Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Virus Res ; 306: 198534, 2021 12.
Article in English | MEDLINE | ID: mdl-34537259

ABSTRACT

Myxovirus resistance protein A(MxA), one of the dynamin superfamily of large guanosine triphosphatase and a classical interferon stimulated gene (ISG) induced by type I interferons (IFNs), plays antiviral role in various virus infections. However, the effect of MxA on Zika virus (ZIKV) infection and its underlying mechanism remain elusive. In this study, we aimed to explore the role of MxA in ZIKV infection and its potential mechanisms. MxA overexpression was achieved by transfection with plasmid. The levels of MxA expression and ZIKV replication were assayed by both qRT-PCR and western blot. The activation status of Jak/STAT signaling pathway was evaluated at three levels: phosphorylation of STAT1 and STAT2(p-STAT1, p-STAT2) (western blot), activity of interferon sensitive response element (ISRE) (dual luciferase reporter gene assay), and the expression levels of ISGs (qRT-PCR). Our results showed that MxA overexpression inhibited ZIKV replication with no effect on virus entry. The expression levels of retinoic acid inducible gene I (RIG-I), melanoma differentiation-associated gene-5(MDA5), Toll-like receptor3(TLR3) and interferon regulatory Factor 3(IRF3), as well as IFNα and IFNß, were increased in parallel with MxA upregulation. Interestingly, the inhibitory effect of MxA on ZIKV replication was abolished in type I IFN receptor (IFNAR) deficient cells (U5A). These data collectively supported that MxA inhibits ZIKV replication through activation of the type I IFN signaling pathway.


Subject(s)
Interferon Type I , Orthomyxoviridae , Zika Virus Infection , Zika Virus , Humans , Interferon Type I/metabolism , Signal Transduction/physiology , Staphylococcal Protein A , Virus Replication/genetics , Zika Virus/metabolism
2.
Cell Rep ; 25(1): 118-129.e4, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30282022

ABSTRACT

In sterile neuroinflammation, a pathological role is proposed for microglia, whereas in viral encephalitis, their function is not entirely clear. Many viruses exploit the odorant system and enter the CNS via the olfactory bulb (OB). Upon intranasal vesicular stomatitis virus instillation, we show an accumulation of activated microglia and monocytes in the OB. Depletion of microglia during encephalitis results in enhanced virus spread and increased lethality. Activation, proliferation, and accumulation of microglia are regulated by type I IFN receptor signaling of neurons and astrocytes, but not of microglia. Morphological analysis of myeloid cells shows that type I IFN receptor signaling of neurons has a stronger impact on the activation of myeloid cells than of astrocytes. Thus, in the infected CNS, the cross talk among neurons, astrocytes, and microglia is critical for full microglia activation and protection from lethal encephalitis.


Subject(s)
Astrocytes/immunology , Encephalitis, Viral/immunology , Microglia/immunology , Neurons/immunology , Receptor, Interferon alpha-beta/immunology , Animals , Astrocytes/pathology , Cell Communication/immunology , Encephalitis, Viral/genetics , Encephalitis, Viral/pathology , Female , Humans , Male , Mice , Mice, Inbred C57BL , Microglia/pathology , Neurons/pathology , Signal Transduction
3.
Virology ; 522: 19-26, 2018 09.
Article in English | MEDLINE | ID: mdl-30014854

ABSTRACT

Interferons (IFNs) exhibit forceful inhibitory activities against numerous viruses by inducing synthesis of anti-viral proteins or promoting immune cell functions, which help eradicate the vicious microbes. Consequently, the degree to which viruses evade or counterattack IFN responses influences viral pathogenicity. Viruses have developed many strategies to interfere with the synthesis of IFNs or IFN receptor signaling pathway. Furthermore, multiple viruses decrease levels of IFN receptors via diverse tactics, which include decreasing type I IFN receptor mRNA expression, blocking post-translational modification of the receptor, and degrading IFN receptors. Recently, influenza virus was found to induce CK1α-induced phosphorylation and subsequent degradation of the receptor for type I and II IFNs. In this review, viral mechanisms that remove IFN receptors are summarized with an emphasis on the mechanisms for virus-induced degradation of IFN receptors.


Subject(s)
Host-Pathogen Interactions , Immune Evasion , Receptors, Interferon/antagonists & inhibitors , Viruses/pathogenicity , Animals , Humans
4.
J Virol ; 91(8)2017 04 15.
Article in English | MEDLINE | ID: mdl-28122987

ABSTRACT

Hepatitis B virus (HBV) infection may cause acute hepatitis B, chronic hepatitis B (CHB), liver cirrhosis, and hepatocellular carcinoma (HCC). However, the mechanisms by which HBV evades host immunity and maintains chronic infection are largely unknown. Here, we revealed that matrix metalloproteinase 9 (MMP-9) is activated in peripheral blood mononuclear cells (PBMCs) of HBV-infected patients, and HBV stimulates MMP-9 expression in macrophages and PBMCs isolated from healthy individuals. MMP-9 plays important roles in the breakdown of the extracellular matrix and in the facilitation of tumor progression, invasion, metastasis, and angiogenesis. MMP-9 also regulates respiratory syncytial virus (RSV) replication, but the mechanism underlying such regulation is unknown. We further demonstrated that MMP-9 facilitates HBV replication by repressing the interferon (IFN)/Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway, IFN action, STAT1/2 phosphorylation, and IFN-stimulated gene (ISG) expression. Moreover, MMP-9 binds to type I IFN receptor 1 (IFNAR1) and facilitates IFNAR1 phosphorylation, ubiquitination, subcellular distribution, and degradation to interfere with the binding of IFANR1 to IFN-α. Thus, we identified a novel positive-feedback regulation loop between HBV replication and MMP-9 production. On one hand, HBV activates MMP-9 in infected patients and leukocytes. On the other hand, MMP-9 facilitates HBV replication through repressing IFN/JAK/STAT signaling, IFNAR1 function, and IFN-α action. Therefore, HBV may take the advantage of MMP-9 function to establish or maintain chronic infection.IMPORTANCE Hepatitis B virus (HBV) infection may cause chronic hepatitis B (CHB) and hepatocellular carcinoma (HCC). However, the mechanisms by which HBV maintains chronic infection are largely unknown. Matrix metalloproteinase 9 (MMP-9) plays important roles in the facilitation of tumor progression, invasion, metastasis, and angiogenesis. However, the effects of MMP-9 on HBV replication and pathogenesis are not known. This study reveals that MMP-9 expression is activated in patients with CHB, and HBV stimulates MMP-9 production in PBMCs and macrophages. More interestingly, MMP-9 in turn promotes HBV replication through suppressing IFN-α action. Moreover, MMP-9 interacts with type I interferon receptor 1 (IFNAR1) to disturb the binding of IFN-α to IFNAR1 and facilitate the phosphorylation, ubiquitination, subcellular distribution, and degradation of IFNAR1. Therefore, these results discover a novel role of MMP-9 in viral replication and reveal a new mechanism by which HBV evades host immunity to maintain persistent infection.


Subject(s)
Hepatitis B virus/physiology , Host-Pathogen Interactions , Matrix Metalloproteinase 9/metabolism , Receptor, Interferon alpha-beta/metabolism , Signal Transduction , Virus Replication , Cells, Cultured , Hepatocytes/virology , Humans , Leukocytes, Mononuclear/immunology , Protein Binding
5.
Cancer Biol Ther ; 16(8): 1214-9, 2015.
Article in English | MEDLINE | ID: mdl-26046815

ABSTRACT

The major known function of cytokines that belong to type I interferons (IFN, including IFNα and IFNß) is to mount the defense against viruses. This function also protects the genetic information of host cells from alterations in the genome elicited by some of these viruses. Furthermore, recent studies demonstrated that IFN also restrict proliferation of damaged cells by inducing cell senescence. Here we investigated the subsequent role of IFN in elimination of the senescent cells. Our studies demonstrate that endogenous IFN produced by already senescent cells contribute to increased expression of the natural killer (NK) receptor ligands, including MIC-A and ULBP2. Furthermore, neutralization of endogenous IFN or genetic ablation of its receptor chain IFNAR1 compromises the recognition of senescent cells and their clearance in vitro and in vivo. We discuss the role of IFN in protecting the multi-cellular host from accumulation of damaged senescent cells and potential significance of this mechanism in human cancers.


Subject(s)
Cellular Senescence , Fibroblasts/pathology , Interferon Type I/physiology , Animals , Cells, Cultured , Cellular Senescence/drug effects , Fibroblasts/drug effects , GPI-Linked Proteins/genetics , Histocompatibility Antigens Class I/genetics , Humans , Intercellular Signaling Peptides and Proteins/genetics , Interferon Type I/pharmacology , Interferon-beta/immunology , Interferon-beta/metabolism , Interferon-beta/pharmacology , Mice, Inbred C57BL , Mice, Mutant Strains , NK Cell Lectin-Like Receptor Subfamily K/genetics , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Progeria/pathology , Receptor, Interferon alpha-beta/genetics , Werner Syndrome/pathology
SELECTION OF CITATIONS
SEARCH DETAIL