Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Medicina (Kaunas) ; 60(2)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38399546

ABSTRACT

Background and Objectives: In this study, we applied one-step real time rt-PCR technology type II INF signature to blood and nasopharyngeal (NPS) swabs of acute early recovery children < 1 years hospitalized for bronchiolitis with laboratory-confirmed RSV infection. Materials and Methods: A prospective observational case-control study was conducted in 2021-2022. The study took place in Children Hospital "Regina Margherita", Torino Italy. The study included 66 infants, of which 30 patients were hospitalized for bronchiolitis due to RSV infection and 36 age-matched controls. Inclusion criteria included a positive RSV test for infants with bronchiolitis. We collected peripheral blood and nasopharyngeal swabs for relative quantification of type II Interferon signature by One-Step Multiplex PCR real time. Results: IFN levels were downregulated in the peripheral blood of bronchiolitis patients; these data were not confirmed in the nasopharyngeal swab. There was no correlation between NPS and the type II IFN score in peripheral blood. Conclusions: our study shows for the first time that type II IFN score was significant reduced in peripheral blood of infants with bronchiolitis by RSV compared to age-matched healthy controls; in the NPS swab this resulted downregulation was not statistically significant and the type II IFN score in the NPS swab can be used as marker of resolution of infection or improvement of clinical conditions.


Subject(s)
Bronchiolitis , Respiratory Syncytial Virus Infections , Infant , Child , Humans , Interferon-gamma , Case-Control Studies , Nasopharynx
2.
J Med Virol ; 96(2): e29472, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38373201

ABSTRACT

Interferons (IFNs) are critical for immune defense against pathogens. While type-I and -III IFNs have been reported to inhibit SARS-CoV-2 replication, the antiviral effect and mechanism of type-II IFN against SARS-CoV-2 remain largely unknown. Here, we evaluate the antiviral activity of type-II IFN (IFNγ) using human lung epithelial cells (Calu3) and ex vivo human lung tissues. In this study, we found that IFNγ suppresses SARS-CoV-2 replication in both Calu3 cells and ex vivo human lung tissues. Moreover, IFNγ treatment does not significantly modulate the expression of SARS-CoV-2 entry-related factors and induces a similar level of pro-inflammatory response in human lung tissues when compared with IFNß treatment. Mechanistically, we show that overexpression of indoleamine 2,3-dioxygenase 1 (IDO1), which is most profoundly induced by IFNγ, substantially restricts the replication of ancestral SARS-CoV-2 and the Alpha and Delta variants. Meanwhile, loss-of-function study reveals that IDO1 knockdown restores SARS-CoV-2 replication restricted by IFNγ in Calu3 cells. We further found that the treatment of l-tryptophan, a substrate of IDO1, partially rescues the IFNγ-mediated inhibitory effect on SARS-CoV-2 replication in both Calu3 cells and ex vivo human lung tissues. Collectively, these results suggest that type-II IFN potently inhibits SARS-CoV-2 replication through IDO1-mediated antiviral response.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Virus Replication , Lung , Interferons , Epithelial Cells , Antiviral Agents/pharmacology
3.
Fish Shellfish Immunol ; 145: 109292, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38145783

ABSTRACT

Type II interferons (IFNs) exert antiviral functions by binding to receptors and activating downstream signaling pathways. However, our understanding of the antiviral functions and the receptor complex model of type II IFNs in teleost fish remains limited. In this study, we determined the functions of type II IFNs (LmIFN-γ and LmIFN-γrel) in Lateolabrax maculatus and assessed their antiviral ability mediated by their combination with different cytokine receptor family B members (LmCRFB6, LmCRFB13, and LmCRFB17). After infection with largemouth bass ulcer syndrome virus (LBUSV), the expression levels of LmIFNs and LmCRFBs increased significantly in vitro and in vivo. Incubation or injection with LmIFNs-His activated the expressions of LmISG15, LmMx, and LmIRF1. LmIFN-γ and LmIFN-γrel both bound to the extracellular domains of the three CRFBs via Pull-down. Furthermore, LmIFN-γ combined with LmCRFB6, LmCRFB6+LmCRFB13, and LmCRFB6+LmCRFB13+LmCRFB17 and LmIFN-γrel combined with all combinations containing LmCRFB17 induced the transcription of downstream genes and reduced the number of LBUSV copies. Therefore, type II IFNs (LmIFN-γ and LmIFN-γrel) contribute to enhanced antiviral immunity in L. maculatus and that ligand-receptor combinations effectively suppress virus replication. These findings provide a reference for future studies of the signal transduction mechanism of type II IFNs in teleost fish.


Subject(s)
Bass , Viruses , Animals , Interferon-gamma/genetics , Bass/metabolism , Signal Transduction , Interferons
4.
Dev Comp Immunol ; 139: 104589, 2023 02.
Article in English | MEDLINE | ID: mdl-36403789

ABSTRACT

In mammals, type II interferon (IFN; i.e. IFN-γ) signalling transduces through its specific receptors IFN-γR1 and IFN-γR2. In an osteoglossiform fish, the arapaima Arapaima gigas, three type II IFNs, IFN-γ-like, IFN-γ and IFN-γrel, and their four possible receptor subunits IFN-γR1-1, IFN-γR1-2, IFN-γR2-1 and IFN-γR2-2 were identified in this study. The three type II IFN genes are composed of four exons and three introns, and they all contain IFN-γ signature motif and signal peptide, with the presence of potential nuclear localization signal (NLS) in IFN-γ-like and IFN-γ. The IFN-γR1-1, IFN-γR1-2, IFN-γR2-1 and IFN-γR2-2 are composed of seven exons and six introns, with predicted IFN-γR1-1 and IFN-γR1-2 proteins containing JAK1 and STAT1 binding sites, and IFN-γR2-1 and IFN-γR2-2 containing JAK2 binding sites. Gene synteny analysis showed that the type II IFN and their receptor loci are duplicated in arapaima. All these genes were expressed constitutively in all organs/tissues examined, and responded to the stimulation of polyI:C. The prokaryotic recombinant IFN-γ-like, IFN-γ and IFN-γrel proteins can significantly induce the upregulation of immune-related genes in trunk kidney leucocytes. The ligand-receptor relationship analyses revealed that recombinant IFN-γ-like, IFN-γ, and IFN-γrel transduce downstream signalling through IFN-γR1-1/IFN-γR2-1, IFN-γR1-2/IFN-γR2-2, and IFN-γR1-1, respectively, in xenogeneic cells with the overexpression of original or chimeric receptors. In addition, tyrosine (Y) 366 and Y377 in the intracellular region may be essential for the function of IFN-γR1-2 and IFN-γR1-1, respectively. The finding of type II IFN system in A. gigas thus provides different knowledge in understanding the diversity and evolution of type II IFN ligand-receptor relationships in vertebrates.


Subject(s)
Interferon-gamma , Mammals , Animals , Interferon-gamma/genetics , Ligands
5.
Inflamm Res ; 72(2): 251-262, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36527461

ABSTRACT

OBJECTIVE AND DESIGN: Staphylococcus aureus (S. aureus) is one of the leading causes of human respiratory tract infections. The function of Staphylococcal protein A (SpA), expressed on the S. aureus bacterial membrane and released in the environment, on human nasal epithelial cells (HNECs) have not been fully elucidated. In this study, we tested the SpA expression in S. aureus from chronic rhinosinusitis patients and investigated the effects of SpA on HNECs inflammation through Interferon Gamma Receptor 1(IFNGR1)/phosphorylated Janus Kinase 2 (p-JAK2) pathway. METHODS: RNA profiling was performed to investigate inflammatory activation in a S. aureus chronic rhinosinusitis (CRS) mouse model. SpA release by S. aureus clinical isolates was determined using ELISA. The effect of purified SpA and SpA enriched conditioned media from S. aureus clinical isolates on HNECs cytotoxicity, apoptosis and release of inflammatory cytokines was evaluated using lactate dehydrogenase assays, and flow cytometry. SpA dependent IFNGR1 and p-JAK2 expression were assessed by qPCR, immunofluorescence and western blot in HNECs. RESULTS: 49 genes were significantly induced in S. aureus CRS mice indicative of activation of interferon signaling. SpA release was significantly higher in S. aureus clinical isolates from chronic rhinosinusitis with nasal polyps (CRSwNP) patients. Purified SpA significantly increased IFNGR1 mRNA and protein expression in HNECs. SpA induced cytotoxic effects and induced the release of Interleukin-6 (IL-6) and IL-8 in an IFNGR1 dependent way. CONCLUSION: SpA induces interferon signaling through activation of the IFNGR1-JAK-2 pathway, which provides an understanding of how S. aureus SpA affects the inflammatory process in the upper airways.


Subject(s)
Nasal Polyps , Rhinitis , Sinusitis , Staphylococcal Infections , Humans , Animals , Mice , Staphylococcal Protein A , Staphylococcus aureus/physiology , Inflammation , Interferons , Epithelial Cells , Chronic Disease
6.
Clin Pract ; 12(5): 788-796, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36286068

ABSTRACT

Considerable measures have been implemented in healthcare institutions to screen for and treat tuberculosis (TB) in developed countries; however, in low- and middle-income countries, many individuals still suffer from TB's deleterious effects. TB is caused by an infection from the Mycobacterium tuberculosis (M. tb) bacteria. Symptoms of TB may range from an asymptomatic latent-phase affecting the pulmonary tract to a devastating active and disseminated stage that can cause central nervous system demise, musculoskeletal impairments, and genitourinary compromise. Following M. tb infection, cytokines such as interferons (IFNs) are released as part of the host immune response. Three main classes of IFNs prevalent during the immune defense include: type I IFN (α and ß), type II IFN (IFN-γ), and type III IFN (IFN-λ). The current literature reports that type I IFN plays a role in diminishing the host defense against M. tb by attenuating T-cell activation. In opposition, T-cell activation drives type II IFN release, which is the primary cytokine mediating protection from M. tb by stimulating macrophages and their oxidative defense mechanisms. Type III IFN has a subsidiary part in improving the Th1 response for host cell protection against M. tb. Based on the current evidence available, our group aims to summarize the role that each IFN serves in TB within this literature review.

7.
Med ; 2(9): 1072-1092.e7, 2021 09 10.
Article in English | MEDLINE | ID: mdl-34414385

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in children is generally milder than in adults, but a proportion of cases result in hyperinflammatory conditions often including myocarditis. METHODS: To better understand these cases, we applied a multiparametric approach to the study of blood cells of 56 children hospitalized with suspicion of SARS-CoV-2 infection. Plasma cytokine and chemokine levels and blood cellular composition were measured, alongside gene expression at the bulk and single-cell levels. FINDINGS: The most severe forms of multisystem inflammatory syndrome in children (MIS-C) related to SARS-CoV-2 that resulted in myocarditis were characterized by elevated levels of pro-angiogenesis cytokines and several chemokines. Single-cell transcriptomics analyses identified a unique monocyte/dendritic cell gene signature that correlated with the occurrence of severe myocarditis characterized by sustained nuclear factor κB (NF-κB) activity and tumor necrosis factor alpha (TNF-α) signaling and associated with decreased gene expression of NF-κB inhibitors. We also found a weak response to type I and type II interferons, hyperinflammation, and response to oxidative stress related to increased HIF-1α and Vascular endothelial growth factor (VEGF) signaling. CONCLUSIONS: These results provide potential for a better understanding of disease pathophysiology. FUNDING: Agence National de la Recherche (Institut Hospitalo-Universitaire Imagine, grant ANR-10-IAHU-01; Recherche Hospitalo-Universitaire, grant ANR-18-RHUS-0010; Laboratoire d'Excellence ''Milieu Intérieur," grant ANR-10-LABX-69-01; ANR-flash Covid19 "AIROCovid" and "CoVarImm"), Institut National de la Santé et de la Recherche Médicale (INSERM), and the "URGENCE COVID-19" fundraising campaign of Institut Pasteur.


Subject(s)
COVID-19 , Myocarditis , Adult , COVID-19/complications , Chemokines , Child , Cytokines , Dendritic Cells , Humans , Monocytes , NF-kappa B , SARS-CoV-2/genetics , Systemic Inflammatory Response Syndrome , Vascular Endothelial Growth Factor A
8.
Cells ; 10(3)2021 03 23.
Article in English | MEDLINE | ID: mdl-33806810

ABSTRACT

As highlighted by the COVID-19 global pandemic, elderly individuals comprise the majority of cases of severe viral infection outcomes and death. A combined inability to control viral replication and exacerbated inflammatory immune activation in elderly patients causes irreparable immune-mediated tissue pathology in response to infection. Key to these responses are type I, II, and III interferons (IFNs), which are involved in inducing an antiviral response, as well as controlling and suppressing inflammation and immunopathology. IFNs support monocyte/macrophage-stimulated immune responses that clear infection and promote their immunosuppressive functions that prevent excess inflammation and immune-mediated pathology. The timing and magnitude of IFN responses to infection are critical towards their immunoregulatory functions and ability to prevent immunopathology. Aging is associated with multiple defects in the ability of macrophages and dendritic cells to produce IFNs in response to viral infection, leading to a dysregulation of inflammatory immune responses. Understanding the implications of aging on IFN-regulated inflammation will give critical insights on how to treat and prevent severe infection in vulnerable individuals. In this review, we describe the causes of impaired IFN production in aging, and the evidence to suggest that these impairments impact the regulation of the innate and adaptive immune response to infection, thereby causing disease pathology.


Subject(s)
Adaptive Immunity , Aging/immunology , COVID-19/immunology , Immunity, Innate , Interferons/physiology , SARS-CoV-2/immunology , Virus Replication/immunology , Aged , COVID-19/virology , Humans , Inflammation/drug therapy , Inflammation/immunology , Interferon Type I/immunology , Interferon Type I/therapeutic use , Interferon-gamma/immunology , Interferon-gamma/therapeutic use , Interferons/immunology , Interferons/therapeutic use , Interferon Lambda , COVID-19 Drug Treatment
9.
J Cell Mol Med ; 24(18): 10803-10815, 2020 09.
Article in English | MEDLINE | ID: mdl-32757451

ABSTRACT

Some studies suggested the prognosis value of immune gene in lower grade glioma (LGG). Recurrence in LGG is a tough clinical problem for many LGG patients. Therefore, prognosis biomarker is required. Multivariate prognosis Cox model was constructed and then calculated the risk score. And differential expressed transcription factors (TFs) and differential expressed immune genes (DEIGs) were co-analysed. Besides, significant immune cells/pathways were identified by single sample gene set enrichment analysis (ssGSEA). Moreover, gene set variation analysis (GSVA) and univariate Cox regression were applied to filter prognostic signalling pathways. Additionally, significant DEIG and immune cells/pathways, and significant DEIG and pathways were co-analysed. Further, differential enriched pathways were identified by GSEA. In sum, a scientific hypothesis for recurrence LGG including TF, immune gene and immune cell/pathway was established. In our study, a total of 536 primary LGG samples, 2,498 immune genes and 318 TFs were acquired. Based on edgeR method, 2,164 DEGs, 2,498 DEIGs and 31 differentials expressed TFs were identified. A total of 106 DEIGs were integrated into multivariate prognostic model. Additionally, the AUC of the ROC curve was 0.860, and P value of Kaplan-Meier curve < 0.001. GATA6 (TF) and COL3A1 (DEIG) were selected (R = 0.900, P < 0.001, positive) as significant TF-immune gene links. Type II IFN response (P < 0.001) was the significant immune pathway. Propanoate metabolism (P < 0.001) was the significant KEGG pathway. We proposed that COL3A1 was positively regulated by GATA6, and by effecting type II IFN response and propanoate metabolism, COL3A1 involved in LGG recurrence.


Subject(s)
Brain Neoplasms/metabolism , Collagen Type III/physiology , GATA6 Transcription Factor/physiology , Gene Expression Regulation, Neoplastic , Glioma/metabolism , Interferon alpha-2/biosynthesis , Neoplasm Proteins/physiology , Neoplasm Recurrence, Local/metabolism , Propionates/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Brain Neoplasms/genetics , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Female , Gene Regulatory Networks , Glioma/genetics , Glioma/immunology , Glioma/pathology , Humans , Interferon alpha-2/genetics , Male , Metabolic Networks and Pathways/genetics , Metabolic Networks and Pathways/immunology , Middle Aged , Neoplasm Grading , Neoplasm Proteins/biosynthesis , Neoplasm Proteins/genetics , Neoplasm Recurrence, Local/pathology , Prognosis , Proportional Hazards Models , Risk , Young Adult
10.
Fish Shellfish Immunol ; 96: 107-113, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31805410

ABSTRACT

In fish, interferon (IFN) regulatory factor 2 (IRF2) is a regulator of the type I IFN-dependent immune response, thereby playing a crucial role in innate immunity. However, the specific mechanism by which IRF2 regulates type II IFN in fish remains unclear. In the present study, first, to analyse the potential role of golden pompano (Trachinotus ovatus) IRF2 (ToIRF2) in the immune response, the mRNA level of ToIRF2 was detected by quantitative real-time polymerase chain reaction (qRT-PCR) after parasite infection. ToIRF2 was upregulated at early time points in both local infection sites (skin and gill) and system immune tissues (liver, spleen, and head-kidney) after stimulation with Cryptocaryon irritans. Second, to investigate the modulation effect of ToIRF2 on type II IFN (interferon gamma, IFNγ) expression, a promoter analysis was performed using progressive deletion mutations of ToIFNγ. The expression level of IFNγ-5 was highest among the five truncated mutants in response to ToIRF2, indicating that the core promoter region was located from -189 bp to +120 bp, which included the IRF2 binding sites. Mutation analyses showed that the activity of the ToIFNγ promoter dramatically decreased after the targeted mutation of the M1, M2 or M3 binding sites. Additionally, electrophoretic mobile shift assay (EMSA) confirmed that IRF2 interacted with the M1 binding site in the ToIFNγ promoter region to dominate ToIFNγ expression. Finally, overexpressing ToIRF2 in vitro notably increased ToIFNγ and the transcription of several type II IFN/IRF-based signalling pathway genes. These results suggested that ToIRF2 might be involved in the host defence against C. irritans infection and contribute to a better understanding of the transcriptional mechanisms by which ToIRF2 regulates type II IFN in fish.


Subject(s)
Fish Diseases/immunology , Fishes/genetics , Fishes/immunology , Gene Expression Regulation/immunology , Immunity, Innate/genetics , Interferon Regulatory Factor-2/genetics , Interferon Regulatory Factor-2/immunology , Animals , Base Sequence , Ciliophora/physiology , Ciliophora Infections/immunology , Ciliophora Infections/parasitology , Ciliophora Infections/veterinary , Fish Diseases/parasitology , Fish Proteins/genetics , Fish Proteins/immunology , Gene Expression Profiling/veterinary , Interferon-gamma/genetics , Interferon-gamma/metabolism , Sequence Alignment/veterinary
11.
Mech Ageing Dev ; 183: 111148, 2019 10.
Article in English | MEDLINE | ID: mdl-31541624

ABSTRACT

Alzheimer's disease was first described over 100 years ago, yet it remains incurable and affects 44 million people worldwide. Traditionally, research has largely focused on the amyloid cascade hypothesis, but interest in the importance of inflammation in the progression of the disease has recently been increasing. Interferons, a large family of cytokines that trigger the immune system, are believed to play a crucial role in the pathology of Alzheimer's disease. This review focuses on how interferons affect the brain during ageing and whether they could be candidate therapeutic targets for the treatment of Alzheimer's disease.


Subject(s)
Aging/immunology , Alzheimer Disease/immunology , Brain/immunology , Interferons/immunology , Aging/pathology , Alzheimer Disease/pathology , Alzheimer Disease/therapy , Brain/pathology , Humans
12.
Virology ; 522: 19-26, 2018 09.
Article in English | MEDLINE | ID: mdl-30014854

ABSTRACT

Interferons (IFNs) exhibit forceful inhibitory activities against numerous viruses by inducing synthesis of anti-viral proteins or promoting immune cell functions, which help eradicate the vicious microbes. Consequently, the degree to which viruses evade or counterattack IFN responses influences viral pathogenicity. Viruses have developed many strategies to interfere with the synthesis of IFNs or IFN receptor signaling pathway. Furthermore, multiple viruses decrease levels of IFN receptors via diverse tactics, which include decreasing type I IFN receptor mRNA expression, blocking post-translational modification of the receptor, and degrading IFN receptors. Recently, influenza virus was found to induce CK1α-induced phosphorylation and subsequent degradation of the receptor for type I and II IFNs. In this review, viral mechanisms that remove IFN receptors are summarized with an emphasis on the mechanisms for virus-induced degradation of IFN receptors.


Subject(s)
Host-Pathogen Interactions , Immune Evasion , Receptors, Interferon/antagonists & inhibitors , Viruses/pathogenicity , Animals , Humans
13.
Clin Exp Allergy ; 47(1): 71-84, 2017 01.
Article in English | MEDLINE | ID: mdl-27910206

ABSTRACT

BACKGROUND: In contrast to eosinophils and neutrophils, the regulation of the lifespan of human basophils is poorly defined, with the exception of the potent anti-apoptotic effect of IL-3 that also promotes pro-inflammatory effector functions and phenotypic changes. Type I IFNs (IFN-α, IFN-ß), which are well known for their anti-viral activities, have the capacity to inhibit allergic inflammation. OBJECTIVE: To elucidate whether type I IFNs have the potential to abrogate the lifespan and/or effector functions of human basophils. METHODS: We cultured human basophils, and for comparison, eosinophils and neutrophils, with IL-3, interferons, FasL and TRAIL, alone or in combination, and studied cell survival, effector functions and signalling pathways involved. RESULTS: Despite an identical pattern of early signalling in basophils, eosinophils and neutrophils in response to different types of interferons, only basophils displayed enhanced apoptosis after type I IFN treatment. IFN-γ prolonged survival of eosinophils but did not affect the lifespan of basophils. IFN-α-mediated apoptosis required STAT1-STAT2 heterodimers and the contribution of constitutive p38 MAPK activity. Whereas the death ligands FasL and TRAIL-induced apoptosis in basophils per se, IFN-α-mediated apoptosis did neither involve autocrine TRAIL signalling nor did it sensitize basophils to FasL-induced apoptosis. However, IFN-α and FasL displayed an additive effect in killing basophils. Interestingly, IL-3, which protected basophils from IFN-α-, TRAIL- or FasL-mediated apoptosis, did not completely block the additive effect of combined IFN-α and FasL treatment. Moreover, we demonstrate that IFN-α suppressed IL-3-induced release of IL-8 and IL-13. In contrast to IFN-α-mediated apoptosis, these inhibitory effects of IFN-α were not dependent on p38 MAPK signalling. CONCLUSIONS AND CLINICAL RELEVANCE: Our study defines the unique and granulocyte-type-specific inhibitory and pro-apoptotic function of type I IFNs and their cooperation with death ligands in human blood basophils, which may be relevant for the anti-allergic properties of type I IFNs.


Subject(s)
Basophils/immunology , Basophils/metabolism , Fas Ligand Protein/metabolism , Interferon Type I/metabolism , Interleukin-13/metabolism , Apoptosis/drug effects , Apoptosis/immunology , Cell Survival/drug effects , Cytokines/metabolism , Fas Ligand Protein/chemistry , Humans , Interferon Type I/pharmacology , Interferon-gamma/metabolism , Interferon-gamma/pharmacology , Janus Kinases/metabolism , Models, Biological , Protein Binding , Protein Interaction Domains and Motifs , STAT Transcription Factors/metabolism , Signal Transduction/drug effects , TNF-Related Apoptosis-Inducing Ligand/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL