Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
1.
Environ Res ; 261: 119767, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39128663

ABSTRACT

Human biomonitoring of toxic and essential trace elements is critically important for public health protection. Amazonian riverine communities exhibit distinctive dietary patterns, heavily reliant on locally sourced fish, fruits, and vegetables. These habits may result in unique exposure profiles compared to urban populations. However, comprehensive assessments of their exposure to toxic and essential metals are lacking, representing a critical gap in understanding the health risks faced by these communities. This study aimed to establish baseline levels of 21 metals and metalloids in human blood and explore the influence of sociodemographic factors, dietary habits, and lifestyle choices as potential sources of exposure to these elements. A cross-sectional biomonitoring investigation was conducted with 1,024 individuals from 13 communities in the Tapajós and Amazon Basins (Pará, Brazil). Most of the elements in study was determined for the first time in the region. Blood samples were analyzed using inductively coupled plasma mass spectrometry (ICP-MS). The levels of all elements were summarized by quantiles and compared with cutoff values from other Brazilian populations. Multiple linear regression was used to assess possible associations between element concentrations and sociodemographic characteristics, dietary habits, and lifestyle choices. High detection rates (64%-100%) were observed, indicating the widespread presence of these elements. Elevated blood concentrations were found for mercury (median 21.1 µg.L-1, interquartile range: 12-34 µg.L-1), selenium (median 166 µg.L-1, interquartile range: 137-208 µg.L-1), and lead (median 34 µg.L-1, interquartile range: 20.8-64 µg.L-1). Regression analysis revealed a positive association between mercury levels and fish consumption, while manioc flour intake showed no relationship to lead levels. In conclusion, our findings emphasize the need for continued monitoring and public policy development for these vulnerable populations. Further studies should assess long-term trends and investigate the health implications of prolonged exposure to diverse chemicals in Amazonian riverside communities.


Subject(s)
Biological Monitoring , Life Style , Metalloids , Humans , Brazil , Adult , Male , Female , Middle Aged , Young Adult , Adolescent , Cross-Sectional Studies , Metalloids/blood , Metals/blood , Diet , Aged , Sociodemographic Factors , Socioeconomic Factors , Water Pollutants, Chemical/blood , Water Pollutants, Chemical/analysis , Child , Feeding Behavior , Rural Population/statistics & numerical data , Rivers/chemistry
2.
J Mass Spectrom ; 59(7): e5063, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38953332

ABSTRACT

An unprecedented and direct PS-MS (paper spray ionization mass spectrometry) method was proposed for the detection of native peptides, that is, glutathiones (GSHs), homoglutathiones (hGSHs), and phytochelatins (PCs), in basil (Ocimum basilicum L.) roots before and after cadmium exposure. The roots were submitted to cold maceration followed by sonication with formic acid as the extractor solvent for sample preparation. PS-MS was used to analyze such extracts in the positive mode, and the results allowed for the detection of several GSHs, hGSHs, and PCs. Some of these PCs were not distinguished in the control samples, that is, basil roots not exposed to cadmium. Other PCs were noticed in both types of roots, uncontaminated and cadmium-contaminated, but the intensities were higher in the former samples. Moreover, long-time exposure to cadmium stimulated the formation of some of these PCs and their cadmium complexes. The results, therefore, provided some crucial insights into the defense mechanism of plants against an external stress condition due to exposure to a toxic heavy metal. The present study represents a promising alternative to investigate other crucial physiological processes in plants submitted to assorted stress conditions.


Subject(s)
Cadmium , Ocimum basilicum , Phytochelatins , Plant Roots , Phytochelatins/chemistry , Phytochelatins/metabolism , Plant Roots/chemistry , Cadmium/analysis , Ocimum basilicum/chemistry , Mass Spectrometry/methods , Glutathione/analysis , Glutathione/metabolism , Glutathione/chemistry
3.
Article in English | MEDLINE | ID: mdl-38969926

ABSTRACT

BACKGROUND: Arsenic, cadmium, and lead are toxic elements that widely contaminate our environment. These toxicants are associated with acute and chronic health problems, and evidence suggests that minority communities, including Hispanic/Latino Americans, are disproportionately exposed. Few studies have assessed culturally specific predictors of exposure to understand the potential drivers of racial/ethnic exposure disparities. OBJECTIVE: We sought to evaluate acculturation measures as predictors of metal/metalloid (hereafter "metal") concentrations among Mexican American adults to illuminate potential exposure sources that may be targeted for interventions. METHODS: As part of a longitudinal cohort, 510 adults, aged 35 to 69 years, underwent baseline interview, physical examination, and urine sample collection. Self-reported acculturation was assessed across various domains using the Short Acculturation Scale for Hispanics (SASH). Multivariable linear regression was used to assess associations between acculturation and urinary concentrations of arsenic, cadmium, and lead. Ordinal logistic regression was utilized to assess associations between acculturation and a metal mixture score. Lastly, best subset selection was used to build a prediction model for each toxic metal with a combination of the acculturation predictors. RESULTS: After adjustment, immigration factors were positively associated with arsenic and lead concentrations. For lead alone, English language and American media and food preferences were associated with lower levels. Immigration and parental heritage from Mexico were positively associated with the metal mixture, while preferences for English language, media, and food were negatively associated. CONCLUSION: Acculturation-related predictors of exposure provide information about potential sources of toxic metals, including international travel, foods, and consumer products. The findings in this research study provide information to empower future efforts to identify and address specific acculturation-associated toxicant exposures in order to promote health equity through clinical guidance, patient education, and public policy.

4.
J Hazard Mater ; 476: 135005, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38996684

ABSTRACT

Microbially induced carbonate precipitation (MICP) immobilizes toxic metals and reduces their bioavailability in aqueous systems. However, its application in the treatment of acid mine drainage (AMD) is poorly understood. In this study, the genomes of Sporosarcina sp. UB5 and UB10 were sequenced. Urease, carbonic anhydrases, and metal resistance genes were identified and enzymatic assays were performed for their validation. The geochemical mechanism of precipitation in AMD was elucidated through geo-mineralogical analysis. Sporosarcina sp. UB5 was shown to be a new genomospecies, with an average nucleotide identity < 95 % (ANI) and DNA-DNA hybridization < 70 % (DDH) whereas UB10 is close to S. pasteurii. UB5 contained two urease operons, whereas only one was identified in UB10. The ureolytic activities of UB5 and UB10 were 122.67 ± 15.74 and 131.70 ± 14.35 mM NH4+ min-1, respectively. Both strains feature several carbonic anhydrases of the α, ß, or γ families, which catalyzed the precipitation of CaCO3. Only Sporosarcina sp. UB5 was able to immobilize metals and neutralize AMD. Geo-mineralogical analyses revealed that UB5 directly immobilized Fe (1-23 %), Mn (0.65-1.33 %) and Zn (0.8-3 %) in AMD via MICP and indirectly through adsorption to calcite and binding to bacterial cell walls. The MICP-treated AMD exhibited high removal rates (>67 %) for Ag, Al, As, Ca, Cd, Co, Cu, Fe, Mn, Pb, and Zn, and a removal rate of 15 % for Mg. This study provides new insights into the MICP process and its applications to AMD treatment using autochthonous strains.


Subject(s)
Mining , Sporosarcina , Urease , Sporosarcina/genetics , Sporosarcina/metabolism , Urease/metabolism , Chemical Precipitation , Carbonates/chemistry , Carbonic Anhydrases/metabolism , Carbonic Anhydrases/genetics , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/chemistry
5.
Nat Prod Res ; : 1-7, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38907677

ABSTRACT

This study evaluated the chemical profile, antimicrobial activity, and the presence of potentially toxic elements in geopropolis extracts produced by Melipona scutellaris in the Recôncavo region of Bahia, Brazil. It was found that the major chemical compounds belong to the class of phenolic compounds, with emphasis on the presence of gallic acid. In this study, no potentially toxic elements were found in the analysed geopropolis. Regarding the antimicrobial potential, gram-positive bacteria were susceptible to the action of geopropolis extract at concentrations of 0.25 to 2.5 mg.mL-1, highlighting its microbiological activity against Streptococcus mitis (ATCC 00456) and Candida albicans (CCMB 251). Thus, this geopropolis extract can be used as a bacteriostatic rather than a bactericide. Our results suggest the potential for the economic and therapeutic use of M. scutellaris geopropolis, adding value to one of the meliponiculture products.

6.
Environ Res ; 258: 119412, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38876418

ABSTRACT

Human activities have changed the natural rates at which metals are moved and accumulated in both land and water environments, resulting in negative impacts on local wildlife. In this study, concentrations of Cr, Ni, Cd, Pb, Cu, Mn, Co, and Zn were evaluated in water and riverbed sediment samples collected from the Verde River basin (VR), as well as in tissue samples from five native Loricariidae species. Sediment samples collected from the central section of the VR riverbed indicated the presence of metal concentrations, which were primarily attributed to scattered pollution sources linked to rural activities in the surrounding areas. The bioconcentration factor in the Loricariids liver presented the highest average values for Zn (1.27-58.21), Co (0.48-14.91) and Cu (1.15-11.14). The same pattern was observed in the muscle, but in a lower proportion. Regarding the bioaccumulation factor, Co (1.54-34.84), Cu (5.85-25.22) and Zn (0.64-18.08) attained the highest average values in the liver. The co-inertia analysis examined the spatial distribution of metal concentrations in riverbed sediments and in tissues of Loricariids from the upper, middle, and lower stretches of the river, including the river mouth. The analysis revealed varying patterns, with samples from some regions showing higher bioaccumulation levels. This suggests that riverbed sediments are a primary source of metal contamination in Loricariids from these areas. The pollution has had a significant impact on the bioaccumulation of metals in the VR' Loricariids, which are good indicators of sediment-associated metal bioaccumulation. The metal concentrations recorded in both the riverbed sediments and Loricariids surpassed international and Brazilian limits set for aquatic health and safe human consumption. Given the importance of the Verde River in terms of its ecological, social, cultural, and economic roles, it is essential to implement biomonitoring and control measures to safeguard both terrestrial and aquatic resources.


Subject(s)
Catfishes , Environmental Monitoring , Geologic Sediments , Rivers , Water Pollutants, Chemical , Geologic Sediments/chemistry , Geologic Sediments/analysis , Animals , Water Pollutants, Chemical/analysis , Rivers/chemistry , Catfishes/metabolism , Brazil , Liver/chemistry , Liver/metabolism , Metals, Heavy/analysis , Metals/analysis , Bioaccumulation
7.
Foods ; 13(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38731718

ABSTRACT

The consumption of natural foods is increasingly high, and in recent years, consumers have preferred foods from systems with responsible management of natural resources (organic, hydroponic). However, there are still contradictions regarding the nutritional content of products from these different types of crops. Our study aims to compare, for the first time, the content of antioxidants (ascorbic acid, lycopene, total phenolics, essential fatty acids), micronutrients (copper, iron, manganese, zinc), contaminants (cadmium and lead), and free radical scavenging activity between conventional, organic, and hydroponic tomatoes (Solanum lycopersicum) sold in markets in Quito, Ecuador. Ascorbic acid and lycopene were determined by HPLC/UV-Vis. Total phenolics (Folin-Ciocalteu method) and free-radical scavenging activity (2,2-diphenyl-1-picrylhydrazyl method) were determined via UV-Vis spectrophotometry. Lipid profiles were determined as fatty acid methyl esters through a GC-FID. Trace metals were determined using FAAS (micronutrients), and GFAAS (pollutants). No significant differences (p > 0.05) between antioxidant and micronutrient content among the three types of tomatoes were found. Regarding cadmium and lead, the contents were below the Codex Alimentarius threshold limits. Finally, free radical scavenging activity varied slightly (organic > hydroponic > conventional). Although the samples showed certain differences in antioxidant content, none of the tomato types could be considered nutritionally better because of the high variability of the results.

8.
Foods ; 13(10)2024 May 12.
Article in English | MEDLINE | ID: mdl-38790800

ABSTRACT

BACKGROUND: School meals represent a significant supply of nutrients for children in Brazil, especially those in conditions of social vulnerability. OBJECTIVES: This study aimed to assess the levels of arsenic (As), cadmium (Cd), and lead (Pb) in meals served in public elementary schools in four municipalities in the state of Bahia, Brazil, and assess the risk posed to children's health. METHODS: Ninety-six samples were collected from 16 schools, freeze-dried, and subjected to microwave-assisted digestion. The As, Cd, and Pb levels were determined by graphite furnace atomic absorption spectrometry. The risk assessment was based on calculating each element's hazard quotient (HQ). RESULTS: None of the samples reached or exceeded the tolerable levels for the elements analyzed. Pb was the metal that obtained the most significant result, reaching maximum levels of 39-157 µg·kg-1. CONCLUSIONS: No element exceeded the PTWI proposed by JECFA; thus, the toxic metal content in school meals poses a negligible risk to children's health.

9.
Toxics ; 12(4)2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38668484

ABSTRACT

Kidney dysfunction is increasing worldwide and is exacerbated by exposure to toxic metals. Also, pregnancy poses an overload on kidney function. We investigated how blood lead (PbB) and cadmium (CdB) levels were associated with kidney function in pregnant women from Recôncavo Baiano, Brazil, during their second trimester. In this cross-sectional study, the estimated glomerular filtration rate (eGFR) was calculated from serum creatinine and whole blood metal levels were measured by graphite furnace atomic absorption spectrophotometry in 136 volunteers. Sociodemographic data were collected using semi-structured questionnaires. The medians (IQR) of PbB, CdB, and eGFR were 0.85 µg/dL (0.45-1.75), 0.55 µg/L (0.08-0.91), and 121.8 mL/min/1.73 m2 (106.0-127.9), respectively. PbB medians were significantly higher in the eGFR < 90 group at 2.00 µg/dL (0.83, 3.10). After age-adjusted logistic regression, pregnant women with elevated PbB levels had decreased eGFR (OR = 1.82; 95%-CI, 1.14-3.14). However, the participants with elevated PbB levels who reported consuming alcohol during pregnancy or had CdB in the highest tertile had higher odds of reduced eGFR (OR = 2.44; 95%-CI, 1.30-5.47) and (OR = 11.22; 95% CI, 2.53-103.51), respectively. These results suggest that low Pb exposure may affect kidney function in pregnant women and calls for further investigation into toxic metal co-exposures on kidney function during pregnancy in at-risk communities.

10.
Environ Sci Pollut Res Int ; 31(20): 29749-29762, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38592625

ABSTRACT

Water contamination with toxic metals causes harmful effects on the environment and to human health. Although cucurbiturils have carboxyl groups in their portal that can interact with metal ions, there is a lack of studies about their use as metal adsorbent. This scenario has motivated conduction of the present study, which addresses the use of cucurbit[6]uril (CB[6]) and cucurbit[8]uril (CB[8]) for adsorbing Pb and Cr from water samples, in free forms and immobilized in poly(urethane) sponges. The adsorption kinetics revealed that CB[8] leads to faster adsorption compared to CB[6], with equilibrium achieved in 8 h for CB[8] and 48 h for CB[6] for both metals, and achieved up to 80% of decrease in metal concentration. The Langmuir isotherm model provided a better description of adsorption for Cr and Pb in CB[6] and Pb in CB[8] with a maximum concentration adsorbed of 32.47 mg g-1 for Pb in CB[6], while the Dubinin-Radushkevich model was more suitable for Cr adsorption in CB[8]. Sponges containing CB[6] and CB[8] have proven to be efficient for Pb and Cr remediation in tannery effluent samples, reducing Cr and Pb concentration by 42 and 33%, respectively. The results indicate that CB[6] and CB[8], whether used in their pure form or integrated into sponges, exhibit promising potential for efficiently adsorbing metals in aqueous contaminated environments.


Subject(s)
Lead , Polyurethanes , Water Pollutants, Chemical , Polyurethanes/chemistry , Adsorption , Water Pollutants, Chemical/chemistry , Lead/chemistry , Chromium/chemistry , Kinetics
11.
Article in English | MEDLINE | ID: mdl-37444059

ABSTRACT

Prenatal exposure to potentially toxic metals (PTM) may impair fetal growth (FG). We investigated the relationship between maternal exposure to lead (Pb), cadmium (Cd) and manganese (Mn) and birth weight (BW) of 74 newborns. Blood was collected during the second trimester of pregnancy to determine Pb (PbB) and Cd (CdB), while hair (MnH) and toenails (MnTn) were used for Mn. Samples were analyzed by graphite furnace atomic absorption spectrophotometry (GFAAS). Sociodemographic and BW data were collected from questionnaires and maternity records, respectively. The medians (P25th-P75th) of PbB, CdB, MnH, and MnTn were, respectively, 0.9 (0.5-1.8) µg/dL; 0.54 (0.1-0.8) µg/L; 0.18 (0.1-0.4) µg/g; and 0.65 (0.37-1.22) µg/g. The means (standard deviation) of birth weight according to sex were 3067 (426.3) and 3442 (431) grams, respectively, for girls and boys. MnTn presented an inverse correlation with the BW/gestational age ratio for girls (rho = -0.478; p = 0.018), suggesting the effect of sex modification. Although BW correlation with CdB was not statistically significant, hierarchical linear regression (beta = -2.08; 95% CI-4.58 to 0.41) suggested a fetotoxic effect. These results confirmed the threat PTMs may represent and the need for more extensive research to elucidate their role in inadequate FG in developing countries.


Subject(s)
Environmental Exposure , Maternal Exposure , Male , Humans , Infant, Newborn , Female , Pregnancy , Maternal Exposure/adverse effects , Environmental Exposure/analysis , Birth Weight , Lead/toxicity , Birth Cohort , Brazil/epidemiology , Cadmium/toxicity , Manganese , Heavy Metal Poisoning
12.
Chemosphere ; 334: 138975, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37224977

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) and toxic metals are widely spread pollutants of public health concern. The co-contamination of these chemicals in the environment is frequent, but relatively little is known about their combined toxicities. In this context, this study aimed to evaluate the influence of the co-exposure to PAHs and toxic metals on DNA damage in Brazilian lactating women and their infants using machine learning approaches. Data were collected from an observational, cross-sectional study with 96 lactating women and 96 infants living in two cities. The exposure to these pollutants was estimated by determining urinary levels of seven mono-hydroxylated PAH metabolites and the free form of three toxic metals. 8-Hydroxydeoxyguanosine (8-OHdG) levels in the urine were used as the oxidative stress biomarker and set as the outcome. Individual sociodemographic factors were also collected using questionnaires. Sixteen machine learning algorithms were trained using 10-fold cross-validation to investigate the associations of urinary OH-PAHs and metals with 8-OHdG levels. This approach was also compared with models attained by multiple linear regression. The results showed that the urinary concentration of OH-PAHs was highly correlated between the mothers and their infants. Multiple linear regression did not show a statistically significant association between the contaminants and urinary 8OHdG levels. Machine learning models indicated that all investigated variables did not present predictive performance on 8-OHdG concentrations. In conclusion, PAHs and toxic metals were not associated with 8-OHdG levels in Brazilian lactating women and their infants. These novelty and originality results were achieved even after applying sophisticated statistical models to capture non-linear relationships. However, these findings should be interpreted cautiously because the exposure to the studied contaminants was considerably low, which may not reflect other populations at risk.


Subject(s)
Environmental Pollutants , Polycyclic Aromatic Hydrocarbons , Humans , Female , Infant , Polycyclic Aromatic Hydrocarbons/analysis , Cross-Sectional Studies , Brazil , Lactation , Environmental Pollutants/toxicity , Environmental Pollutants/urine , 8-Hydroxy-2'-Deoxyguanosine/urine , DNA Damage , Biomarkers/metabolism , Oxidative Stress
13.
Article in English | MEDLINE | ID: mdl-36833642

ABSTRACT

Exposure to potentially toxic metals (PTM) threatens maternal and child health. We investigated the determinants of exposure to lead (Pb), cadmium (Cd), arsenic (As), and manganese (Mn) in 163 pregnant women from the Recôncavo Baiano, Brazil, enrolled in the DSAN-12M cohort. We measured these metals in biological samples (blood, toenails, and hair) and the Pb dust loading rates (RtPb) at their homes by graphite furnace atomic absorption spectrophotometry (GFAAS). Questionnaires were applied to collect sociodemographic and general habits data. Only 2.91% (n = 4) of the pregnant women had As levels above the detection limit. Few participants had levels above the recommended reference values for blood Pb (5.1; 95% CI: 2.1-10.1%), and Mn in hair or toenails (4.3; 95% CI: 2.3-10.1%). On the other hand, 61.1 (95% CI: 52.4-69.3%) had elevated blood Cd levels. After binary logistic regression, low socioeconomic status, domestic waste burning, being a passive smoker, multiparity, and renovating the house significantly increased the chances of having high levels of Mn, Pb, and Cd. We detected a worrying situation related to exposure to Cd, showing the urgency of implementing human biomonitoring in the general population, especially in situations of social vulnerability.


Subject(s)
Arsenic , Metals, Heavy , Child , Humans , Female , Pregnancy , Cadmium , Lead , Pregnant Women , Brazil , Manganese , Heavy Metal Poisoning , Metals, Heavy/toxicity
14.
Environ Monit Assess ; 195(3): 432, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36853394

ABSTRACT

This study evaluated metal contamination in surface sediments and macroalgae of mangroves and port complexes on the Brazilian equatorial margin. Samples were collected between August 2020 and February 2021 at seven points in a mangrove swamp under the influence of port activity and at two points without port activity. Metal concentrations in the macroalgae and sediments were determined using inductively coupled plasma‒optical emission spectrometry. All macroalgal species bioaccumulated metals, as demonstrated by their bioaccumulation factors. The geochemical contamination indices indicated that the estuarine complex was influenced by port activity as moderately contaminated by Pb, Cr, Mn, and Fe and considerably contaminated by Zn and Cu. The enrichment factor confirmed significant mineral enrichment of Zn and Cu in this environment. The concentrations of the metals in the sediment followed the order Fe > Mn > Cr > Zn > Cu > Pb at most sampling points. Cladophoropsis membranacea recorded the highest bioaccumulation values for Pb (0.44), Rhizoclonium africanum for Zn (1.08), Cr (0.55), and Fe (0.30), and Bostrychia radicans for Mn (2.22). The bioaccumulation pattern of metals in the most abundant macroalgal species followed the order Bostrychia radicans (Mn > Zn > Cu > Cr > Pb > Fe) and Rhizoclonium africanum (Zn > Mn > Cr > Cu > Pb > Fe).


Subject(s)
Seaweed , Ecosystem , Brazil , Lead , Environmental Monitoring
15.
Antibiotics (Basel) ; 11(12)2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36551334

ABSTRACT

Multidrug-resistant (MDR) mesophilic facultatively anaerobic Gram-negative rods are a public health issue and their spread from animal-source foods to humans is of concern worldwide. Hence, the aim of this study was to examine the antibiotic susceptibility patterns and physiological aspects of such rods, including their tolerance to toxic metals and the screening of efflux pumps expressing isolates among enterobacteria isolated from meat (chicken, beef and pork) and fish samples acquired from retail establishments in a Brazilian urban Centre of over 2,300,000 inhabitants. The study revealed that 62.9% of isolated bacteria were resistant to at least one antimicrobial, of which 32.3% and 8.1% were resistant to one and two of the tested drugs, respectively. A resistance of up to six antimicrobials was also observed (0.9%). Out of the total amount, 22.7% were classified as MDR. Chicken was the meat that harbored most MDR isolates, and fish harbored the least. It was not possible to distinguish the different types of meat or fish considering the resistance patterns. The MDR isolates showed a higher tolerance to mercury and cadmium salts and the increased activity of the efflux mechanisms compared to other susceptible or resistant strains. In One Health. the perspective occurrence of putative MDR bacteria in fresh meat and fish draws attention to the antimicrobial resistance phenomenon in an open environment.

16.
Article in English | MEDLINE | ID: mdl-36361249

ABSTRACT

Historically, cocoa (Theobroma cacao) has been one of Ecuador's most important export crops. In the Ponce Enriquez district, artisanal and small gold mining (ASGM), and quarrying account for 42% of economic activities, while agriculture and livestock farming account for 30%, making the analysis of their synergy and interaction key to understanding the long term viability of the different activities. In this study, we evaluated the concentration of potentially toxic metals in different parts of the cocoa plant and fruit, in relation to mining activities within the area. Gold extraction generates pollution, including potentially toxic metals such as mercury (Hg), cadmium (Cd), arsenic (As), copper (Cu), lead (Pb) and zinc (Zn). In order to understand the mobility of these metals within the cocoa plant and fruit, the analysis was conducted separately for leaves, pod, husk and cocoa bean. Concentrations of the target metals in the different plant parts and soil were measured using ICP-MS, and the mobility and risk factors were calculated using the transfer factor (TF) and the risk ratio (HQ). The results suggest that Zn, Cd and Cu are indeed moving from the soil to cocoa leaves and beans. Furthermore, the results show that the concentrations of toxic metals in the different parts of the cocoa fruit and plant, particularly in the cocoa bean, which is used for chocolate manufacture, are not higher than those regulated by FAO food standards, as is the case of Cd, which is limited to 0.2 mg Cd/kg and in the samples analyzed does not exceed this limit. Even though the concentration of these metals does not exceed the safety standard, the presence of these potentially hazardous metals, and the fact they are absorbed by this important local crop, are worrying for the long-term sustainability of cocoa cultivation in the area. Therefore, it is fundamental to monitor the local environment, understanding the distribution of heavy metal pollution, and work with the local authorities in landscape management to minimize the exposure of crops to ASGM pollution.


Subject(s)
Cacao , Chocolate , Metals, Heavy , Soil Pollutants , Trace Elements , Soil Pollutants/analysis , Cadmium/analysis , Metals, Heavy/analysis , Soil , Zinc/analysis , Crops, Agricultural , Trace Elements/analysis , Gold/analysis , Environmental Monitoring , Risk Assessment , China
17.
Article in English | MEDLINE | ID: mdl-36141460

ABSTRACT

Children are highly vulnerable to chemical exposure. Thus, metal and metalloid in infant formulas are a concern, although studies in this regard are still relatively scarce. Thus, the presence of aluminum, arsenic, cadmium, tin, mercury, lead, and uranium was investigated in infant formulas marketed in Brazil by inductively coupled plasma mass spectrometry, and the Target Hazard Quotients (THQ) and Target Cancer Risk (TCR) were calculated in to assess the potential risk of toxicity for children who consume these products continuously. Aluminum ranging from 0.432 ± 0.049 to 1.241 ± 0.113 mg·kg-1, arsenic from 0.012 ± 0.009 to 0.034 ± 0.006 mg·kg-1, and tin from 0.007 ± 0.003 to 0.095 ± 0.024 mg·kg-1 were the major elements, while cadmium and uranium were present at the lowest concentrations. According to the THQ, arsenic contents in infant formulas showed a THQ > 1, indicating potential health risk concerns for newborns or children. Minimal carcinogenic risks were observed for the elements considered carcinogenic. Metabolic and nutritional interactions are also discussed. This study indicates the need to improve infant formula surveillance concerning contamination by potentially toxic and carcinogenic elements.


Subject(s)
Arsenic , Mercury , Metalloids , Metals, Heavy , Neoplasms , Uranium , Child , Humans , Infant , Infant, Newborn , Aluminum/analysis , Arsenic/analysis , Arsenic/toxicity , Brazil/epidemiology , Cadmium/analysis , Carcinogens/analysis , Carcinogens/toxicity , Child Health , Food Contamination/analysis , Heavy Metal Poisoning , Infant Formula/analysis , Mercury/analysis , Metalloids/analysis , Metals, Heavy/analysis , Receptors, Antigen, T-Cell , Risk Assessment , Tin/analysis , Uranium/analysis
18.
Heliyon ; 8(8): e10221, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36051268

ABSTRACT

Soil acidification and increased bioavailability of Ni are problems that affect agricultural soils. This study aims to compare the effects of both lime and biochar from corn stover in soil acidity correction, improving soil physicochemical properties and soil re-acidification resistance. As well as assesseing the impacts on human health risk caused by bioavailability of nickel. A greenhouse pot experiment was conducted for 30 days to determine the effect of biochar and lime on soil physicochemical properties and nickel bioavailability. Afterwards, a laboratory test was carried out to determine the repercussions of both amendments on soil resistance to re-acidification and re-mobilization of nickel. Human health risk was determined using nickle bioavailable concentration. Overall, the results of this study showed that biochar application significantly reduced soil acidity from 8.2 ± 0.8 meq 100 g-1 to 1.9 ± 0.3 meq 100 g-1, this reduction markedly influenced the bioavailability of nickel, which decreased significantly. Moreover, soil physicochemical properties and soil resistance to acidification were improved. Furthermore, biochar significantly reduced human health risk compared to lime application, even under a re-acidification scenario. It was possible to verify that Ni immobilization in the soil was increased when biochar was used. Soil Ni immobilization is associated with co-precipitation and chemisorption. Hence, it was demonstrated that biochar is more effective than lime in reducing soil acidity and remedying nickel-contaminated agricultural soils.

19.
Toxics ; 10(9)2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36136488

ABSTRACT

The aim of the present study was to find if workers chronically exposed to lead (Pb) and cadmium (Cd) presented changes in their general health and in the clinical parameters of the population under study. We carried out a cross-sectional survey in a sample of informal workers in Cartagena, Colombia. The population under study was composed of male informal workers (≥18 years of age), with experience in their job, selected from occupational settings with potential exposure to Pb and Cd (i.e., mechanics, battery and garbage recyclers, and welders). The median age was 45 years (interquartile range (IQR), 33−53). The median blood Pb level (BLL) was 2 µg/dL (IQR, 0.76−6.22), and the median of blood Cd level (BCL) was 1.22 µg/L (IQR, 0.33−2.01). The study found that 33% of high exposure jobs with BLL > 5 µg/dL (n = 57), whereas in 'control' workers, this was 15.3% (n = 9). The highest BLLs were found in battery recyclers (82.1%; n = 23), followed by mechanics (37.3%, n = 22). In the logistic regression model adjusted by age, time on the job, smoking and elevated BCL and BLL increased 3.2 times (95% CI, 1.1−9.7) in mechanics and 29.6 times (95% CI, 7.2−145.6) in battery recyclers. This study found negative changes in the health of workers with higher chronic exposure to lead in Cartagena, Colombia.

20.
Environ Monit Assess ; 194(10): 758, 2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36085206

ABSTRACT

Trace and potentially toxic elements represent one class of food contaminants that has stimulated research. In markets, two main methods of growing vegetables are generally available: conventional and organic. Conventional farming has been the target of some concerns about the use of agrochemicals, especially the excessive use of pesticides, whereas organic agriculture minimizes the use of agrochemicals. As the main route for potentially toxic elements' absorption by humans is by food intake, it is important to evaluate if the method of cultivation influences their concentrations. This study evaluated the levels of potentially toxic elements and nutrients on four leafy vegetables: curly lettuce, collard greens, escarole, and rocket, cultivated by conventional and organic farming. We found that Al, Ba, Fe, and Sr levels were higher in conventional samples, whereas K, Pb, and Zn were higher in organic. Amongst the elements analysed, values of Fe, Al, and K were around 0.2, 0.3, and 70 g kg-1, respectively, except in collard greens, in which the values were lower. On the other hand, Ba, Sr, and Mn presented higher concentration in collard greens compared to the other vegetables in conventional cultivation (~ 35, 80, and 120 mg kg-1, respectively). The principal component analysis result shows that the samples were grouped according to the type of vegetable, regardless of the type of cultivation. Despite this, the evaluation of the cultivation by different types of farming is important in order to choose the healthiest option.


Subject(s)
Environmental Monitoring , Vegetables , Agrochemicals , Humans , Lactuca , Plant Leaves
SELECTION OF CITATIONS
SEARCH DETAIL