Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
1.
Angew Chem Int Ed Engl ; : e202415272, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39325927

ABSTRACT

Antibody-oligonucleotide conjugate (AOC) affords preferential cell targeting and enhanced cellular uptake of antisense oligonucleotide (ASO).  Here, we have developed a modular AOC (MAOC) approach based on accurate self-assembly of separately prepared antibody and ASO modules. Homogeneous multimeric AOC with defined ASO-to-antibody ratio were generated by L-DNA scaffold mediated precise self-assembly of antibodies and ASOs. The MAOC approach has been implemented to deliver exon skipping ASOs via transferrin receptor (TfR1) mediated internalization. We discovered an anti-TfR1 sdAb that can greatly enhance nuclear delivery of ASOs. Cryo-EM structure of the sdAb-TfR1 complex showed a new epitope that does not overlap with the binding sites of endogenous TfR1 ligands. In vivo functional analyses of MAOCs with one ASO for single exon skipping and two ASOs for double exon skipping showed that both ASO concentration and exon skipping efficacy of MAOC in cardiac and skeletal muscles are dramatically higher than conventional ASOs in the transgenic Duchenne muscular dystrophy (DMD) mouse model. MAOC treatment was well tolerated in vivo and not associated with any toxicity-related morbidity or mortality. Collectively, our data suggest that the self-assembled MAOC is a viable option for broadening the therapeutic application of ASO via multi-specific targeting and delivery.

2.
Sci Rep ; 14(1): 21164, 2024 09 10.
Article in English | MEDLINE | ID: mdl-39256468

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies, presenting a persisting global health burden. Neutrophils have a double-edged role in tumor progression exhibiting both pro-tumor and anti-tumor functions. CD71, also known as transferrin receptor 1, performs a critical role in cellular iron uptake and is highly expressed on proliferating cells, and especially on activated immune cells. CD71 is known to be elevated in various types of solid cancers and is associated with poor prognosis, however, the expression of CD71 on neutrophils in PDAC and its potential clinical impact is still unknown. Therefore, we analyzed CD71 on circulating neutrophils in PDAC and clinical control patients and found a significant increased expression in PDAC patients. High expression of CD71 on neutrophils in PDAC patients was associated with reduced outcome compared to low expression. CD71 on neutrophils correlated positively with the levels of proinflammatory cytokines IL-6, IFN-γ, and growth factor ligands CD40-L, and BAFF in plasma of PDAC patients. Finally, we have demonstrated that high expression of CD71 on neutrophils was also associated with an increased expression of CD39 and CD25 on circulating T-cells. Based on our findings, we hypothesize that CD71 on neutrophils is associated with tumor progression in PDAC. Further studies are required to investigate the distinct functionality of CD71 expressing neutrophils and their potential clinical application.


Subject(s)
Antigens, CD , Biomarkers, Tumor , Carcinoma, Pancreatic Ductal , Neutrophils , Pancreatic Neoplasms , Receptors, Transferrin , Humans , Neutrophils/metabolism , Receptors, Transferrin/metabolism , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/blood , Male , Antigens, CD/metabolism , Female , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/blood , Prognosis , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/blood , Middle Aged , Aged , Apyrase/metabolism , Interleukin-2 Receptor alpha Subunit/metabolism , Neoplasm Metastasis , Cytokines/metabolism , Cytokines/blood
3.
Brain Sci ; 14(5)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38790419

ABSTRACT

The unclear pathogenesis of chronic itch originating from several systemic disorders poses challenges to clinical intervention. Recent studies recapitulate the spinal neurocircuits associated with neuroinflammation and synaptic plasticity responsible for pruriceptive sensations. The resolution of nociception and inflammation by Annexin 1 (ANXA1) has been identified. Given that pain and itch share many neural mechanisms, we employed two mice models of chronic itch to study the underlying targets and therapeutic potential of ANXA1, comprising allergic contact dermatitis-induced itch and cholestatic itch. Herein, we report that spinal expression of ANXA1 is down-regulated in mice with dermatitis-induced itch and cholestatic itch. Repetitive injections of ANXA1-derived peptide Ac2-26 (intrathecal, 10 µg) reduce itch-like scratching behaviors following dermatitis and cholestasis. Single exposure to Ac2-26 (intrathecal, 10 µg) alleviates the established itch phenotypes. Moreover, systemic delivery of Ac2-26 (intravenous, 100 µg) is effective against chronic dermatitis-induced itch and cholestatic itch. Strikingly, Ac2-26 therapy inhibits transferrin receptor 1 over-expression, iron accumulation, cytokine IL-17 release and the production of its receptor IL-17R, as well as astrocyte activation in the dorsal horn of spinal cord in mouse with dermatitis and cholestasis. Pharmacological intervention with iron chelator deferoxamine impairs chronic itch behaviors and spinal iron accumulation after dermatitis and cholestasis. Also, spinal IL-17/IL-17R neutralization attenuates chronic itch. Taken together, this current research indicates that ANXA1 protects against the beginning and maintenance of long-term dermatitis-induced itch and cholestatic itch, which may occur via the spinal suppression of IL-17-mediated neuroinflammation, astrocyte activation and iron overload.

4.
J Vasc Res ; 61(3): 109-121, 2024.
Article in English | MEDLINE | ID: mdl-38615660

ABSTRACT

INTRODUCTION: Following our recent finding that Ucp2 knockout promotes ferroptosis, we aimed to examine whether UCP2 alleviates myocardial ischemia/reperfusion injury (MI/RI) by inhibiting ferroptosis. METHODS: The left anterior descending coronary arteries of wild-type and Ucp2-/- C57BL/6 mice were ligated for 30 min and reperfused for 2 h to establish an MI/RI model. The effects of UCP2 on ferroptosis and MI/RI were determined by echocardiography, 2,3,5-triphenylttrazolium chloride staining, hematoxylin-eosin staining, Masson's trichrome staining, Sirius red staining, and analysis of myocardial injury markers and ferroptosis indicators. Ferrostatin-1 (Fer-1) and erastin (Era) were used to investigate whether UCP2 alleviated MI/RI by inhibiting ferroptosis and the molecular mechanism. RESULTS: UCP2 was upregulated in the MI/RI model in WT mice. Deletion of Ucp2 exacerbated ferroptosis, altered the expression levels of multiple ferroptosis-related genes, and significantly exacerbated MI/RI. Knockout of Ucp2 promoted ferroptosis induced by Era and inhibited the antiferroptotic effects of Fer-1. Knockout of Ucp2 activated the p53/TfR1 pathway to exacerbate ferroptosis. CONCLUSION: Our results showed that UCP2 inhibited ferroptosis in MI/RI, which might be related to regulation of the p53/TfR1 pathway.


Subject(s)
Disease Models, Animal , Ferroptosis , Mice, Inbred C57BL , Mice, Knockout , Myocardial Reperfusion Injury , Myocytes, Cardiac , Uncoupling Protein 2 , Animals , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/genetics , Uncoupling Protein 2/metabolism , Uncoupling Protein 2/genetics , Uncoupling Protein 2/deficiency , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Male , Signal Transduction , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Mice
5.
Biology (Basel) ; 13(4)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38666825

ABSTRACT

The fibrosis process after myocardial infarction (MI) results in a decline in cardiac function due to fibrotic collagen deposition and contrast agents' metabolic disorders, posing a significant challenge to conventional imaging strategies in making heart damage clear in the fibrosis microenvironment. To address this issue, we developed an imaging strategy. Specifically, we pretreated myocardial fibrotic collagen with collagenase I combined with human serum albumin (HSA-C) and subsequently visualized the site of cardiac injury by near-infrared (NIR) fluorescence imaging using an optical contrast agent (CI, CRT-indocyanine green) targeting transferrin receptor 1 peptides (CRT). The key point of this strategy is that pretreatment with HSA-C can reduce background signal interference in the fibrotic tissue while enhancing CI uptake at the heart lesion site, making the boundary between the injured heart tissue and the normal myocardium clearer. Our results showed that compared to that in the untargeted group, the normalized fluorescence intensity of cardiac damage detected by NIR in the targeted group increased 1.28-fold. The normalized fluorescence intensity increased 1.21-fold in the pretreatment group of the targeted groups. These data demonstrate the feasibility of applying pretreated fibrotic collagen and NIR contrast agents targeting TfR1 to identify ferroptosis at sites of cardiac injury, and its clinical value in the management of patients with MI needs further study.

6.
Cell Signal ; 118: 111148, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38521179

ABSTRACT

Hepatocellular carcinoma (HCC) is the major form of liver malignancy with high incidence and mortality. Identifying novel biomarkers and understanding regulatory mechanisms underlying the development and progression of HCC are critical for improving diagnosis, treatment and patient outcomes. Carboxyl terminus of Hsc-70-interacting protein (CHIP) is a well-described U-box-type E3 ubiquitin ligase which promotes the ubiquitination and degradation of numerous tumor-associated proteins. Recent studies have shown that CHIP can play as a tumor-suppressor gene or an oncogene in different kinds of malignancies. To date, the function and mechanism of CHIP in hepatocellular carcinoma remains largely unknown. Based on TCGA data, we found that compared with high CHIP expression, the overall survival of HCC patients with low expression of CHIP was better. In addition, CHIP overexpression markedly enhanced HCC cell proliferation and colony formation. Conversely, knockdown of CHIP restrained the proliferation and colony formation of HCC cells. Meanwhile, knockdown of CHIP decreased mitochondrial cristae or ruptured outer mitochondrial membrane, promoted the accumulation of Fe2+ and ferroptosis of HCC cells. Further research for the first time confirmed that CHIP interacts and degrades transferrin receptor 1 (TfR1) by ubiquitin-proteasome pathway, which leads to the inhibition of ferroptosis and promotes the proliferation of HCC cells. The analysis of proteomics data from CPTAC revealed a negative correlation between CHIP and TfR1 protein expression levels in HCC. These findings indicate that CHIP acts as a negative modulator of ferroptosis and functions as an oncogene in HCC.


Subject(s)
Carcinoma, Hepatocellular , Ferroptosis , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation , Liver Neoplasms/pathology , Receptors, Transferrin , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
7.
Arthritis Res Ther ; 26(1): 71, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38493104

ABSTRACT

OBJECTIVE: Transferrin receptor-1 (TfR1) plays important roles in controlling cellular iron levels, but its role in OA pathology is unknown. Herein we aim to investigate the role of TfR1 in OA progression and its underlying mechanisms. METHODS: TfR1 expression in cartilage during OA development were examined both in vivo and in vitro. Then IL-1ß was used to induce chondrocytes degeneration in vitro and TfR1 siRNA was used for observing the effect of TfR1 in modulating iron homeostasis, mitochondrial function and degrading enzymes expression. Also the inhibitor of TfR1 was exploited to analyze the protective effect of TfR1 inhibition in vivo. RESULTS: TfR1 is elevated in OA cartilage and contributes to OA inflammation condition. Excess iron not only results in oxidative stress damage and sensitizes chondrocytes to ferroptosis, but also triggers c-GAS/STING-mediated inflammation by promoting mitochondrial destruction and the release of mtDNA. Silencing TfR1 using TfR1 siRNA not only reduced iron content in chondrocytes and inhibited oxidative stress, but also facilitated the mitophagy process and suppressed mtDNA/cGAS/STING-mediated inflammation. Importantly, we also found that Ferstatin II, a novel and selective TfR1 inhibitor, could substantially suppress TfR1 activity both in vivo and in vitro and ameliorated cartilage degeneration. CONCLUSION: Our work demonstrates that TfR1 mediated iron influx plays important roles in chondrocytes degeneration and OA pathogenesis, suggesting that maintaining iron homeostasis through the targeting of TfR1 may represent a novel therapeutic strategy for the treatment of OA.


Subject(s)
Osteoarthritis , Humans , Osteoarthritis/metabolism , Cartilage/metabolism , Inflammation/pathology , Chondrocytes/metabolism , DNA, Mitochondrial , RNA, Small Interfering/metabolism
8.
Redox Biol ; 70: 103041, 2024 04.
Article in English | MEDLINE | ID: mdl-38241836

ABSTRACT

Oxidative stress and iron accumulation-induced ferroptosis occurs in injured vascular cells and can promote thrombogenesis. Transferrin receptor 1 (encoded by the TFRC gene) is an initial element involved in iron transport and ferroptosis and is highly expressed in injured vascular tissues, but its role in thrombosis has not been determined. To explore the potential mechanism and therapeutic effect of TFRC on thrombogenesis, a DVT model of femoral veins (FVs) was established in rats, and weighted correlation network analysis (WGCNA) was used to identify TFRC as a hub protein that is associated with thrombus formation. TFRC was knocked down by adeno-associated virus (AAV) or lentivirus transduction in FVs or human umbilical vein endothelial cells (HUVECs), respectively. Thrombus characteristics and ferroptosis biomarkers were evaluated. Colocalization analysis, molecular docking and coimmunoprecipitation (co-IP) were used to evaluate protein interactions. Tissue-specific TFRC knockdown alleviated iron overload and redox stress, thereby preventing ferroptosis in injured FVs. Loss of TFRC in injured veins could alleviate thrombogenesis, reduce thrombus size and attenuate hypercoagulability. The protein level of thrombospondin-1 (THBS1) was increased in DVT tissues, and silencing TFRC decreased the protein level of THBS1. In vitro experiments further showed that TFRC and THBS1 were sensitive to erastin-induced ferroptosis and that TFRC knockdown reversed this effect. TFRC can interact with THBS1 in the domain spanning from TSR1-2 to TSR1-3 of THBS1. Amino acid sites, including GLN320 of TFRC and ASP502 of THBS1, could be potential pharmacological targets. Erastin induced ferroptosis affected extracellular THBS1 levels and weakened the interaction between TFRC and THBS1 both in vivo and in vitro, and promoted the interaction between THBS1 and CD47. This study revealed a linked relationship between venous ferroptosis and coagulation cascades. Controlling TFRC and ferroptosis in endothelial cells can be an efficient approach for preventing and treating thrombogenesis.


Subject(s)
Ferroptosis , Thrombosis , Animals , Humans , Rats , Ferroptosis/genetics , Human Umbilical Vein Endothelial Cells/metabolism , Iron/metabolism , Molecular Docking Simulation , Receptors, Transferrin/genetics , Thrombosis/genetics , Thrombosis/metabolism
9.
ESC Heart Fail ; 11(2): 877-882, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38200550

ABSTRACT

AIMS: Heart failure (HF) patients with anaemia tend to have a worse outcome, with increased hospitalization rates, decreased exercise tolerance, and higher mortality compared to those without anaemia. Limited research exists on the association between selenium deficiency and anaemia specifically in HF patients, despite previous findings of a correlation in different populations. The BIOSTAT-CHF study demonstrated that higher selenium levels in HF patients were associated to a lower risk of anaemia and iron deficiency. This study investigates the relationship between selenoprotein P (SELENOP) concentrations, a major contributor and functional biomarker of selenium transport, and anaemia, Hb levels, and iron status in hospitalized HF patients. METHODS AND RESULTS: SELENOP was analysed in 320 hospitalized HF subjects, with complete data available for 310 subjects. The relationships between continuous SELENOP concentrations and 1) Hb concentrations, 2) anaemia (Hb < 115 g/L (women), <130 g/L (men)), and 3) iron status (as measured by transferrin receptor 1 (TfR1) which increases in iron deficiency) were evaluated using multivariable logistic and linear regression models. Additionally, SELENOP concentrations in the lowest quartile were related to anaemia, haemoglobin, and iron state in multivariable logistic and linear models. The mean age of the study population was 75.0 ± 11.6 years, and 30% were women. Anaemia was present in 133 subjects (42.9%). SELENOP concentrations were positively correlated with haemoglobin concentrations (0.238; P < 0.001) and negatively with TfR1 concentrations (-0.238, P < 0.001). In multivariable regression models, higher SELENOP concentrations were associated with higher Hb concentrations (B = 3.23; P = 0.002) and lower TfR1 concentrations (B = -0.20; P < 0.001). Furthermore, SELENOP deficiency was associated with lower Hb concentrations (B = -7.64: P = 0.001), higher TfR1 concentrations (B = 0.31; P = 0.003), and higher odds of anaemia in HF patients (odds ratio 2.17; 95% confidence interval 1.23-3.82; P = 0.008). CONCLUSIONS: In hospitalized heart failure patients, lower concentrations of SELENOP were associated with higher prevalence of anaemia.


Subject(s)
Anemia , Heart Failure , Iron Deficiencies , Selenium , Male , Humans , Female , Middle Aged , Aged , Aged, 80 and over , Selenoprotein P , Anemia/complications , Iron , Hemoglobins
10.
Anal Biochem ; 686: 115406, 2024 03.
Article in English | MEDLINE | ID: mdl-38006952

ABSTRACT

Despite years of utilizing the transferrin receptor 1 (TfR1) to transport large biomolecules into the brain, there is no consensus on how to optimally measure affinity to it. The aim of this study was to compare different methods for measuring the affinities of anti-TfR1 antibodies. Antibodies 15G11, OX26 and 8D3 are known to successfully carry large biologics across the blood-brain barrier in humans, rats, and mice, respectively. The affinity to their respective species of TfR1 was measured with different surface plasmon resonance setups in Biacore and an on-cell assay. When the antibody was captured and TfR1 was the analyte, the dissociation in Biacore was very slow. The dissociation was faster when the antibody was the analyte and TfR1 was the ligand. The Biacore setup with capture of N-terminal FLAG-tag TfR1 yielded the most similar apparent affinities as the cell assay. In conclusion, it is important to evaluate assay parameters including assay orientation, surface capture method, and antibody-format when comparing binding kinetics for TfR1 antibodies. Although it seems possible to determine relative affinities of TfR1 antibodies using the methods described here, both the FLAG-tag TfR1 capture setup and cell assays likely yield apparent affinities that are most translatable in vivo.


Subject(s)
Antibodies , Surface Plasmon Resonance , Rats , Mice , Humans , Animals , Surface Plasmon Resonance/methods , Antibodies/metabolism , Blood-Brain Barrier/metabolism , Brain/metabolism , Receptors, Transferrin/metabolism
11.
Acta Pharmacol Sin ; 45(2): 268-281, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37674042

ABSTRACT

Cell senescence has been implicated in the pathology of Parkinson's disease (PD). Both abnormal α-synuclein aggregation and iron deposition are suggested to be the triggers, facilitators, and aggravators during the development of PD. In this study, we investigated the involvement of α-synuclein and iron in the process of cell senescence in a mouse model of PD. In order to overexpress α-syn-A53T in the substantia nigra pars compacta (SNpc), human α-syn-A53T was microinjected into both sides of the SNpc in mice. We found that overexpression of α-syn-A53T for one week induced significant pro-inflammatory senescence-associated secretory phenotype (SASP), increased cell senescence-related proteins (ß-gal, p16, p21, H2A.X and γ-H2A.X), mitochondrial dysfunction accompanied by dysregulation of iron-related proteins (L-ferritin, H-ferritin, DMT1, IRP1 and IRP2) in the SNpc. In contrast, significant loss of nigral dopaminergic neurons and motor dysfunction were only observed after overexpression of α-syn-A53T for 4 weeks. In PC12 cells stably overexpressing α-syn-A53T, iron overload (ferric ammonium citrate, FAC, 100 µM) not only increased the level of reactive oxygen species (ROS), p16 and p21, but also exacerbated the processes of oxidative stress and cell senescence signalling induced by α-syn-A53T overexpression. Interestingly, reducing the iron level with deferoxamine (DFO) or knockdown of transferrin receptor 1 (TfR1) significantly improved both the phenotypes and dysregulated proteins of cell senescence induced by α-syn-A53T overexpression. All these evidence highlights the toxic interaction between iron and α-synuclein inducing cell senescence, which precedes nigral dopaminergic neuronal loss in PD. Further investigation on cell senescence may yield new therapeutic agents for the prevention or treatment of PD.


Subject(s)
Parkinson Disease , Rats , Mice , Animals , Humans , Parkinson Disease/metabolism , alpha-Synuclein/metabolism , Dopaminergic Neurons/metabolism , Iron/metabolism , Substantia Nigra/metabolism , Substantia Nigra/pathology , Dopamine/metabolism , Cellular Senescence , Disease Models, Animal
12.
Nat Prod Res ; 38(4): 673-678, 2024.
Article in English | MEDLINE | ID: mdl-36855296

ABSTRACT

Norcantharidin (NCTD) is a demethylated analogue of cantharidin. It was recently demonstrated that NCTD reduces iron contents in the liver and spleen of mice in vivo, indicating that NCTD can affect iron metabolism via hepcidin. Here, we investigated the effects of NCTD on expression of iron storage protein ferritin-light chain (Ft-L), transferrin receptor 1 (TfR1), divalent metal transporter 1 (DMT1), ferroportin 1 (Fpn1), hepcidin, iron regulatory protein 1 (IRP1), IL-6, p-JAK2 and p-STAT3 in lipopolysaccharides (LPS)-treated RAW264.7 cells in vitro via Real-time PCR and Western blotting analysis. We demonstrate that NCTD down-regulates Ft-L, hepcidin, IL-6, pJAK2, pSTAT3 and up-regulates TfR1, DMT1, Fpn1 and IRP1 expression in LPS treated cells, showing that NCTD can inhibit hepcidin via the IL-6/JAK2/STAT3 signalling pathway and also increase TfR1, DMT1 and Fpn1 expression via down-regulating hepcidin and up-regulating IRP1. Our findings provide further evidence in vitro for the role of NCTD in iron metabolism.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic , Hepcidins , Interleukin-6 , Mice , Animals , Hepcidins/genetics , Hepcidins/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Down-Regulation , Lipopolysaccharides/pharmacology , Iron/metabolism , Macrophages/metabolism
13.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1021885

ABSTRACT

BACKGROUND:It is of great significance to find new diagnostic markers of the disease and molecular targets for the treatment of the disease and the alleviation of organ injury.Ferroptosis is a newly discovered form of cell death.Overactivation of ferroptosis in animal models of sepsis is associated with the activation of inflammatory response and the injury of the liver,heart,kidney and other important organs,but the relationship between ferroptosis and bloodstream infection is not very clear. OBJECTIVE:To study the changes and biological significance of ferroptosis in a mouse model of blood stream infection induced by different bacteria. METHODS:Blood stream infection models induced by gram negative bacteria Escherichia coli,Klebsiella pneumoniae and gram positive bacteria Staphylococcus aureus and Enterococcus faecalis were established in SPF-grade ICR male mice,with 42 mice in each group.The mRNA expression levels of ferroptosis marker genes transferrin receptor 1 and glutathione peroxidase 4 in the liver,myocardium and kidney were detected at 0.5,1,3,6,12,24 and 48 hours after modeling.Another 18 SPF-grade ICR male mice were selected and randomly divided into dimethyl sulfoxide(DMSO)control group,DMSO+Klebsiella pneumoniae group,and Ferrostatin-1+Klebsiella pneumoniae group,with 6 mice in each group.In the latter two groups,animal models of Klebsiella pneumoniae bloodstream infection were established by tail vein injection of Klebsiella pneumoniae suspension,and 5 mg/kg Ferrostatin-1 and an equal dose of DMSO were given intraperitoneally 1 hour prior to the modeling of bloodstream infection,respectively.Serum levels of alanine aminotransferase,aspartate aminotransferase,blood creatinine,blood urea nitrogen,phosphocreatine kinase isoenzyme,lactate dehydrogenase,and mRNA expression levels of ferroptosis marker genes in various tissues were assayed at 6 hours after modeling. RESULTS AND CONCLUSION:After bloodstream infection modeling,the mRNA expression levels of transferrin receptor 1 in the liver,myocardium and kidney of bloodstream infection mice with different bacteria increased first and then decreased;and the mRNA expression level of glutathione peroxidase 4 decreased first,then increased,and reached the peak at 6 hours after modeling.The changes in transferrin receptor 1 and glutathione peroxidase 4 mRNA levels in bloodstream infection mice induced by gram-negative bacteria were more significant than those in blood stream infection mice induced by gram-positive bacteria,especially in bloodstream infection mice induced by Klebsiella pneumoniae.At 6 hours after bloodstream infection induced by Klebsiella pneumoniae,the levels of alanine aminotransferase,aspartate aminotransferase,serum creatinine,blood urea nitrogen,creatine phosphate kinase isoenzyme,lactate dehydrogenase in mice were significantly increased.Before modeling,Ferrostatin-1 intervention significantly reduced the levels of alanine aminotransferase,aspartate aminotransferase,serum creatinine,blood urea nitrogen,creatine phosphate kinase isoenzyme,and lactate dehydrogenase.All these findings indicate that the activation of ferroptosis in bloodstream infection mice induced by different bacteria is obvious,and the activation of ferroptosis in bloodstream infection mice induced by gram-negative bacteria is more obvious.Inhibition of iron death significantly attenuates liver,myocardial,and kidney injury in the mouse model of bloodstream infection induced by Klebsiella pneumoniae.

14.
Glia ; 72(2): 338-361, 2024 02.
Article in English | MEDLINE | ID: mdl-37860913

ABSTRACT

Extracellular vesicles (EVs) are involved in diverse cellular functions, playing a significant role in cell-to-cell communication in both physiological conditions and pathological scenarios. Therefore, EVs represent a promising therapeutic strategy. Oligodendrocytes (OLs) are myelinating glial cells developed from oligodendrocyte progenitor cells (OPCs) and damaged in chronic demyelinating diseases such as multiple sclerosis (MS). Glycoprotein transferrin (Tf) plays a critical role in iron homeostasis and has pro-differentiating effects on OLs in vivo and in vitro. In the current work, we evaluated the use of EVs as transporters of Tf to the central nervous system (CNS) through the intranasal (IN) route. For the in vitro mechanistic studies, we used rat plasma EVs. Our results show that EVTf enter OPCs through clathrin-caveolae and cholesterol-rich lipid raft endocytic pathways, releasing the cargo and exerting a pro-maturation effect on OPCs. These effects were also observed in vivo using the animal model of demyelination induced by cuprizone (CPZ). In this model, IN administered Tf-loaded EVs isolated from mouse plasma reached the brain parenchyma, internalizing into OPCs, promoting their differentiation, and accelerating remyelination. Furthermore, in vivo experiments demonstrated that EVs protected the Tf cargo and significantly reduced the amount of Tf required to induce remyelination as compared to soluble Tf. Collectively, these findings unveil EVs as functional nanocarriers of Tf to induce remyelination.


Subject(s)
Demyelinating Diseases , Extracellular Vesicles , Mice , Rats , Animals , Transferrin/metabolism , Demyelinating Diseases/pathology , Oligodendroglia/metabolism , Brain/metabolism , Cell Differentiation/physiology , Cuprizone/toxicity , Extracellular Vesicles/metabolism , Mice, Inbred C57BL , Myelin Sheath/metabolism
15.
Nutr Res ; 118: 29-40, 2023 10.
Article in English | MEDLINE | ID: mdl-37544230

ABSTRACT

Ferroptosis, a form of cell death mediated by lipid peroxidation, is implicated in various pathological processes. Although monounsaturated fatty acids (MUFAs) can inhibit ferroptotic lipid peroxidation, the underlying structural mechanism of this antagonistic effect remains poorly understood. We hypothesized that MUFAs with different structures (including chain length, conformation, and double bond position) may affect their regulatory effect on ferroptosis. In this study, 11 MUFAs with varying structures were screened to identify those with an inhibitory effect on ferroptosis. Results from 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazoliumbromide assays indicated that only exogenous MUFAs with cis-conformation and centered double bond could inhibit ferroptosis. Meanwhile, it was found that suppressing the expression of SCD1 and SCD5 genes could sensitize cells to ferroptosis indicating the protective role of endogenous MUFA against ferroptosis. Additionally, western blot analysis revealed that cis-MUFAs with centered double bond downregulated the protein levels of transferrin receptor 1. Flow cytometry confirmed that these MUFAs led to decreases in intracellular iron, reactive oxygen species, and lipid peroxides. It was also found that SCD1 inhibitor could enhance ferroptosis inducer-mediated tumor suppression both in vivo and in vitro. Overall, these findings shed light on the particular structural features of MUFAs that contribute to their ferroptosis-resistant properties and suggest the potential therapeutic relevance of natural MUFAs in a range of ferroptosis-related diseases.


Subject(s)
Fatty Acids, Monounsaturated , Ferroptosis , Fatty Acids, Monounsaturated/pharmacology , Down-Regulation , Cell Death , Receptors, Transferrin/metabolism , Fatty Acids/pharmacology
16.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37513868

ABSTRACT

The development of biologics for diseases affecting the central nervous system has been less successful compared to other disease areas, in part due to the challenge of delivering drugs to the brain. The most well-investigated and successful strategy for increasing brain uptake of biological drugs is using receptor-mediated transcytosis over the blood-brain barrier and, in particular, targeting the transferrin receptor-1 (TfR). Here, affibody molecules are selected for TfR using phage display technology. The two most interesting candidates demonstrated binding to human TfR, cross-reactivity to the murine orthologue, non-competitive binding with human transferrin, and binding to TfR-expressing brain endothelial cell lines. Single amino acid mutagenesis of the affibody molecules revealed the binding contribution of individual residues and was used to develop second-generation variants with improved properties. The second-generation variants were further analyzed and showed an ability for transcytosis in an in vitro transwell assay. The new TfR-specific affibody molecules have the potential for the development of small brain shuttles for increasing the uptake of various compounds to the central nervous system and thus warrant further investigations.

17.
J Biol Chem ; 299(9): 105088, 2023 09.
Article in English | MEDLINE | ID: mdl-37495107

ABSTRACT

S-acylation is a reversible posttranslational protein modification consisting of attachment of a fatty acid to a cysteine via a thioester bond. Research over the last few years has shown that a variety of different fatty acids, such as palmitic acid (C16:0), stearate (C18:0), or oleate (C18:1), are used in cells to S-acylate proteins. We recently showed that GNAI proteins can be acylated on a single residue, Cys3, with either C16:0 or C18:1, and that the relative proportion of acylation with these fatty acids depends on the level of the respective fatty acid in the cell's environment. This has functional consequences for GNAI proteins, with the identity of the acylating fatty acid affecting the subcellular localization of GNAIs. Unclear is whether this competitive acylation is specific to GNAI proteins or a more general phenomenon in the proteome. We perform here a proteome screen to identify proteins acylated with different fatty acids. We identify 218 proteins acylated with C16:0 and 308 proteins acylated with C18-lipids, thereby uncovering novel targets of acylation. We find that most proteins that can be acylated by C16:0 can also be acylated with C18-fatty acids. For proteins with more than one acylation site, we find that this competitive acylation occurs on each individual cysteine residue. This raises the possibility that the function of many different proteins can be regulated by the lipid environment via differential S-acylation.


Subject(s)
Cysteine , Palmitic Acid , Proteome , Stearic Acids , Acylation , Cysteine/metabolism , Palmitic Acid/metabolism , Proteome/metabolism , HEK293 Cells , HeLa Cells , Humans , Stearic Acids/metabolism
18.
Biochem Biophys Res Commun ; 669: 77-84, 2023 08 20.
Article in English | MEDLINE | ID: mdl-37267863

ABSTRACT

The blood-brain barrier (BBB) limits the uptake of central nervous system (CNS)-targeting drugs into the brain. Engineering molecular shuttles for active transportation across the barrier has thus potential for improving the efficacy of such drugs. In vitro assessment of potential transcytosis capability for engineered shuttle proteins facilitates ranking and the selection of promising candidates during development. Herein, the development of an assay based on brain endothelial cells cultured on permeable recombinant silk nanomembranes for screening of transcytosis capability of biomolecules is described. The silk nanomembranes supported growth of brain endothelial cells to form confluent monolayers with relevant cell morphology, and induced expression of tight-junction proteins. Evaluation of the assay using an established BBB shuttle antibody showed transcytosis over the membranes with an apparent permeability that significantly differed from the isotype control antibody.


Subject(s)
Blood-Brain Barrier , Endothelial Cells , Blood-Brain Barrier/metabolism , Endothelial Cells/metabolism , Silk/metabolism , Brain/metabolism , Transcytosis
19.
J Neurosci ; 43(27): 5092-5113, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37308296

ABSTRACT

Hereditary spastic paraplegia (HSP) is a severe neurodegenerative movement disorder, the underlying pathophysiology of which remains poorly understood. Mounting evidence has suggested that iron homeostasis dysregulation can lead to motor function impairment. However, whether deficits in iron homeostasis are involved in the pathophysiology of HSP remains unknown. To address this knowledge gap, we focused on parvalbumin-positive (PV+) interneurons, a large category of inhibitory neurons in the central nervous system, which play a critical role in motor regulation. The PV+ interneuron-specific deletion of the gene encoding transferrin receptor 1 (TFR1), a key component of the neuronal iron uptake machinery, induced severe progressive motor deficits in both male and female mice. In addition, we observed skeletal muscle atrophy, axon degeneration in the spinal cord dorsal column, and alterations in the expression of HSP-related proteins in male mice with Tfr1 deletion in the PV+ interneurons. These phenotypes were highly consistent with the core clinical features of HSP cases. Furthermore, the effects on motor function induced by Tfr1 ablation in PV+ interneurons were mostly concentrated in the dorsal spinal cord; however, iron repletion partly rescued the motor defects and axon loss seen in both sexes of conditional Tfr1 mutant mice. Our study describes a new mouse model for mechanistic and therapeutic studies relating to HSP and provides novel insights into iron metabolism in spinal cord PV+ interneurons and its role in the regulation of motor functions.SIGNIFICANCE STATEMENT Iron is crucial for neuronal functioning. Mounting evidence suggests that iron homeostasis dysregulation can induce motor function deficits. Transferrin receptor 1 (TFR1) is thought to be the key component in neuronal iron uptake. We found that deletion of Tfr1 in parvalbumin-positive (PV+) interneurons in mice induced severe progressive motor deficits, skeletal muscle atrophy, axon degeneration in the spinal cord dorsal column, and alterations in the expression of hereditary spastic paraplegia (HSP)-related proteins. These phenotypes were highly consistent with the core clinical features of HSP cases and partly rescued by iron repletion. This study describes a new mouse model for the study of HSP and provides novel insights into iron metabolism in spinal cord PV+ interneurons.


Subject(s)
Spastic Paraplegia, Hereditary , Male , Female , Animals , Mice , Spastic Paraplegia, Hereditary/genetics , Parvalbumins/metabolism , Proteins/genetics , Phenotype , Interneurons/metabolism , Atrophy
20.
Mol Cell Biochem ; 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37368155

ABSTRACT

Iron accumulation, which is controlled by transferrin receptor 1 (TfR1), modulates hypoxia-inducible factor-1α (HIF-1α) activation and angiogenesis of hypoxic endothelial cells. The study examined the role of protein interacting with C-kinase 1 (PICK1), a scaffold protein containing PDZ domain, in regulating glycolysis and angiogenesis of hypoxic vascular endothelial cells through its potential effect on TfR1, which features a supersecondary structure that interacts with the PDZ domain. Iron chelator deferoxamine and TfR1 siRNA were employed to assess the impact of iron accumulation on angiogenesis, while the effects of PICK1 siRNA and overexpressing lentivirus on TfR1-mediated iron accumulation were also investigated in hypoxic human umbilical vein vascular endothelial cells (HUVECs). The study found that 72-h hypoxia impaired the proliferation, migration, and tube formation of HUVECs, and reduced the upregulation of vascular endothelial growth factor, HIF-1α, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3, and PICK1, while increasing the expression of TfR1 as compared to 24-h hypoxia. Administration of deferoxamine or TfR1 siRNA reversed these effects and led to increased glycolysis, ATP content, and phosphofructokinase activity, along with increased PICK1 expression. PICK1 overexpression improved glycolysis, enhanced angiogenic capacity, and attenuated TfR1 protein upregulation in hypoxic HUVECs, with higher expression of angiogenic markers, which could be significantly reversed by the PDZ domain inhibitor. PICK1 knockdown exerted opposite effects. The study concluded that PICK1 modulated intracellular iron homeostasis, thereby promoting glycolysis and angiogenesis of HUVECs in response to prolonged hypoxia, at least in part, by regulating TfR1 expression.

SELECTION OF CITATIONS
SEARCH DETAIL