Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 327
Filter
1.
Chem Pharm Bull (Tokyo) ; 72(7): 669-675, 2024.
Article in English | MEDLINE | ID: mdl-39010213

ABSTRACT

Tendon injury is a prevalent orthopedic disease that currently lacks effective treatment. Galangin (GLN) is a vital flavonoid found abundantly in galangal and is known for its natural activity. This study aimed to investigate the GLN-mediated molecular mechanism of tendon-derived stem cells (TDSCs) in tendon repair. The TDSCs were characterized using alkaline phosphatase staining, alizarin red S staining, oil red O staining, and flow cytometry. The effect of GLN treatment on collagen deposition was evaluated using Sirius red staining and quantitative (q)PCR, while a Western bot was used to assess protein levels and analyze pathways. Results showed that GLN treatment not only increased the collagen deposition but also elevated the mRNA expression and protein levels of multiple tendon markers like collagen type I alpha 1 (COL1A1), decorin (DCN) and tenomodulin (TNMD) in TDSCs. Moreover, GLN was also found to upregulate the protein levels of transforming growth factor ß1 (TGF-ß1) and p-Smad3 to activate the TGF-ß1/Smad3 signaling pathway, while GLN mediated collagen deposition in TDSCs was reversed by LY3200882, a TGF-ß receptor inhibitor. The study concluded that GLN-mediated TDSCs enhanced tendon repair by activating the TGF-ß1/Smad3 signaling pathway, suggesting a novel therapeutic option in treating tendon repair.


Subject(s)
Flavonoids , Signal Transduction , Smad3 Protein , Stem Cells , Tendons , Transforming Growth Factor beta1 , Flavonoids/pharmacology , Flavonoids/chemistry , Transforming Growth Factor beta1/metabolism , Signal Transduction/drug effects , Animals , Smad3 Protein/metabolism , Smad3 Protein/antagonists & inhibitors , Stem Cells/drug effects , Stem Cells/metabolism , Stem Cells/cytology , Tendons/cytology , Tendons/metabolism , Tendons/drug effects , Rats , Cells, Cultured , Rats, Sprague-Dawley , Tendon Injuries/drug therapy , Tendon Injuries/metabolism
2.
Postepy Dermatol Alergol ; 41(3): 276-283, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39027694

ABSTRACT

Introduction: It was intended to research the level changes and clinical significance of interleukin (IL)-10, transforming growth factor ß1 (TGF-ß1), and CD4+CD25 cytokines in paediatric allergic rhinitis (AR) accompanied with allergic asthma (AA). Material and methods: Eighty children of AA with AR receiving immunotherapy indications were included as the experimental group (EG), while another 40 healthy children in the same period were selected as the control group (CG). IL-10, TGF-ß1, and CD4+CD25 levels in cells of the two groups before and after treatment were compared and analysed. Results: The serum TGF-ß1 level was determined as 1,045.7 ±44.7 pg/ml in the EG at admission, remarkably higher than that in the CG (p < 0.05). The IL-10 level was 21.4 ±2.8 pg/ml; CD4+CD25 cells accounted for 9.2 ±2.4%, CD4+CD25high cells accounted for 0.6 ±0.3%. These were all greatly lower than those in the CG (p < 0.05). At discharge, the serum TGF-ß1 level in the EG was 903.7 ±29.4 pg/ml, which was still memorably higher than that in the CG (p < 0.05). The IL-10 level changed to 32.8 ±3.7 pg/ml; the percentage of CD4+CD25 was 11.3 ±1.8, respectively, among CD4+T cells. These were also notably lower than those in the CG at discharge (p < 0.05). Conclusions: IL-10, TGF-ß1, and CD4+CD25 level changes in cells might be of reference value as therapeutic indicators for clinical treatment or evaluation of paediatric AR with AA.

3.
Eur J Pharmacol ; 977: 176708, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38843945

ABSTRACT

Excessive transforming growth factor ß1 (TGF-ß1) secreted by activated hepatic stellate cells (aHSCs) aggravates liver fibrosis via over-activation of TGF-ß1-mediated signaling pathways in a TGF-ß type I receptor (TßRI) dependent manner. TßRI with the C-terminal valine truncated (RIPΔ), as a novel TßRI-mimicking peptide, is an appealing anti-fibrotic candidate by competitive binding of TGF-ß1 to block TGF-ß1 signal transduction. Platelet-derived growth factor receptor ß (PDGFßR) is highly expressed on the surface of aHSCs in liver fibrosis. Herein, we designed a novel RIPΔ variant Z-RIPΔ (PDGFßR-specific affibody ZPDGFßR fused to the N-terminus of RIPΔ) for liver fibrosis therapy, and expect to improve the anti-liver fibrosis efficacy by specifically inhibiting the TGF-ß1 activity in aHSCs. Target peptide Z-RIPΔ was prepared in Escherichia coli by SUMO fusion system. Moreover, Z-RIPΔ specifically bound to TGF-ß1-activated aHSCs, inhibited cell proliferation and migration, and reduced the expression of fibrosis markers (α-SMA and FN) and TGF-ß1 pathway-related effectors (p-Smad2/3 and p-p38) in vitro. Furthermore, Z-RIPΔ specifically targeted the fibrotic liver, alleviated the liver histopathology, mitigated the fibrosis responses, and blocked TGF-ß1-mediated Smad and p38 MAPK cascades. More importantly, Z-RIPΔ exhibited a higher fibrotic liver-targeting capacity and stronger anti-fibrotic effects than its parent RIPΔ. Besides, Z-RIPΔ showed no obvious toxicity effects in treating both an in vitro cell model and an in vivo mouse model of liver fibrosis. In conclusion, Z-RIPΔ represents a promising targeted candidate for liver fibrosis therapy.


Subject(s)
Hepatic Stellate Cells , Liver Cirrhosis , Receptor, Transforming Growth Factor-beta Type I , Signal Transduction , Smad Proteins , Transforming Growth Factor beta1 , p38 Mitogen-Activated Protein Kinases , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Animals , Transforming Growth Factor beta1/metabolism , Liver Cirrhosis/drug therapy , Liver Cirrhosis/pathology , Liver Cirrhosis/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Mice , Smad Proteins/metabolism , Male , Receptor, Transforming Growth Factor-beta Type I/metabolism , Receptor, Transforming Growth Factor-beta Type I/antagonists & inhibitors , Signal Transduction/drug effects , Peptides/pharmacology , Peptides/chemistry , Humans , Mice, Inbred C57BL
4.
Article in English | MEDLINE | ID: mdl-38765506

ABSTRACT

Objective: To compare Transforming growth factor beta-1 (TGF-ß1) expression in patients with and without adenomyosis. Methods: A prospective design was performed including 49 patients submitted to hysterectomy. Immunohistochemistry was performed on anatomopathological samples staged in paraffin blocks from patients with and without adenomyosis. The sample contained 28 adenomyosis cases and 21 controls. Student's t-test and multivariate logistic regression tests were used for statistical analysis. Associations were considered significant at p < 0.05. Results: We found no significant association between adenomyosis and: smoking (p = 0.75), miscarriage (p = 0.29), number of previous pregnancies (p = 0.85), curettage (p = 0.81), pelvic pain (p = 0.72) and myoma (p = 0.15). However, we did find a relationship between adenomyosis and abnormal uterine bleeding (AUB) (p = 0.02) and previous cesarean section (p = 0.02). The mean TGF-ß1 intensity (mean ± SD) in the ectopic endometrium of women with adenomyosis showed no significant association (184.17 ± 9.4 vs.184.66 ± 16.08, p = 0.86) from the topic endometrium of women without adenomyosis. Conclusion: TGF-ß1 expression was not increased in the ectopic endometrium of women with adenomyosis.


Subject(s)
Adenomyosis , Transforming Growth Factor beta1 , Humans , Female , Adenomyosis/metabolism , Adenomyosis/pathology , Transforming Growth Factor beta1/metabolism , Prospective Studies , Adult , Middle Aged , Case-Control Studies
5.
Mol Ther Nucleic Acids ; 35(2): 102164, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38549914

ABSTRACT

Transforming growth factor ß 1 (TGF-ß1), as the most abundant signaling molecule in bone matrix, is essential for bone homeostasis. However, the signaling transduction of TGF-ß1 in the bone-forming microenvironment remains unknown. Here, we showed that microRNA-191 (miR-191) was downregulated during osteogenesis and further decreased by osteo-favoring TGF-ß1 in bone marrow mesenchymal stem cells (BMSCs). MiR-191 was lower in bone tissues from children than in those from middle-aged individuals and it was negatively correlated with collagen type I alpha 1 chain (COL1A1). MiR-191 depletion significantly increased osteogenesis and bone formation in vivo. Hydrogels embedded with miR-191-low BMSCs displayed a powerful bone repair effect. Mechanistically, transcription factors BMI1 and SMAD2 coordinately controlled miR-191 level. In detail, BMI1 and pSMAD2 were both upregulated by TGF-ß1 under osteogenic condition. SMAD2 activated miR-191 transcription, while BMI1 competed with SMAD2 for binding to miR-191 promoter region, thus disturbing the activation of SMAD2 on miR-191 and reducing miR-191 level. Altogether, our findings reveal that miR-191 regulated by TGF-ß1-induced BMI1 and SMAD2 negatively modulated bone formation and regeneration, and inhibition of miR-191 might be therapeutically useful to enhance bone repair in clinic.

6.
Tzu Chi Med J ; 36(1): 59-66, 2024.
Article in English | MEDLINE | ID: mdl-38406569

ABSTRACT

Objectives: Ellagic acid (EA), a kind of polyphenol found in numerous fruits and vegetables, has anti-inflammatory, anti-apoptotic, anti-oxidant, and anti-fibrotic effects against a variety of diseases, but its role in mediating renal fibrogenesis remains unknown. Materials and Methods: We used an in vivo mouse unilateral ureteral obstruction (UUO) model and an in vitro model with HK-2 cell lines treated with EA and transforming growth factor ß1 (TGF-ß1). The expression of epithelial-to-mesenchymal transition (EMT)-related proteins of UUO mice was examined using immunohistochemical staining. Liver function and renal function were evaluated using biochemical testing. Western blot analysis was used to determine the proteins related to EMT, and MTT assay was used to determine cell viability. Results: In UUO mice fed EA, both microscopical examination with immunohistochemical staining and western blotting protein analysis showed reduced expression of fibrotic (α-SMA, fibronectin, and collagen I)- and EMT (vimentin and N-cadherin)-related proteins, compared with sham control. In HK-2 cells treated with TGF-ß1, EA decreased motility as well as expression of α-SMA, collagen-I, fibronectin, N-cadherin, and vimentin. Conclusion: EA reduced the progression of the morphological transformations and concomitantly suppressed the expression of fibrotic- and EMT-related proteins in vitro and in vivo. These findings improved our understanding of the role of EA in suppressing renal fibrogenesis and demonstrated the promising role EA may play in the management of chronic kidney disease.

7.
Antioxidants (Basel) ; 13(2)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38397744

ABSTRACT

Fibrosis, which causes structural hardening and functional degeneration in various organs, is characterized by the excessive production and accumulation of connective tissue containing collagen, alpha-smooth muscle actin (α-SMA), etc. In traditional medicine, extracts of medicinal plants or herbal prescriptions have been used to treat various fibrotic diseases. The purpose of this narrative review is to discuss the antifibrotic effects of rosmarinic acid (RA) and plant extracts that contain RA, as observed in various experimental models. RA, as well as the extracts of Glechoma hederacea, Melissa officinalis, Elsholtzia ciliata, Lycopus lucidus, Ocimum basilicum, Prunella vulgaris, Salvia rosmarinus (Rosmarinus officinalis), Salvia miltiorrhiza, and Perilla frutescens, have been shown to attenuate fibrosis of the liver, kidneys, heart, lungs, and abdomen in experimental animal models. Their antifibrotic effects were associated with the attenuation of oxidative stress, inflammation, cell activation, epithelial-mesenchymal transition, and fibrogenic gene expression. RA treatment activated peroxisomal proliferator-activated receptor gamma (PPARγ), 5' AMP-activated protein kinase (AMPK), and nuclear factor erythroid 2-related factor 2 (NRF2) while suppressing the transforming growth factor beta (TGF-ß) and Wnt signaling pathways. Interestingly, most plants that are reported to contain RA and exhibit antifibrotic activity belong to the family Lamiaceae. This suggests that RA is an active ingredient for the antifibrotic effect of Lamiaceae plants and that these plants are a useful source of RA. In conclusion, accumulating scientific evidence supports the effectiveness of RA and Lamiaceae plant extracts in alleviating fibrosis and maintaining the structural architecture and normal functions of various organs under pathological conditions.

8.
Toxicol Lett ; 393: 14-23, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38211732

ABSTRACT

Prednisone is frequently used to treat rheumatoid diseases in pregnant women because of its high degree of safety. Whether prenatal prednisone exposure (PPE) negatively impacts fetal articular cartilage development is unclear. In this study, we simulated a clinical prednisone treatment regimen to examine the effects of different timings and doses of PPE on cartilage development in female and male fetal mice. Prednisone doses (0.25, 0.5, and 1 mg/kg/d) was administered to Kunming mice at different gestational stages (0-9 gestational days, GD0-9), mid-late gestation (GD10-18), or during the entire gestation (GD0-18) by oral gavage. The amount of matrix aggrecan (ACAN) and collagen type II a1(COL2a1), and expression of transforming growth factor ß1 (TGFß1) signaling pathway also demonstrated that the chondrocyte count and ACAN and COL2a1 expression reduced in fetal mice with early and mid-late PPE, with the reduction being more significant in the mice with early PPE than that in those with PPE at other stages. Prenatal exposure to different prednisone doses prevented the reduction of TGFß signaling pathway-related genes [TGFßR1, SMAD family member 3 (Smad3), SRY-box9 (SOX9)] as well as ACAN and COL2a1 mRNA expression levels in fetal mouse cartilage, with the most significant decrease after 1 mg/kg·d PPE. In conclusion, PPE can inhibit/restrain fetal cartilage development, with the greatest effect at higher clinical dose (1 mg/kg·d) and early stage of pregnancy (GD0-9), and the mechanism may be related to TGFß signaling pathway inhibition. The result of this study provide a theoretical and experimental foundation for the rational clinical use of prednisone.


Subject(s)
Cartilage, Articular , Humans , Mice , Female , Male , Pregnancy , Animals , Prednisone/toxicity , Prednisone/metabolism , Aggrecans/metabolism , Fetus/metabolism , Chondrocytes , Transforming Growth Factor beta/metabolism , Collagen Type II/genetics , Collagen Type II/toxicity , Collagen Type II/metabolism
9.
BMC Pregnancy Childbirth ; 24(1): 5, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38166771

ABSTRACT

BACKGROUND: Polycystic ovarian syndrome (PCOS) is a common endocrine and metabolic disease in women. Hyperandrogenaemia (HA) and insulin resistance (IR) are the basic pathophysiological characteristics of PCOS. The aetiology of PCOS has not been fully identified and is generally believed to be related to the combined effects of genetic, metabolic, internal, and external factors. Current studies have not screened for PCOS susceptibility genes in a large population. Here, we aimed to study the effect of TGF-ß1 methylation on the clinical PCOS phenotype. METHODS: In this study, three generations of family members with PCOS with IR as the main characteristic were selected as research subjects. Through whole exome sequencing and bioinformatic analysis, TGF-ß1 was screened as the PCOS susceptibility gene in this family. The epigenetic DNA methylation level of TGF-ß1 in peripheral blood was detected by heavy sulfite sequencing in patients with PCOS clinically characterised by IR, and the correlation between the DNA methylation level of the TGF-ß1 gene and IR was analysed. We explored whether the degree of methylation of this gene affects IR and whether it participates in the occurrence and development of PCOS. RESULTS: The results of this study suggest that the hypomethylation of the CpG4 and CpG7 sites in the TGF-ß1 gene promoter may be involved in the pathogenesis of PCOS IR by affecting the expression of the TGF-ß1 gene. CONCLUSIONS: This study provides new insights into the aetiology and pathogenesis of PCOS.


Subject(s)
DNA Methylation , Insulin Resistance , Polycystic Ovary Syndrome , Transforming Growth Factor beta1 , Female , Humans , Insulin Resistance/genetics , Phenotype , Polycystic Ovary Syndrome/genetics , Polymorphism, Single Nucleotide , Transforming Growth Factor beta1/genetics , Promoter Regions, Genetic
10.
Biochem Biophys Res Commun ; 692: 149360, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38081108

ABSTRACT

BACKGROUND: Myocardial infarction (MI) dramatically changes the mechanical stress, which is intensified by the fibrotic remodeling. Integrins, especially the αV subunit, mediate mechanical signal and mechanoparacrine of transforming growth factor ß1 (TGF-ß1) in various organ fibrosis by activating CFs into myofibroblasts (MFBs). We investigated a possible role of integrin αV mediated mechanoparacrine of TGF-ß1 in MFBs activation for fibrous reparation in mice with MI. METHODS: Heart samples from MI, sham, or MI plus cilengitide (14 mg/kg, specific integrin αV inhibitor) treated mice, underwent functional and morphological assessments by echocardiography, and histochemistry on 7, 14 and 28 days post-surgery. The mechanical and ultrastructural changes of the fibrous scar were further evaluated by atomic mechanics microscope (AFM), immunofluorescence, second harmonic generation (SHG) imaging, polarized light and scanning electron microscope, respectively. Hydroxyproline assay was used for total collagen content, and western blot for protein expression profile examination. Fibroblast bioactivities, including cell shape, number, Smad2/3 signal and expression of extracellular matrix (ECM) related proteins, were further evaluated by microscopic observation and immunofluorescence in polyacrylamide (PA) hydrogel with adjustable stiffness, which was re-explored in fibroblast cultured on stiff matrix after silencing of integrin αV. The content of total and free TGF-ß1 was tested by enzyme-linked immunosorbent assay (ELISA) in both infarcted tissue and cell samples. RESULT: Increased stiffness with heterogeneity synchronized with integrin αV and alpha smooth muscle actin (α-SMA) positive MFBs accumulation in those less mature fibrous areas. Cilengitide abruptly reduced collagen content and disrupted collagen alignment, which also decreased TGF-ß1 bioavailability, Smad2/3 phosphorylation, and α-SMA expression in the fibrous area. Accordingly, fibroblast on stiff but not soft matrix exhibited obvious MFB phenotype, as evidenced by enlarged cell, hyperproliferation, well-developed α-SMA fibers, and elevated ECM related proteins, while silencing of integrin αV almost abolished this switch via attenuating paracrine of TGF-ß1 and nuclear translocation of Smad2/3. CONCLUSION: This study illustrated that increased tissue stiffness activates CFs into MFBs by integrin αV mediated mechanoparacrine of TGF-ß1, especially in immature scar area, which ultimately promotes fibrous scar maturation.


Subject(s)
Myocardial Infarction , Myofibroblasts , Animals , Mice , Actins/metabolism , Cicatrix/metabolism , Collagen/metabolism , Extracellular Matrix Proteins/metabolism , Fibroblasts/metabolism , Fibrosis , Integrin alphaV/metabolism , Myocardial Infarction/pathology , Myofibroblasts/metabolism , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta1/metabolism
11.
Naunyn Schmiedebergs Arch Pharmacol ; 397(1): 237-252, 2024 01.
Article in English | MEDLINE | ID: mdl-37401970

ABSTRACT

Truncated transforming growth factor ß receptor type II (tTßRII), serving as a trap for binding excessive transforming growth factor ß1 (TGF-ß1) by means of competing with wild-type TßRII, is a promising strategy for the treatment of kidney fibrosis. Platelet-derived growth factor ß receptor (PDGFßR) is highly expressed in interstitial myofibroblasts in kidney fibrosis. This study identified the interaction between a novel tTßRII variant Z-tTßRII (PDGFßR-specific affibody ZPDGFßR fused to the N-terminus of tTßRII) and TGF-ß1. Moreover, Z-tTßRII highly targeted to TGF-ß1-activated NIH3T3 cells and UUO-induced fibrotic kidney, but less to normal cells, tissues, and organs. Furthermore, Z-tTßRII significantly inhibited cell proliferation and migration, and reduced fibrosis markers expression and phosphorylation level of Smad2/3 in activated NIH3T3 cells. Meanwhile, Z-tTßRII markedly alleviated the kidney histopathology and fibrotic responses, and inhibited the TGF-ß1/Smad signaling pathway in UUO mice. Besides, Z-tTßRII showed good safety performance in the treatment of UUO mice. In conclusion, these results demonstrated that Z-tTßRII may be a potential candidate for a targeting therapy on renal fibrosis due to the high potential of fibrotic kidney-targeting and strong anti-renal fibrosis activity.


Subject(s)
Kidney Diseases , Transforming Growth Factor beta1 , Mice , Animals , Transforming Growth Factor beta1/metabolism , Receptor, Platelet-Derived Growth Factor beta/metabolism , NIH 3T3 Cells , Signal Transduction , Kidney Diseases/pathology , Fibrosis
12.
In Vivo ; 38(1): 235-245, 2024.
Article in English | MEDLINE | ID: mdl-38148076

ABSTRACT

BACKGROUND/AIM: Hypertrophic scars (HS) are an abnormal cutaneous condition of wound healing characterized by excessive fibrosis and disrupted collagen deposition. This study assessed the potential of a silicone patch embedded with chemically stable zirconium-based metal-organic frameworks (MOF)-808 structures to mitigate HS formation using a rabbit ear model. MATERIALS AND METHODS: A silicone patch was strategically engineered by incorporating Zr-MOF-808, a composite structure comprising metal ions and organic ligands. Structural integrity of the Zr-MOF-808 silicone patch was validated using scanning electron microscopy and X-ray diffraction analysis. The animals were divided into three groups: a control, no treatment group (Group 1), a silicone patch treatment group (Group 2), and a group treated with a 0.2% loaded Zr-MOF-808 silicone patch (Group 3). HS suppression effects were quantified using scar elevation index (SEI), dorsal skin thickness measurements, and myofibroblast protein expression. RESULTS: Histopathological examination of post-treatment HS samples revealed substantial reductions in SEI (34.6%) and epidermal thickness (49.5%) in Group 3. Scar hyperplasia was significantly diminished by 53.5% (p<0.05), while collagen density declined by 15.7% in Group 3 compared to Group 1. Western blot analysis of protein markers, including TGF-ß1, collagen-1, and α-SMA, exhibited diminished levels by 8.8%, 12%, and 21.3%, respectively, in Group 3, and substantially higher levels by 21.9%, 27%, and 39.9%, respectively, in Group 2. On the 35th day post-wound generation, Zr-MOF-808-treated models exhibited smoother, less conspicuous, and flatter scars. CONCLUSION: Zr-MOF-808-loaded silicone patch reduced HS formation in rabbit ear models by inducing the proliferation and remodeling of the wound healing process.


Subject(s)
Cicatrix, Hypertrophic , Metal-Organic Frameworks , Animals , Rabbits , Cicatrix, Hypertrophic/metabolism , Cicatrix, Hypertrophic/pathology , Metal-Organic Frameworks/metabolism , Metal-Organic Frameworks/pharmacology , Fibroblasts , Collagen Type I/metabolism , Collagen Type I/pharmacology , Collagen/metabolism , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/pharmacology
13.
PeerJ ; 11: e16097, 2023.
Article in English | MEDLINE | ID: mdl-37786576

ABSTRACT

Background: Factor Xa (FXa) not only plays an active role in the coagulation cascade but also exerts non-hemostatic signaling through the protease-activated receptors (PARs). This study aimed to investigate whether the FXa inhibitor, Rivaroxaban (RIV), attenuates adverse cardiac remodeling in rats with myocardial infarction (MI) and to identify the underlying molecular mechanisms it uses. Methods: An MI model was induced in eight-week-old, male Wistar rats, by permanent ligation of the left anterior descending coronary artery. MI rats were randomly assigned to receive RIV or protease-activated receptors 2-antagonist (PAR-2 antagonist, FSLLRY) treatment for four weeks. Histological staining, echocardiography and hemodynamics were used to assess the cardioprotective effects of RIV. Meanwhile, pharmacological approaches of agonist and inhibitor were used to observe the potential pathways in which RIV exerts antifibrotic effects in neonatal rat cardiac fibroblasts (CFs). In addition, real-time PCR and western blot analysis were performed to examine the associated signaling pathways. Results: RIV presented favorable protection of left ventricular (LV) cardiac function in MI rats by significantly reducing myocardial infarct size, ameliorating myocardial pathological damage and improving left ventricular (LV) remodeling. Similar improvements in the PAR-2 antagonist FSLLRY and RIV groups suggested that RIV protects against cardiac dysfunction in MI rats by ameliorating PAR-2 activation. Furthermore, an in vitro model of fibrosis was then generated by applying angiotensin II (Ang II) to neonatal rat cardiac fibroblasts (CFs). Consistent with the findings of the animal experiments, RIV and FSLLRY inhibited the expression of fibrosis markers and suppressed the intracellular upregulation of transforming growth factor ß1 (TGFß1), as well as its downstream Smad2/3 phosphorylation effectors in Ang II-induced fibrosis, and PAR-2 agonist peptide (PAR-2 AP) reversed the inhibition effect of RIV. Conclusions: Our findings demonstrate that RIV attenuates MI-induced cardiac remodeling and improves heart function, partly by inhibiting the activation of the PAR-2 and TGF-ß1 signaling pathways.


Subject(s)
Myocardial Infarction , Rivaroxaban , Rats , Animals , Male , Rivaroxaban/pharmacology , Transforming Growth Factor beta1/metabolism , Factor Xa/metabolism , Ventricular Remodeling , Rats, Wistar , Signal Transduction , Myocardial Infarction/drug therapy , Fibrosis , Receptors, Proteinase-Activated
14.
Lab Invest ; 103(11): 100256, 2023 11.
Article in English | MEDLINE | ID: mdl-37797886

ABSTRACT

We examined the effects of gene ablation and chemical inhibition of transient receptor potential ankyrin 1 (TRPA1) on the growth of experimental argon laser-induced choroidal neovascularization (CNV) in mice. CNV was induced in the eyes of 6- to 8-week-old TRPA1-null (knockout [KO]) and wild-type (WT) mice by argon laser irradiation. Gene expression analysis was performed in laser-injured tissues at days 1 and 3. CNV growth was evaluated at day 14. Reciprocal bone marrow transplantation was performed between each genotype to identify the components responsible for either recipient tissue or bone marrow-derived inflammatory cells. Our results show that laser irradiation successfully induced CNV growth at the site of laser injury. The size of induced CNV was significantly smaller in KO mice than in WT mice at day 14, as determined by angiography with fluorescein isothiocyanate-dextran. Invasion of neutrophils, but not macrophages, was suppressed in association with suppression of the expression of transforming growth factor ß1 and interleukin 6 in laser-irradiated KO tissue. Bone marrow transplantation indicated that the genotype of the recipient mouse, but not of inflammatory cells, is attributable to the KO phenotype. Systemic administration of a TRPA1 antagonist also reduced the CNV in a WT mouse. In conclusion, TRPA1 signaling in local cells is involved in growth of laser-induced CNV. The phenotype was not attributable to vascular endothelial cells and inflammatory cells. Blocking TRPA1 signal may therefore be a potential treatment strategy for CNV-related ocular diseases.


Subject(s)
Choroidal Neovascularization , Transforming Growth Factor beta1 , Animals , Mice , Argon , Choroidal Neovascularization/genetics , Choroidal Neovascularization/metabolism , Cytoskeletal Proteins , Disease Models, Animal , Endothelial Cells/metabolism , Lasers , Mice, Inbred C57BL , Mice, Knockout , Neutrophil Infiltration , Transforming Growth Factor beta1/genetics
15.
Eur J Pediatr ; 182(12): 5439-5446, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37755472

ABSTRACT

The current study was designed to assess the association of serum transforming growth factor ß1 (TGF-ß1) with left ventricular hypertrophy (LVH) in children with primary hypertension. The present single-center prospective trial examined 182 patients diagnosed with primary hypertension in Children's Hospital, Capital Institute of Pediatrics, between January 2021 and September 2022. Clinical data were analyzed, and ambulatory blood pressure was assessed for 24 h. LVH, the commonest subclinical cardiac feature of hypertension, was assessed by echocardiography. According to left ventricular geometry, cases were assigned to the LVH (n = 44) and normal geometry (n = 138) groups. Serum TGF-ß1 amounts were quantitated by enzyme-linked immunosorbent assay (ELISA). Receiver operating characteristic (ROC) curves were established to analyze various variables for their predictive values in LVH. Among 182 children with primary hypertension, the concentrations of serum TGF-ß1 were higher in stage 2 hypertension than in stage 1 (47.3 (38.8, 52.5) vs. 46.0 (38.6, 48.2) ng/L, Z = - 2.376; P = 0.018). Additionally, serum TGF-ß1 content showed a positive correlation with BP levels (P < 0.05). TGF-ß1 amounts were significantly elevated in the LVH group compared with the normal geometry group (51.7 (46.1, 54.9) vs. 46.1 (38.7, 48.1) ng/L, Z = - 4.324; P = 0.0000). Serum TGF-ß1 content was positively associated with LVH (r = 0.321, P = 0.0000). Multivariable logistic regression analysis showed BMI (OR = 1.188, 95% CI 1.082-1.305; P = 0.0000) and elevated serum TGF-ß1 content (OR = 1.063, 95% CI 1.016-1.113; P = 0.009) independently predicted LVH. A multivariable logistic regression model considering BMI and TGF-ß1 content in LVH prediction was 0.771, with sensitivity and specificity of 72.7% and 70.3%, respectively. CONCLUSION: These data revealed an association of serum TGF-ß1 with BP in children with primary hypertension. Serum TGF-ß1 concentration was positively correlated with hypertensive cardiac damage. Serum TGF-ß1 might constitute a valuable molecular marker for the prediction of LVH in children with primary hypertension. The combination of BMI and TGF-ß1 has a certain diagnostic and predictive value for LVH in children with primary hypertension, which may provide a new reference index for early clinical identification of hypertensive cardiac damage. WHAT IS KNOWN: • Experimental and clinical data indicated TGF-ß1 is involved in BP elevation. • TGF-ß1 is positively correlated with LVMI and hypertrophy in adults. WHAT IS NEW: • Our current study reveals an association of serum TGF-ß1 with BP in children with primary hypertension. • Elevated serum TGF-ß1 level is positively associated with LVH in children with primary hypertension. • The combination of BMI and TGF-ß1 has a certain diagnostic and predictive value for LVH in children with primary hypertension.


Subject(s)
Hypertension , Hypertrophy, Left Ventricular , Transforming Growth Factor beta1 , Adult , Child , Humans , Blood Pressure , Blood Pressure Monitoring, Ambulatory , Essential Hypertension/complications , Hypertension/complications , Hypertension/diagnosis , Hypertrophy, Left Ventricular/diagnosis , Hypertrophy, Left Ventricular/etiology , Prospective Studies
16.
Protein J ; 42(6): 753-765, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37690089

ABSTRACT

Excessive production of transforming growth factor ß1 (TGF-ß1) in activated hepatic stellate cells (aHSCs) promotes liver fibrosis by activating the TGF-ß1/Smad signaling pathway. Thus, specifically inhibiting the pro-fibrotic activity of TGF-ß1 in aHSCs is an ideal strategy for treating liver fibrosis. Overexpression of platelet-derived growth factor ß receptor (PDGFßR) has been demonstrated on the surface of aHSCs relative to normal cells in liver fibrosis. Interferon-gamma peptidomimetic (mIFNγ) and truncated TGF-ß receptor type II (tTßRII) inhibit the TGF-ß1/Smad signaling pathway by different mechanisms. In this study, we designed a chimeric protein by the conjugation of (1) mIFNγ and tTßRII coupled via plasma protease-cleavable linker sequences (FNPKTP) to (2) PDGFßR-recognizing peptide (BiPPB), namely BiPPB-mIFNγ-tTßRII. This novel protein BiPPB-mIFNγ-tTßRII was effectively prepared using Escherichia coli expression system. The active components BiPPB-mIFNγ and tTßRII were slowly released from BiPPB-mIFNγ-tTßRII by hydrolysis using the plasma protease thrombin in vitro. Moreover, BiPPB-mIFNγ-tTßRII highly targeted to fibrotic liver tissues, markedly ameliorated liver morphology and fibrotic responses in chronic liver fibrosis mice by both inhibiting the phosphorylation of Smad2/3 and inducing the expression of Smad7. Meanwhile, BiPPB-mIFNγ-tTßRII markedly reduced the deposition of collagen fibrils and expression of fibrosis-related proteins in acute liver fibrosis mice. Furthermore, BiPPB-mIFNγ-tTßRII showed a good safety performance in both liver fibrosis mice. Taken together, BiPPB-mIFNγ-tTßRII improved the in vivo anti-liver fibrotic activity due to its high fibrotic liver-targeting potential and the dual inhibition of the TGF-ß1/Smad signaling pathway, which may be a potential candidate for targeting therapy on liver fibrosis.

17.
Vestn Otorinolaringol ; 88(4): 54-60, 2023.
Article in Russian | MEDLINE | ID: mdl-37767591

ABSTRACT

BACKGROUND: One of the poorly studied sections of the pathology of ENT organs is chronic rhinitis in patients with hypothyroidism, the pathogenesis of which has not been fully understood, the diagnosis causes significant difficulties, and there are no recommendations for treatment. Despite receiving replacement therapy with levothyroxine, the symptoms of rhinitis persist. OBJECTIVE: To study the effectiveness of the use of intranasal glucocorticosteroids in patients with chronic rhinitis and hypothyroidism. MATERIAL AND METHODS: Patients with chronic rhinitis and hypothyroidism used mometasone nasal spray 100 mcg 1 time per day for a course of treatment of 2 months (n=60). To assess the symptoms of rhinitis, a visual analog scale (0-10 points), endoscopic examination of ENT organs, anterior active rhinomanometry were used. Evaluation of mucociliary transport was used a saccharin test. The concentration of transforming growth factor (TGF-ß1) in nasal secretion and blood serum was studied by ELISA (Enzyme-Linked Immunosorbent Assay), the number of metabolites of NO - nitrites+nitrates (NOx) was recorded by colorimetric method. RESULTS: The use of mometasone nasal spray in patients with hypothyroidism helped to reduce complaints on a visual-analog scale (difficulty in nasal breathing, rhinorrhea) and improve nasal breathing according to anterior active rhinomanometry. The concentrations of TGF-ß1 and NOx in nasal secretions before mometasone treatment were higher than after treatment, which probably indicates the contribution of these substances to the formation of edematous hypertrophic changes from the nose in patients with hypothyroidism.


Subject(s)
Hypothyroidism , Rhinitis , Humans , Rhinitis/complications , Rhinitis/diagnosis , Rhinitis/drug therapy , Transforming Growth Factor beta1 , Nasal Sprays , Mometasone Furoate
18.
Skin Res Technol ; 29(8): e13431, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37632175

ABSTRACT

PURPOSE: Mesenchymal stem cells (MSCs) can promote burn wound healing, skin appearance, and function recovery by promoting the differentiation and migration of fibroblasts of a wound. The burn environment can activate the autophagy of MSCs. However, it is not clear whether this autophagy can affect the proliferation and migration of fibroblasts. METHODS: In this study, pretreated MSCs with rapamycin and 3-methyladenine modulated autophagy and co-cultured with fibroblasts of burn. Cell migration was detected by immunofluorescence chemical staining. Western blot analysis and enzyme-linked immunosorbent assay were performed to detect 2,3-Dioxygenase (IDO), cytokine synthesis inhibitory factor 10 (IL-10), cytokine synthesis inhibitory factor 6 (IL-6), prostaglandin E2 (PGE2), transforming growth factor beta 1 (TGF-ß1) proteins levels, and the autophagy proteins p62 and microtubule-associated protein LC3-II/I. RESULTS: We demonstrated that autophagy regulates MSCs survival and proliferation in burn wound transplants and found that autophagy inhibition with 3-methyladenine reduced MSCs-mediated, fibroblast proliferation and migration in burn environment. However, rapamycin-induced autophagy had the opposite effect and increased the TGF-ß1 expression. Therefore, we speculate that MSCs may promote fibroblast proliferation and migration by secreting TGF-ß1 via the AKT/mTOR (RAC-alpha serine/threonine-protein kinase/mammalian target of rapamycin) pathway. CONCLUSION: Autophagy of MSCs regulates burn wound fibroblast proliferation and migration by affecting TGF-ß1 and prostaglandin E2 production adjacent to MSCs transplanted on the burn wound. The results of this study provide a potential strategy for promoting MSCs treatment of burns.


Subject(s)
Burns , Interleukin-10 , Humans , Transforming Growth Factor beta1 , Dinoprostone , Fibroblasts
19.
Front Mol Biosci ; 10: 1160851, 2023.
Article in English | MEDLINE | ID: mdl-37577751

ABSTRACT

Background: Tissue fibrosis is a major healthcare burden that affects various organs in the body for which no effective treatments exist. An underlying, emerging theme across organs and tissue types at early stages of fibrosis is the activation of pericytes and/or fibroblasts in the perivascular space. In hepatic tissue, it is well known that liver sinusoidal endothelial cells (EC) help maintain the quiescence of stellate cells, but whether this phenomenon holds true for other endothelial and perivascular cell types is not well studied. Methods: The goal of this work was to develop an organ-on-chip microvascular model to study the effect of EC co-culture on the activation of perivascular cells perturbed by the pro-fibrotic factor TGFß1. A high-throughput microfluidic platform, PREDICT96, that was capable of imparting physiologically relevant fluid shear stress on the cultured endothelium was utilized. Results: We first studied the activation response of several perivascular cell types and selected a cell source, human dermal fibroblasts, that exhibited medium-level activation in response to TGFß1. We also demonstrated that the PREDICT96 high flow pump triggered changes in select shear-responsive factors in human EC. We then found that the activation response of fibroblasts was significantly blunted in co-culture with EC compared to fibroblast mono-cultures. Subsequent studies with conditioned media demonstrated that EC-secreted factors play at least a partial role in suppressing the activation response. A Luminex panel and single cell RNA-sequencing study provided additional insight into potential EC-derived factors that could influence fibroblast activation. Conclusion: Overall, our findings showed that EC can reduce myofibroblast activation of perivascular cells in response to TGFß1. Further exploration of EC-derived factors as potential therapeutic targets in fibrosis is warranted.

20.
Biochim Biophys Acta Mol Cell Res ; 1870(8): 119569, 2023 12.
Article in English | MEDLINE | ID: mdl-37597774

ABSTRACT

Liver fibrosis is characterized by the excessive deposition of extracellular matrix in liver. Chronic liver injury induces the activation of hepatic stellate cell (HSCs), a key step in liver fibrogenesis. The activated HSC is the primary source of ECM and contributes significantly to liver fibrosis. TGFß1 is the most potent pro-fibrotic cytokine. Bromodomain protein 4 (BrD4), an epigenetic reader of histone acetylation marks, was crucial for profibrotic gene expression in HSCs. The present study aimed to investigate the roles of BRD4 in TGFß1-dependent HSC activation and liver fibrosis, focusing on TGFß1-induced alterations of the levels of the fibrotic-related important proteins in HSCs by employing the heterozygous TGFß1 knockout mice and BrD4 knockdown in vivo and in vitro. Results revealed that BrD4 protein level was significantly upregulated by TGFß1 and BrD4 knockdown reduced TGFß1-induced HSC activation and liver fibrosis. BrD4 was required for the influences of TGFß1 on PDGFß receptor and on the pathways of Smad3, Stat3, and Akt. BrD4 also mediated TGFß1-induced increases in histone acetyltransferase p300, the pivotal pro-inflammatory NFkB p65, and tissue inhibitor of metalloproteinase 1 whereas BrD4 reduced Caspase-3 protein levels in HSCs during liver injury, independent of TGFß1. Further experiments indicated the interaction between TGFß1-induced BrD4 and NFkB p65 in HSCs and in liver of TAA-induced liver injury. Human cirrhotic livers were demonstrated a parallel increase in the protein levels of BrD4 and NFkB p65 in HSCs. This study revealed that BrD4 was a key molecular driver of TGFß1-induced HSC activation and liver fibrosis.


Subject(s)
Hepatic Stellate Cells , Transcription Factors , Humans , Animals , Mice , Transcription Factors/genetics , Nuclear Proteins/genetics , Tissue Inhibitor of Metalloproteinase-1 , Liver Cirrhosis/genetics , Cell Cycle Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL