrate quality (i.e, recalcitrant humic materials), and microbial properties (i.e., gram-negative bacterial and fungal PLFA, enzyme activities). Additionally, our results suggest that climax forest communities (Quercus liaotungensis) played a vital role in reducing DOC and DOP losses. This could be attributed to the low Q10 of the DOC and DOP biodegradation rates.


Subject(s)
Forests , Soil , Biodegradation, Environmental , Carbon , China , Temperature
12.
Huan Jing Ke Xue ; 41(5): 2210-2220, 2020 May 08.
Article in Chinese | MEDLINE | ID: mdl-32608838

ABSTRACT

UV-visible absorption spectroscopy, fluorescence spectroscopy, and parallel factor analysis were used to analyze the composition of chromophoric dissolved organic matter (CDOM) in the waters of the Wangchuan River in summer, and the source of this CDOM was explored. The redundant analysis method and Pearson correlation were used to analyze the correlation between optical parameters and water quality parameters. The results showed that the CDOM of the Wangchuan River is composed of the tryptophan-like component C1 (245, 300/335 nm), the short-wave humus component C2 (240, 320-340/405 nm), and the long-wave humus component C3 (270, 350-370/470 nm), in which components C1 and C2 have some homology (r=0.859, P<0.001). CDOM absorption coefficient α(355) indicates that the CDOM concentration in the water body of the Wangchuan River is at a low level, and the correlation between α(355) and DOC concentration is significant (r=0.850, P<0.001), which is conducive to the establishment of a DOC inversion model. Water fluorescence index FI (2.36±0.20), HIX (3.66±2.47), BIX (1.56±0.82), and freshness index (ß:α) (1.33±0.62), and the spectral slope ratio SR (0.76±0.25) indicate that the CDOM of the Wangchuan River has strong self-generated characteristics, weak humification characteristics, and more new CDOM. Redundancy analysis showed that the humic components (C2, C3) are affected by algae metabolism and microbial action, while tryptophan-like components (C1) are related to land-based input, and negatively correlated with dissolved total nitrogen. The humic components C2 and C3 are positively correlated with total phosphorus, dissolved total phosphorus, and dissolved organic carbon. This paper clarifies the characteristics and influencing factors of CDOM in the Qinling valley, and provides a theoretical basis for water body management in the Qinling valley.

13.
J Environ Sci (China) ; 90: 310-320, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32081327

ABSTRACT

Simulated photo-degradation of fluorescent dissolved organic matter (FDOM) in Lake Baihua (BH) and Lake Hongfeng (HF) was investigated with three-dimensional excitation-emission matrix (3DEEM) fluorescence combined with the fluorescence regional integration (FRI), parallel factor (PARAFAC) analysis, and multi-order kinetic models. In the FRI analysis, fulvic-like and humic-like materials were the main constituents for both BH-FDOM and HF-FDOM. Four individual components were identified by use of PARAFAC analysis as humic-like components (C1), fulvic-like components (C2), protein-like components (C3) and unidentified components (C4). The maximum 3DEEM fluorescence intensity of PARAFAC components C1-C3 decreased by about 60%, 70% and 90%, respectively after photo-degradation. The multi-order kinetic model was acceptable to represent the photo-degradation of FDOM with correlation coefficient (Radj2) (0.963-0.998). The photo-degradation rate constants (kn) showed differences of three orders of magnitude, from 1.09 × 10-6 to 4.02 × 10-4 min-1, and half-life of multi-order model ( T1/2n) ranged from 5.26 to 64.01 min. The decreased values of fluorescence index (FI) and biogenic index (BI), the fact that of percent fluorescence response parameter of Region I (PI,n) showed the greatest change ratio, followed by percent fluorescence response parameter of Region II (PII,n), while the largest decrease ratio was found for C3 components, and the lowest T1/2n was observed for C3, indicated preferential degradation of protein-like materials/components derived from biological sources during photo-degradation. This research on the degradation of FDOM by 3DEEM/FRI-PARAFAC would be beneficial to understanding the photo-degradation of FDOM in natural environments and accurately predicting the environmental behaviors of contaminants in the presence of FDOM.


Subject(s)
Humic Substances , Lakes , Photochemical Processes , Factor Analysis, Statistical , Spectrometry, Fluorescence
14.
Sci Total Environ ; 704: 135409, 2020 Feb 20.
Article in English | MEDLINE | ID: mdl-31791753

ABSTRACT

The variations in the structural components of dissolved organic matter (DOM) during coal liquefaction wastewater (CLW) treatment are still unclear at present, limiting the further improvement and application of CLW treatment processes. In this study, the changes of DOM composition during air flotation, catalytic oxidation, biofiltration, ozonation, anoxic/oxic (A/O), and membrane bioreactor (MBR) which were applied in the full-scale CLW treatment, were investigated by three-dimensional excitation-emission matrix fluorescence and ultraviolet-visible spectroscopy. The dissolved organic carbon and chemical oxygen demand of the raw CLW reached 1965.2 mg/L and 5310.0 mg/L, respectively, with humic acid-like substances being as the dominant component (63.1%), and protein-like substances contributing a small amount (5.3%). Air flotation could treat humic acid-like substances more effectively. Catalytic oxidation and ozonation efficiently removed macromolecular aromatic substances with aliphatic chain substituents, resulting in the notable enhancement of the biodegradability of the organics. The DOM removal efficiency of biofiltration and A/O reached 86.0% and 92.3%, respectively, and simultaneously complex macromolecular substances with a high degree of aromaticity were formed. This study could provide a theoretical basis for optimizing the technical parameters and further improving the treatment efficiency of CLW.


Subject(s)
Coal , Humic Substances , Waste Disposal, Fluid/methods , Biodegradation, Environmental , Bioreactors , Organic Chemicals/chemistry , Wastewater/chemistry
15.
Bioresour Technol ; 293: 122021, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31514121

ABSTRACT

The intrinsic reason determining digestion performance of 100-160 °C preheated food waste after recovering floatable oil (FO-recovered FW) was investigated using two-dimensional correlated infrared spectroscopy, three-dimensional fluorescence spectroscopy and high-throughput 16S rRNA amplicon sequencing. The results indicated that thermal temperature significantly affected CH4 production of FO-recovered FW due to different structural alteration degree of starch, protein, cellulose and lipid components. Fragmentation of starch mainly occurred at 100 °C. The hydrolytic and acidogenic rate of starch was promoted and accordingly induced rapid growth of carbohydrate-fermenting bacteria, which resulted in severe acidification. Protein hydrolysis and cellulose H-bonds cleavage occurring at 120-160 °C accelerated the accessible sites interacting with microbial hydrolytic enzymes, and growth of Cloacimonetes and Syntrophomonas enhanced CH4 production. Non-degradable humic acid-like organics remarkably formed at 160 °C caused a carbon loss and digestion inhibiting/deteriorating. Pretreatment at 120 °C was feasible for promoted methane production based on energy assessment.


Subject(s)
Food , Methane , Anaerobiosis , Bioreactors , RNA, Ribosomal, 16S , Temperature
16.
Colloids Surf B Biointerfaces ; 181: 207-214, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31146244

ABSTRACT

Purpureocillium lilacinum can promote the biomineralization of jarosite by secreting extracellular polymeric substances (EPS), but the detailed mechanism is not clear. In this study, the biosynthesis process of jarosite induced by P. lilacinum Y3 and hypha cell surface characterization were investigated. X-ray diffraction (XRD) analysis indicated that P. lilacinum Y3 could induce the formation of jarosite crystal and enhance mineralization kinetics. The kinetic and isotherm models confirmed that the metal ions transferring from the solution to the mycelium surface was controlled by diffusion process and the active interfacial sites on hypha cell surface played a pivotal role in the biomineralization process. Furthermore, transmission electron microscopy (TEM) pictures illustrated that the P. lilacinum Y3 mainly induced the generation of mineral precipitate extracellularly, but not intracellularly. Three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectrum results further revealed the extracellular compounds such as fulvic-acid-like and protein-like substances participated in the mineralization process.


Subject(s)
Ferric Compounds/metabolism , Models, Biological , Paecilomyces/metabolism , Sulfates/metabolism , Biomineralization , Ferric Compounds/chemistry , Kinetics , Paecilomyces/cytology , Particle Size , Sulfates/chemistry , Surface Properties
17.
Environ Sci Pollut Res Int ; 25(30): 30325-30338, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30159838

ABSTRACT

Increases in global wildfires and fire severity are expected to result from global warming. Severe wildfires not only burn surface vegetation but also affect forest soil. Humic substances play key roles in the transport of nutrients and the carbon cycle in terrestrial ecosystems. In this study, we evaluated the effects of forest fires on the chemical properties of fulvic acid (FA) and humic acid (HA) extracted from non-burned and burned forest soils in Gunma, Japan. The differential thermal analysis of FA indicated that the intensity of exothermic reaction peak at 400 °C was 2-fold higher than that from non-burned soil. Based on pyrolysis-gas chromatography-mass spectrometry analysis with tetramethyl ammonium hydroxide, the amount of pyrolysate compounds in FA from burnt soil was significantly lower than that in FA from non-burnt soil. Therefore, we can conclude that the forest fire caused the significant change in the properties of FA such as increasing the aromaticity and refractory. In addition, the concentration of dissolved organic carbon with low molecular weight in surface soil increased after forest fire. This study suggests that the denaturation of soil organic matter by wildfire can affect the carbon cycle in terrestrial ecosystems.


Subject(s)
Benzopyrans/analysis , Carbon Cycle , Carbon/analysis , Forests , Humic Substances/analysis , Soil/chemistry , Wildfires , Ecosystem , Fires , Japan , Quaternary Ammonium Compounds
18.
Huan Jing Ke Xue ; 39(5): 2056-2066, 2018 May 08.
Article in Chinese | MEDLINE | ID: mdl-29965505

ABSTRACT

Thirty-two samples were collected from eight typical areas in Lake Taihu. Three-dimensional excitation-emission matrix fluorescence spectra (EEMs) and a parallel factor analysis (PARAFAC) were applied to investigate the fluorescence properties, the sources, and environmental significance of particulate organic matter (POM) from the overlying water in Lake Taihu in summer. Differences in fluorescence characteristics between POM and DOM (dissolved organic matter), and that in POM between the grass lake and the algal lake were further examined. There are five kinds of fluorophores in Lake Taihu:tyrosine-like fluorophores (C1 and C2), humic-like fluorophores (C3 and C4), and tryptophan-like fluorophores (C5), among which significant correlations were found between C1 and C2, C3 and C4, and C5 and two humic-like fluorophores (C4, C3). By comparing with the fluorescence characteristics of DOM from earlier studies, it is found that there are differences in compositions, sources, and correlations with water quality between POM and DOM in Lake Taihu in summer. In summer, the contribution of endogenous inputs to POM is greater than that of exogenous inputs in Lake Taihu because the ranges in the fluorescence indices, FI, BIX, and HIX, are 1.78-2.35, 0.3-2.7, and 0.8-1.1, respectively. Significant correlations have been found between humic-like fluorescent components and TN, TP, Chla, COD, POC, and SS, suggesting that fluorescence analysis can be used as an important method for a semi-quantitative analysis of nutrients. The protein-like components of the algal lake mainly consist of tryptophan and tyrosine, while that of the grass lake mainly contain tyrosine and a few tryptophan. It is worth noting that, the grass lake contains more tyrosine relative to the algal lake (t test, P < 0.01). Significant positive correlations between the protein-like and the humic-like fluorescence are found in the algal lake, while it is not significant in the grass lake. Significant positive correlations are found between the fluorescent components (protein-like and humic-like) and chlorophyll-a in the algal lake, while the correlation was only found between humic-like components and chlorophyll-a in the grass lake.


Subject(s)
Lakes/chemistry , Particulate Matter/analysis , Water Quality , China , Chlorophyllides , Factor Analysis, Statistical , Spectrometry, Fluorescence
19.
Environ Sci Pollut Res Int ; 25(27): 27628-27638, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30056538

ABSTRACT

A novel method was explored to improve the waste-activated sludge (WAS) dewaterability using Fe(II) combined with calcium hypochlorite, and the possible mechanisms were investigated simultaneously. Capillary suction time (CST), specific resistance to filtration (SRF) of sludge, and water content (WC) of dewatered sludge cake were selected as the factors to evaluate the sludge dewaterability. The maximum reduction of WC (30.76%) was achieved under the optimal conditions of Ca(ClO)2 0.04 g/g total suspended solids (TSS), FeSO4·7H2O 0.097 g/g TSS, and pH 7.3, while the reduction of CST and SRF reached 91.24 and 99.47%, respectively. Three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectroscopy of extracellular polymeric substances (EPSs) showed that sludge dewaterability was mainly related to the degradation of tryptophan and tyrosine protein-like substances in sludge EPS. Economic analysis suggested Fe(II) combined with calcium hypochlorite treatment had greater potential on enhancing WAS dewaterability compared with the traditional sludge treatment.


Subject(s)
Ferrous Compounds/chemistry , Hypochlorous Acid/chemistry , Sewage/chemistry , Waste Disposal, Fluid/methods , Filtration , Hydrogen-Ion Concentration , Microbial Viability , Oxidation-Reduction , Sewage/microbiology
20.
Bioprocess Biosyst Eng ; 41(6): 841-850, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29523965

ABSTRACT

In present study, the characteristics of soluble microbial products (SMP) were evaluated in aerobic granular sludge system during denitrification process under different chemical oxygen demand/nitrogen (C/N) ratios. Batch experiment showed that the effluent nitrate (NO3--N) concentration were 15.24 ± 1.83 and 1.72 ± 1.53 mg/L at C/N ratio of 1 and 6, respectively. For the release of SMP, the protein (PN) and polysaccharide contents increased from 1.23 ± 0.38 and 7.46 ± 1.13 mg/L to 1.80 ± 0.76 and 10.53 ± 1.24 mg/L with increasing C/N ratios, respectively. Excitation-emission matrix identified four peaks in SMP, including aromatic PN-like, tryptophan PN-like, fulvic acid-like and humic acid-like substances. Fluorescence regional integration suggested that biodegradable PN-like substances occupied the percentage between 53.0 and 61.7% in SMP. Synchronous fluorescence spectra coupled with two-dimensional correlation spectroscopy indicated that the release of SMP fractions in the early stage (0-150 min) changed in the following sequences: PN-like fraction > fulvic acid-like fraction.


Subject(s)
Denitrification , Nitrates/analysis , Polysaccharides/analysis , Proteins/analysis , Sewage/analysis , Sewage/microbiology , Wastewater/microbiology , Aerobiosis , Nitrates/metabolism , Polysaccharides/biosynthesis , Proteins/metabolism , Water Purification
SELECTION OF CITATIONS
SEARCH DETAIL