Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 24(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38894181

ABSTRACT

Real-time traffic signal acquisition and network transmission are essential components of intelligent transportation systems, facilitating real-time traffic monitoring, management, and analysis in urban environments. In this paper, we introduce a comprehensive system that incorporates live traffic signal acquisition, real-time data processing, and secure network transmission through a combination of hardware and software modules, called LIDATS. LIDATS stands for Live Intersection Data Acquisition for Traffic Simulators. The design and implementation of our system are detailed, encompassing signal acquisition hardware as well as a software platform that is used specifically for real-time data processing. The performance evaluation of our system was conducted by simulation in the lab, demonstrating its capability to reliably capture and transmit data in real time, and to effectively extract the relevant information from noisy and complex traffic data. Supporting a variety of intelligent transportation applications, such as real-time traffic flow management, intelligent traffic signal control, and predictive traffic analysis, our system enables remote data analysis and decisionmaking, providing valuable insights and enhancing the traffic efficiency while reducing the congestion in urban environments.

2.
Heliyon ; 10(4): e25936, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38384549

ABSTRACT

Examining driving behaviour is crucial for traffic operations because of its influence on driver safety and the potential for increased risk of accidents, injuries, and fatalities. Approximately 95% of severe traffic collisions can be attributed to human error. With the progress in artificial intelligence in recent decades, notable advancements have been achieved in computer capabilities, communication systems and data collection technology. This increase has significantly influenced our capacity to replicate driver behaviour and comprehend underlying driving mechanisms in diverse situations. Traffic microsimulation facilitates an understanding of traffic performance inside a given road network. Among the microsimulation software packages, Verkehr In Städten - SIMulationsmodell (VISSIM) has garnered significant attention owing to its notable ability to accurately replicate traffic circumstances with high dependability in real-world scenarios. Given the diverse applicability of VISSIM-based schemes, this review systematically examines the applications of the VISSIM-based driving-behaviour models within different research contexts, revealing their utility. This review is designed to provide guidance for researchers in selecting the most suitable methodological approach tailored to their specific research objectives and constraints when utilising VISSIM. Five important aspects, including calibration, driving behaviour, incident, and heterogeneous traffic simulation, as well as utilisation of artificial intelligence with VISSIM, are assessed, which could yield substantial advantages in advancing more precise and authentic driving-behaviour modelling in VISSIM.

3.
Sensors (Basel) ; 23(20)2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37896510

ABSTRACT

In this paper, a comprehensive deterministic Eco-Driving strategy for Connected and Autonomous Vehicles (CAVs) is presented. In this setup, multiple driving modes calculate speed profiles that are ideal for their own set of constraints simultaneously to save fuel as much as possible, while a High-Level (HL) controller ensures smooth and safe transitions between the driving modes for Eco-Driving. This Eco-Driving deterministic controller for an ego CAV was equipped with Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) algorithms. This comprehensive Eco-Driving strategy and its individual components were tested by using simulations to quantify the fuel economy performance. Simulation results are used to show that the HL controller ensures significant fuel economy improvement as compared to baseline driving modes with no collisions between the ego CAV and traffic vehicles, while the driving mode of the ego CAV was set correctly under changing constraints. For the microscopic traffic simulations, a 6.41% fuel economy improvement was observed for the CAV that was controlled by this comprehensive Eco-Driving strategy.

4.
Sensors (Basel) ; 23(15)2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37571665

ABSTRACT

To alleviate the traffic problems of congestion and queue overflow on a mainline at the intersection of an urban expressway exit ramp articulation during peak hours, a bi-level programming optimization model of signal timing is proposed. The lower-level optimization objective is to maximize the capacity of the expressway exit ramp that articulates with the entrance road, while the upper-level optimization objective is to minimize the average vehicle delay and the number of stops per vehicle, taking into account the queue length in the direction of the ramp and other directions. The particle swarm optimization algorithm is selected to solve the proposed model, applied to a real case, and is validated using MATLAB and VISSIM simulation platforms. The simulation results show that the average vehicle delay and the number of stops per vehicle in the exit ramp on the expressway are reduced by 22.09% and 18.60%, while those in the intersection area are reduced by 20.96% and 17.19%, respectively. The conclusion indicates that the signal timing scheme obtained by this method can effectively improve the traffic efficiency at the intersection of the exit ramp on the expressway and alleviate the problem of congestion and the overflow of the exit ramp back to the mainline.

5.
Traffic Inj Prev ; 24(sup1): S105-S110, 2023.
Article in English | MEDLINE | ID: mdl-37267008

ABSTRACT

OBJECTIVE: Before market introduction, the safety of highly automated driving systems needs to be assessed prospectively. BMW has developed a holistic approach for the assessment of the traffic safety impact by these systems in which stochastic traffic simulations play a significant role. A driver behavior model which represents realistic driver behavior ranging from performance in non-critical everyday driving toward performance in critical situations is key for this approach. To ensure trustworthy results, validation of the driver model is needed. The paper aims at demonstrating that the presented driver model acts realistically in different critical real-world traffic scenarios. METHODS: BMW has been developing the Stochastic Cognitive Model (SCM) which models cognitive processes in traffic situations. These processes range from information acquisition by gaze behavior, mental representation of the environment, recognition of situations from the visual information and reaction to the situation. The driver model combines these cognitive processes with stochastic driver parameters to obtain a variation in driver behavior in simulations. Especially visual attention modeling is key to realistic traffic interactions in simulations as this is the input for the sequential cognitive processes, i.e., the recognition of situations and the reaction to the situation. Modeling of driver's gaze behavior with SCM is thus shown in this paper. RESULTS: SCM is applied in three critical real-world traffic scenarios in which gaze behavior, brake reaction times and time-to-collisions are evaluated and compared to the real-world data. Due to the stochastic approach not only a single SCM agent but a collective of virtual SCM test drivers is assessed. Results show that SCM is capable to simulate the influence of visual inattention on collision risk. CONCLUSION: Realistic driver behavior in simulations can be achieved by using SCM. Especially in the presented critical scenarios SCM is able to represent real-world driving behavior which is determined particularly by its gaze behavior and subsequent reaction. Driving performance varies over different SCM agents which mean that different driving behavior can be simulated with SCM as well. However, the investigation in this paper included only three real-world cases. Therefore, further critical, and additionally non-critical scenarios need to be investigated in the future.


Subject(s)
Accidents, Traffic , Automobile Driving , Humans , Reaction Time
6.
CEAS Aeronaut J ; 14(2): 569-589, 2023.
Article in English | MEDLINE | ID: mdl-37214203

ABSTRACT

The North Atlantic is one of the world's airspaces accommodating a very high aircraft density while at the same time no radio coverage or radar surveillance is available. Beside satellite communication, one approach to enable data communication between aircraft and ground in the North Atlantic region is to establish ad-hoc  networks build up by direct data links between the aircraft that are acting as communication nodes. In this paper we, therefore, present a modeling approach to model air traffic and ad-hoc networks in the North Atlantic region using up-to-date flight plans and trajectory modeling techniques and to assess the connectivity provided by such networks. Assuming an applicable set of ground stations that provide data transfer to and from this airborne network, we assess the connectivity by time-series analysis and in total for a set of different fractions of all aircraft assumed to be equipped with the necessary systems as well as for a variation of the air-to-air communication range. In addition, we present average link durations, average amounts of hops to reach ground and numbers of connected aircraft for the different scenarios and identify general relations between the different factors and metrics. We will show, that communication range and equipage fraction significantly influence the connectivity of such networks.

7.
Sensors (Basel) ; 23(7)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37050732

ABSTRACT

While developing traffic-based cognitive enhancement technology (CET), such as bike accident prevention systems, it can be challenging to test and evaluate them properly. After all, the real-world scenario could endanger the subjects' health and safety. Therefore, a simulator is needed, preferably one that is realistic yet low cost. This paper introduces a way to use the video game Grand Theft Auto V (GTA V) and its sophisticated traffic system as a base to create such a simulator, allowing for the safe and realistic testing of dangerous traffic situations involving cyclists, cars, and trucks. The open world of GTA V, which can be explored on foot and via various vehicles, serves as an immersive stand-in for the real world. Custom modification scripts of the game give the researchers control over the experiment scenario and the output data to be evaluated. An off-the-shelf bicycle equipped with three sensors serves as a realistic input device for the subject's movement direction and speed. The simulator was used to test two early-stage CET concepts enabling cyclists to sense dangerous traffic situations, such as trucks approaching from behind the cyclist. Thus, this paper also presents the user evaluation of the cycling simulator and the CET used by the subjects to sense dangerous traffic situations. With the knowledge of the first iteration of the user-centered design (UCD) process, this paper concludes by naming improvements for the cycling simulator and discussing further research directions for CET that enable users to sense dangerous situations better.


Subject(s)
Accidents, Traffic , Automobile Driving , Humans , Accidents, Traffic/prevention & control , Bicycling/psychology , Theft , Environment Design , Cognition , Automobile Driving/psychology
8.
Accid Anal Prev ; 179: 106878, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36334543

ABSTRACT

Proper calibration process is of considerable importance for traffic safety evaluations using simulation models. Allowing for a pure with and without comparison under identical circumstances that is not directly testable in the field, microsimulation-based approach has drawn considerable attention for the performance evaluation of emerging technologies, such as connected vehicle (CV) safety applications. Different from the traditional approaches to evaluate mobility impacts, safety evaluations of such applications demand the simulation models to be well calibrated to match real-world safety conditions. This paper proposes a novel calibration framework which combines traffic conflict techniques and multi-objective stochastic optimization so that the operational and safety measures can be calibrated simultaneously. The conflict distribution of different severity levels categorized by time-to-collision (TTC) is applied as the safety performance measure. Simultaneous perturbation stochastic approximation (SPSA) algorithm, which can efficiently approximate the gradient of the multi-objective stochastic loss function, is used for model parameters optimization that minimizes the total simulation error of both operational and safety performance measures. The proposed calibration methodology is implemented using an open-source software SUMO on a simulation network of the Flatbush Avenue corridor in Brooklyn, NY. 17 key parameters are calibrated using the SPSA algorithm and are compared with the real-world traffic conflicts extracted using vehicle trajectories from 14 h' high-resolution aerial and traffic surveillance videos. Representative days are identified to create variation envelopes for performance measures. Four acceptability criteria, including control for time-variant outliers and inliers, bounded dynamic absolute and system errors are adopted for results analysis. The results show that the calibrated parameters can significantly improve the performance of the simulation model to represent real-world safety conditions (i.e., traffic conflicts) as well as operational conditions. The case study also demonstrates the usefulness of aerial imagery and the applicability of the proposed model calibration framework, so the calibrated model can be used to evaluate the safety benefits of CV applications more accurately.


Subject(s)
Accidents, Traffic , Humans , Accidents, Traffic/prevention & control
9.
Sensors (Basel) ; 22(19)2022 Oct 03.
Article in English | MEDLINE | ID: mdl-36236600

ABSTRACT

Adaptive traffic signal control (ATSC) is an effective method to reduce traffic congestion in modern urban areas. Many studies adopted various approaches to adjust traffic signal plans according to real-time traffic in response to demand fluctuations to improve urban network performance (e.g., minimise delay). Recently, learning-based methods such as reinforcement learning (RL) have achieved promising results in signal plan optimisation. However, adopting these self-learning techniques in future traffic environments in the presence of connected and automated vehicles (CAVs) remains largely an open challenge. This study develops a real-time RL-based adaptive traffic signal control that optimises a signal plan to minimise the total queue length while allowing the CAVs to adjust their speed based on a fixed timing strategy to decrease total stop delays. The highlight of this work is combining a speed guidance system with a reinforcement learning-based traffic signal control. Two different performance measures are implemented to minimise total queue length and total stop delays. Results indicate that the proposed method outperforms a fixed timing plan (with optimal speed advisory in a CAV environment) and traditional actuated control, in terms of average stop delay of vehicle and queue length, particularly under saturated and oversaturated conditions.


Subject(s)
Automobile Driving , Accidents, Traffic , Autonomous Vehicles , Software
10.
Sensors (Basel) ; 22(18)2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36146147

ABSTRACT

At present, autonomous driving vehicles are designed in an ego-vehicle manner. The vehicles gather information from their on-board sensors, build an environment model from it and plan their movement based on this model. Mobile network connections are used for non-mission-critical tasks and maintenance only. In this paper, we propose a connected autonomous driving system, where self-driving vehicles exchange data with a so-called road supervisor. All vehicles under supervision provide their current position, velocity and other valuable data. Using the received information, the supervisor provides a recommended trajectory for every vehicle, coordinated with all other vehicles. Since the supervisor has a much better overview of the situation on the road, more elaborate decisions, compared to each individual autonomous vehicle planning for itself, are possible. Experiments show that our approach works efficiently and safely when running our road supervisor on top of a popular traffic simulator. Furthermore, we show the feasibility of offloading the trajectory planning task into the network when using ultra-low-latency 5G networks.

11.
Article in English | MEDLINE | ID: mdl-36141941

ABSTRACT

While macroscopic simulations of passenger vehicle traffic within cities are now common practice, the integration of last mile delivery into a macroscopic simulation to evaluate the emissions has seldomly been achieved. In fact, studies focusing solely on last mile delivery generally focus on evaluating the delivery service itself. This ignores the effect the delivery service may have on the traffic flow in cities, and therefore, on the resulting emissions. This study fills this gap by presenting the results of two macroscopic traffic simulations of New York City (NYC) in PTV VISUM: (i) on-demand meal delivery services, where the emissions are evaluated for each OD-Pairs (i.e., each trip) and (ii) on-demand meal delivery services, where the emissions are evaluated for each link of the network (i.e., street). This study highlights the effect on-demand meal delivery has on the travelled distance (i.e., detours), congestion and emissions per km of every vehicle in the network, not just the delivery vehicles.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , Cities , Computer Simulation , Environmental Monitoring/methods , Vehicle Emissions/analysis
12.
Article in English | MEDLINE | ID: mdl-35682138

ABSTRACT

Due to stop-and-go events, bus stops are often treated as "hot spots" for air pollution. The design of bus stops should be optimized to reduce emissions and exposure for transit commuters. The objective of this study was to analyze the impact of bus stop platform types on vehicle emissions and individual pollution exposure. Second-by-second emissions data were first collected from one bus using a portable emission measurement system (PEMS). Microscopic traffic simulation was then used to estimate overall traffic emissions under six scenarios with different bus stop settings. Numerical simulation of pollutant dispersion was also conducted to calculate individual pollution exposure at bus stops. The results of PEMS tests showed no significant differences between bus emissions generated near two different types of stops. However, the effect of platform types on overall traffic emissions was revealed using traffic simulation. The results demonstrated that bus bays reduced the emissions of other heavy-duty vehicles. However, bus bays were not always effective during rush hours. The study also highlighted the importance of the location of bus stops, the number of bus lines, and the length of the platform, in addition to dynamic characteristics of traffic flows in the design of bus stop platforms. Bus stop platforms also affected individuals' exposure due to the changes in the pollutant flow field. The passenger's exposure at one bus stop was influenced by both the platform type and standing location. Results suggested that in a condition with a wind direction perpendicular to the bus stop shelter, the total exposure level to CO was lower at the bus bay stop if a passenger stood at the upstream of the station platform. However, the exposure was less at the downstream of the curbside bus stop.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , Air Pollution/prevention & control , Environmental Monitoring/methods , Humans , Motor Vehicles , Vehicle Emissions/analysis
13.
MethodsX ; 9: 101673, 2022.
Article in English | MEDLINE | ID: mdl-35433289

ABSTRACT

This paper provides an agent-based model, entitled TRAPSim, to examine the exposure to non-exhaust emissions (NEEs) and the consequent health effects of driver and pedestrians groups in Seoul. To make the model reproducible and replicable, TRAPSim uses the ODD protocol to demonstrate the details of the agents and parameters, as well as provide the codes alongside the descriptions to avoid possible ambiguity. The model's main parameters are thoroughly tested through sensitivity experiments and are calibrated with the city's air pollution monitoring networks. This paper also provides the instructions to the model, possible artefacts, and the configurations to submit the model on the HPC cluster.•An ODD protocol is used to document the agent-based model TRAPSim.•Sensitivity experiments and calibration are explained.•The step-by-step codes and annotations are attached in the protocol and HPC sections.

14.
Sensors (Basel) ; 22(7)2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35408421

ABSTRACT

Increased development of the urban areas leads to intensive transport service demand, especially on urban motorways. To increase traffic flow and reduce congestion, motorway traffic bottlenecks caused by high traffic demand need to be efficiently resolved using Intelligent Transport Systems services. Communication technology development that supports Connected Vehicles (CVs), which act as an active mobile sensor for collecting traffic data, provides an opportunity to harness the large datasets to develop novel methods regarding traffic bottlenecks detection. This paper presents a speed transition matrix based model for bottleneck probability estimation on motorways. The method is based on the computation of the speed at the vehicle transition point between consecutive motorway segments, which forms a traffic pattern that is represented using transition matrices. The main feature extracted from the traffic patterns was the center of mass, whose position is used as an input to the fuzzy-based system for bottleneck probability estimation. The proposed method is evaluated on four different simulated motorway traffic scenarios: (i) traffic collision site, (ii) short recurring bottleneck, (iii) long recurring bottleneck, and (iv) moving bottleneck. The method achieves comparable bottleneck detection results on every scenario, with a total accuracy of 92% on the validation dataset. The results indicate possible implementation of the method in the motorway traffic environment with a high CVs penetration rate using them as the sensory input data for the control systems based on the machine learning algorithms.


Subject(s)
Accidents, Traffic , Automobile Driving , Accidents, Traffic/prevention & control , Algorithms , Data Collection , Probability
15.
Article in English | MEDLINE | ID: mdl-35409499

ABSTRACT

Cycling is a sustainable transportation mode that provides many health, economic and environmental benefits to society. Cities with high rates of cycling are better placed to address modern challenges of densification, carbon-neutral and connected 20-min neighbourhood goals. Despite the known benefits of cycling, participation rates in Australian cities are critically low and declining. Frequently, this low participation rate is attributed to the dangers of Australian cycle infrastructure that often necessitates the mixing of cyclists with car traffic. In addition, residents of car-dependent Australian suburbs can be resistant to the installation of cycle infrastructure where threats to traffic flow, or decreased on-street parking availability are perceived and the prohibitive cost of reconfiguration of other infrastructure maintained by the local councils to retrofit safe bike paths. This study investigates the effects on traffic behaviour of retrofitting safe, separate cycling lanes into existing residential streets in a Melbourne suburb suitable for accessing the primary neighbourhood destinations. We utilise only the widths available on the existing roadway of these streets, with minimal incursion on other facilities, such as the vehicle network and parking. Using only the existing roadway reflects the common need for municipal asset managers to minimise disruption and costs associated with street redesign. Using a traffic simulation approach, we modelled travel demand that suits suburban trips to services and shops, and we selectively applied separate cycling lanes to suitable residential streets and varied the effect of lowering speed limits. Simulations show that the selective inclusion of safe cycling lanes in some streets leads to a mere 7% increase in the average car travel times in the worst case, while requiring cyclists to increase their travel distance only marginally to avoid streets without dedicated cycling lanes. These results demonstrate that reasonable compromises are possible to make suburbs safer for cyclists and bring them closer to the 20-min neighbourhood goal. There is significant potential to enhance the result by including more street types and alternative designs. The results can inform councils in their cycle path infrastructure decisions and disprove assumptions about the influence of cyclists on car infrastructure.


Subject(s)
Bicycling , Environment Design , Accidents, Traffic , Australia , Automobiles , Humans , Residence Characteristics
16.
Sci Total Environ ; 807(Pt 2): 150743, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-34634347

ABSTRACT

Barcelona city (Spain) is applying a series of traffic restriction measures that aim at renewing and reducing the amount of circulating vehicles to improve air quality. The measures include changes in the built environment to reduce private vehicle space in specific areas through the so-called "superblocks" and tactical urban planning actions, along with the implementation of a city-wide Low Emission Zone (LEZ) that restricts the entry of the most polluting vehicles to the city. Our study quantifies the impact of these measures in the greater area of Barcelona combining a coupled macroscopic traffic and pollutant emission model with a multi-scale air quality model. Our modelling system allows estimating the effect of different traffic restrictions upon traffic and the associated emissions and air quality levels at a very high resolution (20 m). The measures were evaluated both individually and collectively to assess both their relative and overall impact upon emissions and air quality. We show that in the absence of traffic demand reductions, the application of isolated measures that reduce private vehicle space, either through superblocks or tactical urban planning, have no overall emission impacts; only localized street-level NOx positive and negative changes (±17%) are found due to traffic re-routing and the generation of new bottlenecks. It is only when these measures are combined with optimistic fleet renewal as a result of the LEZ implementation and demand reductions, that relevant global emission reductions in NOx are obtained (-13% and -30%, respectively) with estimated NO2 reductions of -36% and -23% at the two traffic air quality monitoring stations. Despite the potential improvements, our simulations suggest that current measures are insufficient to comply with EU air quality standards and that further traffic restriction policies to reduce traffic demand are needed.


Subject(s)
Air Pollution , Vehicle Emissions/prevention & control , Air Pollution/prevention & control , Built Environment , City Planning , Policy , Spain
17.
Healthcare (Basel) ; 9(11)2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34828565

ABSTRACT

Short-term and large-scale full-population virus testing is crucial in containing the spread of the COVID-19 pandemic in China. However, the uneven distribution of health service facilities in terms of space and size may lead to prolonged crowding during testing, thus increasing the chance of virus cross-infection. Therefore, appropriate control of crowd exposure time in large-scale virus testing should be an important goal in the layout of urban community health facilities. This paper uses the Quanta concept and Wells-Riley model to define the "certain-exposure time" under low cross-infection rate. Then, an agent-based simulation model was used to simulate the reasonable screening efficiency of community health service facilities during certain-exposure time at different stages of the COVID-19 pandemic and under different screening processes. Eventually, the screening efficiency was evaluated for all community health service centers in Wuhan. During the early period of the pandemic, 23.13% of communities failed to complete virus testing of community residents within 2 h of certain-exposure time, leaving approximately 56.07% of the population unscreened; during the later period of the COVID-19 pandemic, approximately 53% of communities and 75% of residents could not be screened. The results can pinpoint the distribution of community health service centers with inadequate screening capacity, facilitate targeted policymaking and planning, and effectively curb COVID-19 cross-infection during screening.

18.
Sensors (Basel) ; 21(14)2021 Jul 11.
Article in English | MEDLINE | ID: mdl-34300481

ABSTRACT

The successful implementation of Vessel Traffic Services (VTS) relies heavily on human decisions. With the increasing development of maritime traffic, there is an urgent need to provide a sound support for dynamic risk appraisals and decision support. This research introduces a cellular automata (CA) simulation-based modelling approach the objective of which is to analyze and evaluate real-time maritime traffic risks in port environments. The first component is the design of a CA model to monitor ships' behavior and maritime fairway traffic. The second component is the refinement of the modelling approach by combining a cloud model with expert knowledge. The third component establishes a risk assessment model based on a fuzzy comprehensive evaluation. A typical scenario was experimentally implemented to validate the model's efficiency and operationality.


Subject(s)
Ships , Computer Simulation , Humans , Risk Assessment
19.
Sensors (Basel) ; 21(6)2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33803583

ABSTRACT

The transportation system has evolved into a complex cyber-physical system with the introduction of wireless communication and the emergence of connected travelers and connected automated vehicles. Such applications create an urgent need to develop high-fidelity transportation modeling tools that capture the mutual interaction of the communication and transportation systems. This paper addresses this need by developing a high-fidelity, large-scale dynamic and integrated traffic and direct cellullar vehicle-to-vehicle and vehicle-to-infrastructure (collectively known as V2X) modeling tool. The unique contributions of this work are (1) we developed a scalable implementation of the analytical communication model that captures packet movement at the millisecond level; (2) we coupled the communication and traffic simulation models in real-time to develop a fully integrated dynamic connected vehicle modeling tool; and (3) we developed scalable approaches that adjust the frequency of model coupling depending on the number of concurrent vehicles in the network. The proposed scalable modeling framework is demonstrated by running on the Los Angeles downtown network considering the morning peak hour traffic demand (145,000 vehicles), running faster than real-time on a regular personal computer (1.5 h to run 1.86 h of simulation time). Spatiotemporal estimates of packet delivery ratios for downtown Los Angeles are presented. This novel modeling framework provides a breakthrough in the development of urgently needed tools for large-scale testing of direct (C-V2X) enabled applications.

20.
Sensors (Basel) ; 21(6)2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33808980

ABSTRACT

Traffic flow data, such as flow, density and speed, are crucial for transportation planning and traffic system operation. Recently, a novel traffic state estimating method was proposed using the distance to a leading vehicle measured by an advanced driver assistance system (ADAS) camera. This study examined the effect of an ADAS camera with enhanced capabilities on traffic state estimation using image-based vehicle identification technology. Considering the realistic distance error of the ADAS camera from the field experiment, a microscopic simulation model, VISSIM, was employed with multiple underlying parameters such as the number of lanes, traffic demand, the penetration rate of ADAS vehicles and the spatiotemporal range of the estimation area. Although the enhanced functions of the ADAS camera did not affect the accuracy of the traffic state estimates significantly, the ADAS camera can be used for traffic state estimation. Furthermore, the vehicle identification distance of the ADAS camera and traffic conditions with more lanes did not always ensure better accuracy of the estimates. Instead, it is recommended that transportation planners and traffic engineering practitioners carefully select the relevant parameters and their range to ensure a certain level of accuracy for traffic state estimates that suit their purposes.

SELECTION OF CITATIONS
SEARCH DETAIL
...