Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 184
Filter
1.
Sci Prog ; 107(4): 368504241286381, 2024.
Article in English | MEDLINE | ID: mdl-39351637

ABSTRACT

Due to the advantages of high stiffness, high precision, high load capacity and large workspace, hybrid robots are applicable to drilling and milling of complicated components with large sizes, for instance car panels. However, the difficulty in establishing an exact dynamic model and external disturbances affect the high accuracy control directly, which will decrease the machining accuracy and thereby affect the machining quality and efficiency of the system. Sliding mode control is an effective approach for high-order nonlinear dynamic systems since that it is very insensitive to disturbances and parameter variations. However, chattering may exist in traditional sliding mode control with fixed parameters, which results from a constant approaching speed. Besides, the approaching speed will affect the chattering strength directly. To solve these problems, a modified sliding mode controller with self-adaptive parameters is proposed to enhance the trajectory-tracking performance of a 5-degree-of-freedom hybrid robot. Firstly, the kinematic model of the robot is established. Then adopting the principle of virtual work, a rigid dynamic model of the robot is built. Based on the built dynamic model, a modified sliding mode control method is developed, of which the approaching speed is dependent on the system state. Finally, the sliding mode controller with self-adaptive parameters is created for a hybrid robot. The proposed sliding mode controller can achieve a rapid approaching speed and suppress chattering simultaneously. Simulation results demonstrate that the proposed modified sliding mode controller can achieve a comparatively accurate and smooth trajectory, which owns good robustness to external disturbances.

2.
Front Bioeng Biotechnol ; 12: 1461264, 2024.
Article in English | MEDLINE | ID: mdl-39386044

ABSTRACT

Zebrafish are ideal model organisms for various fields of biological research, including genetics, neural transmission patterns, disease and drug testing, and heart disease studies, because of their unique ability to regenerate cardiac muscle. Tracking zebrafish trajectories is essential for understanding their behavior, physiological states, and disease associations. While 2D tracking methods are limited, 3D tracking provides more accurate descriptions of their movements, leading to a comprehensive understanding of their behavior. In this study, we used deep learning models to track the 3D movements of zebrafish. Videos were captured by two custom-made cameras, and 21,360 images were labeled for the dataset. The YOLOv7 model was trained using hyperparameter tuning, with the top- and side-view camera models trained using the v7x.pt and v7.pt weights, respectively, over 300 iterations with 10,680 data points each. The models achieved impressive results, with an accuracy of 98.7% and a recall of 98.1% based on the test set. The collected data were also used to generate dynamic 3D trajectories. Based on a test set with 3,632 3D coordinates, the final model detected 173.11% more coordinates than the initial model. Compared to the ground truth, the maximum and minimum errors decreased by 97.39% and 86.36%, respectively, and the average error decreased by 90.5%.This study presents a feasible 3D tracking method for zebrafish trajectories. The results can be used for further analysis of movement-related behavioral data, contributing to experimental research utilizing zebrafish.

3.
Front Neurorobot ; 18: 1451924, 2024.
Article in English | MEDLINE | ID: mdl-39224905

ABSTRACT

Real-world robotic operations often face uncertainties that can impede accurate control of manipulators. This study proposes a recurrent neural network (RNN) combining kinematic and dynamic models to address this issue. Assuming an unknown mass matrix, the proposed method enables effective trajectory tracking for manipulators. In detail, a kinematic controller is designed to determine the desired joint acceleration for a given task with error feedback. Subsequently, integrated with the kinematics controller, the RNN is proposed to combine the robot's dynamic model and a mass matrix estimator. This integration allows the manipulator system to handle uncertainties and synchronously achieve trajectory tracking effectively. Theoretical analysis demonstrates the learning and control capabilities of the RNN. Simulative experiments conducted on a Franka Emika Panda manipulator, and comparisons validate the effectiveness and superiority of the proposed method.

4.
Sci Rep ; 14(1): 22189, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39333634

ABSTRACT

In the domain of control engineering, effectively tuning the parameters of proportional-integral-derivative (PID) controllers has persistently posed a challenge. This study proposes a hybrid algorithm (HGJGSO) that combines golden jackal optimization (GJO) and golden sine algorithm (Gold-SA) for tuning PID controllers. To accelerate the convergence of GJO, a nonlinear parameter adaptation strategy is incorporated. The improved GJO is combined with Gold-SA, capitalizing on the expedited convergence speed offered by the improved GJO, coupled with the global optimization and precise search capabilities of Gold-SA. HGJGSO maximizes the strengths of two algorithms, facilitating a comprehensive and balanced exploration and exploitation. The effectiveness of HGJGSO is assessed through tuning the PID controllers for three typical systems. The results indicate that HGJGSO surpasses the comparison tuning methods. To evaluate the applicability of HGJGSO, it is used to tune the cascade PID controllers for trajectory tracking in a quadrotor UAV. The results demonstrate the superiority of HGJGSO in addressing practical challenges.

5.
ISA Trans ; : 1-17, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39333005

ABSTRACT

Crane systems are essential systems utilized in industry and for research. Nevertheless, they are always affected by endogenous and exogenous disturbances, which may generate undesirable payload oscillations, compromising people's security and the system itself. Thus, to deal with these issues and control these mechatronic systems efficiently, this manuscript develops a novel robust observer-based proportional-retarded controller for perturbed two-dimensional cranes, considering variation in the rope length. This novel scheme makes the trolley follow a desired reference signal while reducing the payload variations. The controller structure allows for compensating disturbances, while a new control approach introduces artificial delays that stabilize the closed-loop system and attain the desired control objective. A formal theoretical analysis demonstrates the validity of the new proposal. Then, experimental results show the outstanding performance of the proposed control scheme and its superior performance against other methodologies from the literature.

6.
Nano Lett ; 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39340463

ABSTRACT

Low-dimensional Ga2O3 demonstrates a unique ultraviolet photoresponse and could be used in various electronic and optical systems. However, the low-dimensional Ga2O3 photodetector is faced with the challenges of a complex preparation process and poor device performance. In this work, ultrathin Ga2O3 layers with ∼7 nm thickness are prepared on quartz rods by UV exposure to liquid gallium. Benefiting from low-density oxygen vacancy defects cured by UV exposure, the low-dimensional Ga2O3 photodetector exhibits a high response speed (rise: 64.7 µs; fall: 51.4 µs) and an exceptional linear dynamic range of 120 dB. Furthermore, the photodetector array based on these ultrathin Ga2O3 shows an effective trajectory tracking capability by monitoring UV source motion. This work develops a simple preparation method to construct a low-dimensional UV photodetector array with fast response and useful trajectory tracking capability, exhibiting the significance of ultrathin Ga2O3 in UV optoelectronics.

7.
Sensors (Basel) ; 24(16)2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39204907

ABSTRACT

In response to the fact that autonomous vehicles cannot avoid obstacles by emergency braking alone, this paper proposes an active collision avoidance method for autonomous vehicles based on model predictive control (MPC). The method includes trajectory tracking, adaptive cruise control (ACC), and active obstacle avoidance under high vehicle speed. Firstly, an MPC-based trajectory tracking controller is designed based on the vehicle dynamics model. Then, the MPC was combined with ACC to design the control strategies for vehicle braking to avoid collisions. Additionally, active steering for collision avoidance was developed based on the safety distance model. Finally, considering the distance between the vehicle and the obstacle and the relative speed, an obstacle avoidance function is constructed. A path planning controller based on nonlinear model predictive control (NMPC) is designed. In addition, the alternating direction multiplier method (ADMM) is used to accelerate the solution process and further ensure the safety of the obstacle avoidance process. The proposed algorithm is tested on the Simulink and CarSim co-simulation platform in both static and dynamic obstacle scenarios. Results show that the method effectively achieves collision avoidance through braking. It also demonstrates good stability and robustness in steering to avoid collisions at high speeds. The experiments confirm that the vehicle can return to the desired path after avoiding obstacles, verifying the effectiveness of the algorithm.

8.
Heliyon ; 10(13): e32661, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39035541

ABSTRACT

Robotic manipulators are nonlinear systems, multi-input multi-output, highly coupled and complicated whose performance is negatively impacted by external disturbances and parameter un-certainties. Therefore, the controllers designed for such systems must be capable of managing their complexity. The main aim of this study is to tackle the trajectory tracking issue of the three-Link Rigid Robot Manipulator (3-LRRM) based on designing three control structures using a combi-nation Neural Network (NN) with Proportional, Integral and Derivative (PID) actions named Neural Controller Like PIPD (NN-PIPD) controller, Neural Network plus PID (NN + PID) controller NN + PID controller and Elman Neural Network Like PID (ELNN-PID) controller. The parameters of the proposed controllers are adjusted utilizing the Coot Optimization Algorithm (COOA) in order to reduce the Integral Time Square Error (ITSE). A novel objective function for tuning process to produce a controller with minimum value of the chattering in the control signal is proposed. The performance of the proposed controllers is evaluated in terms of disturbance rejection, model uncertainty, fluctuating initial conditions and reference trajectory tracking. According to the simulation results proved that the suggested NN-PIPD controller outperforms all other proposed controller structures for tracking performance, stability, and robustness. As a result of the com-parison analysis the optimal controller was considered to be an NN-PIPD controller for tracking trajectory, rejecting disturbances, and parameter variation with minimizing ITSE of 0.001777.

9.
Ecol Evol ; 14(7): e70012, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39026946

ABSTRACT

In flying animals, wing morphology is typically assumed to influence flight behaviours. Whether seasonal polymorphism in butterfly morphology is linked to adaptive flight behaviour remains unresolved. Here, we compare the flight behaviours and wing morphologies of the spring and summer forms of two closely related butterfly species, Pieris napi and P. rapae. We first quantify three-dimensional flight behaviour by reconstructing individual flight trajectories using stereoscopic high-speed videography in an experimental outdoor cage. We then measure wing size and shape, which are characteristics assumed to influence flight behaviours in butterflies. We show that seasonal, but not interspecific, differences in flight behaviour might be associated with divergent forewing shapes. During spring, Pieris individuals are small and have elongated forewings, and generally fly at low speed and acceleration, while having a high flight curvature. On the contrary, summer individuals are larger and exhibit rounded forewings. They fly at high speed and acceleration, while having high turning acceleration and advance ratio. Our study provides one of the first quantitative pieces of evidence of different flight behaviours between seasonal forms of two Pieris butterfly species. We discuss the possibility that this co-divergence in flight behaviour and morphology is an adaptation to distinct seasonal environments. Properly identifying the mechanisms underpinning such divergence, nonetheless, requires further investigations to disentangle the interacting effects of microhabitats, predator community, parasitoid pressure and behavioural differences between sexes.

10.
ISA Trans ; 152: 477-486, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39019766

ABSTRACT

This paper presents a linear parameter varying (LPV) interpolation modeling method and modal-based pole placement (PP) control strategy for the ball screw drive (BSD) with varying dynamics. The BSD is modeled as a global LPV model with position-load dependence by selecting position and load as scheduling variables. The global LPV model is obtained from local subspace closed-loop identification and LPV interpolation modeling. A modal-based global LPV model is obtained through the similarity transformation. Based on this model, a modal-based LPV PP control strategy is proposed to achieve various modal control. Specifically, a state feedback control structure with an LPV state observer is designed to realize online state estimation and real-time state feedback control of modal state variables which cannot be measured directly. The steady-state error is minimized by introducing an error state space (SS) model with the integral effects. Moreover, the stability of the closed-loop system is analyzed according to the controllable decomposition and principle of separation. It is experimentally demonstrated that the proposed modal-based LPV PP control strategy can effectively achieve precise tracking and outstanding robustness meantime.

11.
Biomimetics (Basel) ; 9(6)2024 May 30.
Article in English | MEDLINE | ID: mdl-38921212

ABSTRACT

Dual humanoid robot collaborative control systems possess better flexibility and adaptability in complex environments due to their similar structures to humans. This paper adopts a distributed model predictive controller based on the leader-follower approach to address the collaborative transportation control issue of dual humanoid robots. In the dual-robot collaborative control system, network latency issues may arise due to unstable network conditions, affecting the consistency of dual-robot collaboration. To solve this issue, a communication protocol was constructed through socket communication for dual-robot collaborative consistency, thereby resolving the problem of consistency in dual humanoid robot collaboration. Additionally, due to the complex structure of humanoid robots, there are deficiencies in position tracking accuracy during movement. To address the poor accuracy in position tracking, this paper proposes a distributed model predictive control that considers historical cumulative error, thus enhancing the position tracking accuracy of dual-robot collaborative control.

12.
Biomimetics (Basel) ; 9(6)2024 May 30.
Article in English | MEDLINE | ID: mdl-38921208

ABSTRACT

Submerged aquatic vegetation plays a fundamental role as a habitat for the biodiversity of marine species. To carry out the research and monitoring of submerged aquatic vegetation more efficiently and accurately, it is important to use advanced technologies such as underwater robots. However, when conducting underwater missions to capture photographs and videos near submerged aquatic vegetation meadows, algae can become entangled in the propellers and cause vehicle failure. In this context, a neurobiologically inspired control architecture is proposed for the control of unmanned underwater vehicles with redundant thrusters. The proposed control architecture learns to control the underwater robot in a non-stationary environment and combines the associative learning method and vector associative map learning to generate transformations between the spatial and velocity coordinates in the robot actuator. The experimental results obtained show that the proposed control architecture exhibits notable resilience capabilities while maintaining its operation in the face of thruster failures. In the discussion of the results obtained, the importance of the proposed control architecture is highlighted in the context of the monitoring and conservation of underwater vegetation meadows. Its resilience, robustness, and adaptability capabilities make it an effective tool to face challenges and meet mission objectives in such critical environments.

13.
ISA Trans ; 151: 117-130, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38897859

ABSTRACT

This paper investigates trajectory tracking control of the Autonomous Underwater Vehicle (AUV) with the general uncertainty consisting of model uncertainties and unknown ocean current disturbances. A full prescribed performance control strategy based on disturbance observer is developed, which ensures that the tracking error, the velocity error, and the observation error are all constrained. First, under the case of unmeasurable AUV acceleration, a fixed-time observer is constructed to estimate the general uncertainty, which constrains the observation error within the prescribed accuracy by a prescribed performance observer. Then, based on the performance function and corresponding error transformation, a prescribed performance protocol is designed to realize the trajectory tracking control, so that the observation error, the tracking error, and the velocity error are all constrained within the prescribed accuracy range. Simulation results demonstrate the efficiency of the full prescribed performance control strategy while the AUV tracking control with full state constraints is feasible. Moreover, compared with the other two relevant works, this study improves the observation performance by at least 10 %, both in case of deepwater disturbances and near-surface disturbances.

14.
ISA Trans ; 151: 51-61, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945763

ABSTRACT

This paper proposes a novel adaptive variable power sliding mode observer-based model predictive control (AVPSMO-MPC) method for the trajectory tracking of a Mecanum-wheeled mobile robot (MWMR) with external disturbances and model uncertainties. First, in the absence of disturbances and uncertainties, a model predictive controller that considers various physical constraints is designed based on the nominal dynamics model of the MWMR, which can transform the tracking problem into a constrained quadratic programming (QP) problem to solve the optimal control inputs online. Subsequently, to improve the anti-jamming ability of the MWMR, an AVPSMO is designed as a feedforward compensation controller to suppress the effects of external disturbances and model uncertainties during the actual motion of the MWMR, and the stability of the AVPSMO is proved via Lyapunov theory. The proposed AVPSMO-MPC method can achieve precise tracking control while ensuring that the constraints of MWMR are not violated in the presence of disturbances and uncertainties. Finally, comparative simulation cases are presented to demonstrate the effectiveness and robustness of the proposed method.

15.
Sensors (Basel) ; 24(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38894073

ABSTRACT

This article presents a hierarchical control framework for autonomous vehicle trajectory planning and tracking, addressing the challenge of accurately following high-speed, at-limit maneuvers. The proposed time-optimal trajectory planning and tracking (TOTPT) framework utilizes a hierarchical control structure, with an offline trajectory optimization (TRO) module and an online nonlinear model predictive control (NMPC) module. The TRO layer generates minimum-lap-time trajectories using a direct collocation method, which optimizes the vehicle's path, velocity, and control inputs to achieve the fastest possible lap time, while respecting the vehicle dynamics and track constraints. The NMPC layer is responsible for precisely tracking the reference trajectories generated by the TRO in real time. The NMPC also incorporates a preview algorithm that utilizes the predicted future travel distance to estimate the optimal reference speed and curvature for the next time step, thereby improving the overall tracking performance. Simulation results on the Catalunya circuit demonstrated the framework's capability to accurately follow the time-optimal raceline at an average speed of 116 km/h, with a maximum lateral error of 0.32 m. The NMPC module uses an acados solver with a real-time iteration (RTI) scheme, to achieve a millisecond-level computation time, making it possible to implement it in real time in autonomous vehicles.

16.
Sensors (Basel) ; 24(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38894407

ABSTRACT

This paper presents a novel robust output feedback control that simultaneously performs both stabilization and trajectory tracking for a class of underactuated nonholonomic systems despite model uncertainties, external disturbance, and the absence of velocity measurement. To solve this challenging problem, a generalized normal form has been successfully created by employing an input-output feedback linearization approach and a change in coordinates (diffeomorphism). This research mainly focuses on the stabilization problem of nonholonomic systems that can be transformed to a normal form and pose several challenges, including (i) a nontriangular normal form, (ii) the internal dynamics of the system are non-affine in control, and (iii) the zero dynamics of the system are not in minimum phase. The proposed scheme utilizes combined backstepping and sliding mode control (SMC) techniques. Furthermore, the full-order high gain observer (HGO) has been developed to estimate the derivative of output functions and internal dynamics. Then, full-order HGO and the backstepping SMC have been integrated to synthesize a robust output feedback controller. A differential-drive type (2,0) the wheeled mobile robot has been considered as an example to support the theoretical results. The simulation results demonstrate that the backstepping SMC exhibits robustness against bounded uncertainties.

17.
Sensors (Basel) ; 24(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38732876

ABSTRACT

This research presents an experimental electric vehicle developed at the Tecnológico Nacional de México Celaya campus. It was decided to use a golf cart-type gasoline vehicle as a starting point. Initially, the body was removed, and the vehicle was electrified, meaning its engine was replaced with an electric one. Subsequently, sensors used to measure the vehicle states were placed, calibrated, and instrumented. Additionally, a mathematical model was developed along with a strategy for the parametric identification of this model. A communication scheme was implemented consisting of four slave devices responsible for controlling the accelerator, brake, steering wheel, and measuring the sensors related to odometry. The master device is responsible for communicating with the slaves, displaying information on a screen, creating a log, and implementing trajectory tracking techniques based on classical, geometric, and predictive control. Finally, the performance of the control algorithms implemented on the experimental prototype was compared in terms of tracking error and control input across three different types of trajectories: lane change, right-angle curve, and U-turn.

18.
Sensors (Basel) ; 24(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38732877

ABSTRACT

We present a novel approach for achieving high-precision trajectory tracking control in an unmanned surface vehicle (USV) through utilization of receding horizon reinforcement learning (RHRL). The control architecture for the USV involves a composite of feedforward and feedback components. The feedforward control component is derived directly from the curvature of the reference path and the dynamic model. Feedback control is acquired through application of the RHRL algorithm, effectively addressing the problem of achieving optimal tracking control. The methodology introduced in this paper synergizes with the rolling time domain optimization mechanism, converting the perpetual time domain optimal control predicament into a succession of finite time domain control problems amenable to resolution. In contrast to Lyapunov model predictive control (LMPC) and sliding mode control (SMC), our proposed method employs the RHRL controller, which yields an explicit state feedback control law. This characteristic endows the controller with the dual capabilities of direct offline and online learning deployment. Within each prediction time domain, we employ a time-independent executive-evaluator network structure to glean insights into the optimal value function and control strategy. Furthermore, we substantiate the convergence of the RHRL algorithm in each prediction time domain through rigorous theoretical proof, with concurrent analysis to verify the stability of the closed-loop system. To conclude, USV trajectory control tests are carried out within a simulated environment.

19.
Front Robot AI ; 11: 1358857, 2024.
Article in English | MEDLINE | ID: mdl-38690118

ABSTRACT

Introduction: Compliant mechanisms, especially continuum robots, are becoming integral to advancements in minimally invasive surgery due to their ability to autonomously navigate natural pathways, significantly reducing collision severity. A major challenge lies in developing an effective control strategy to accurately reflect their behavior for enhanced operational precision. Methods: This study examines the trajectory tracking capabilities of a tendon-driven continuum robot at its tip. We introduce a novel feedforward control methodology that leverages a mathematical model based on Cosserat rod theory. To mitigate the computational challenges inherent in such models, we implement an implicit time discretization strategy. This approach simplifies the governing equations into space-domain ordinary differential equations, facilitating real-time computational efficiency. The control strategy is devised to enable the robot tip to follow a dynamically prescribed trajectory in two dimensions. Results: The efficacy of the proposed control method was validated through experimental tests on six different demand trajectories, with a motion capture system employed to assess positional accuracy. The findings indicate that the robot can track trajectories with an accuracy within 9.5%, showcasing consistent repeatability across different runs. Discussion: The results from this study mark a significant step towards establishing an efficient and precise control methodology for compliant continuum robots. The demonstrated accuracy and repeatability of the control approach significantly enhance the potential of these robots in minimally invasive surgical applications, paving the way for further research and development in this field.

20.
ISA Trans ; 148: 64-77, 2024 May.
Article in English | MEDLINE | ID: mdl-38580577

ABSTRACT

Wheeled Mobile Robots (WMRs) are systems with applications in diverse fields such as transportation, civilian services, military use, and space exploration. Then, their use will continue increasing, making WMRs an essential research topic that deserves further study. To this end, this work presents a novel observer-based finite-time controller for trajectory tracking control of WMRs disturbed by kinematic disturbances. In the proposed approach, the kinematic model of the WMR is transformed into a set of two decoupled second-order systems. Then, the proposed controller is divided into two parts. The first one employs an observer to estimate the effect of the kinematic disturbances. The second part consists of a finite-time controller designed to achieve finite-time convergence of the tracking error. A detailed synthesis procedure theoretically demonstrates the feasibility of the proposed controller. Subsequently, the proposed scheme is compared against finite-time, feedback, and H∞ controllers. Exhaustive numerical simulations show that the proposed new control methodology achieves the trajectory tracking objective despite kinematic disturbances and outperforms the other control procedures. Finally, some comments and numerical results are given to clarify how the proposed control methodology can be used to design new controllers for trajectory tracking in WMRs and demonstrate that the new proposal remains to have a good performance when the system's coordinates are corrupted by measurement noise.

SELECTION OF CITATIONS
SEARCH DETAIL