Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
Biochem Biophys Res Commun ; 736: 150504, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39121673

ABSTRACT

BACKGROUND & AIMS: Primary Hepatic Neuroendocrine Carcinoma (PHNEC) is a rare and aggressive tumor with high recurrence rates. Surgical resection remains the only therapeutic strategy. The effectiveness of tyrosine kinase inhibitors (TKIs) for PHNEC remains unclear due to limited research. METHODS: We employed immunohistochemical staining to diagnose PHNEC and assess the expression of eight tyrosine kinase receptors in tumor tissues, including VEGFRs, PDGFRA, EGFR, FGFRs et al. A patient-derived xenograft (PDX) model was established using PHNEC tumor tissues to test the efficacy of TKIs. PDX mice bearing tumors were treated with Avapritinib, an FDA-approved PDGFRA-targeting drug, at a daily oral dose of 10 mg/kg for 2 weeks. RESULTS: Pathological analysis confirmed the diagnosis of PHNEC with positive expression of Neural cell adhesion molecule (NCAM/CD56), Synaptophysin (Syn), and Somatostatin receptor 2 (SSTR-2), and negative expression of Hep (Hepatocyte Paraffin 1), a biomarker for Hepatocellular carcinoma. Notably, PDGFRA was significantly overexpressed in PHNEC tumor tissues compared to other tyrosine kinases. Avapritinib treatment significantly reduced tumor growth in PDX mice by 73.9 % (p = 0.008). Additionally, Avapritinib treatment led to a marked decrease in PDGFRA and Ki-67 expression, suggesting that it inhibits tumor cell proliferation by suppressing PDGFRA. CONCLUSION: Our findings suggest that PDGFRA is a potential therapeutic target for PHNEC, and its inhibition with Avapritinib may offer clinical benefits to patients with this rare malignancy.

2.
Life (Basel) ; 14(8)2024 Aug 18.
Article in English | MEDLINE | ID: mdl-39202767

ABSTRACT

Breast cancer is one of the most common forms of neoplasia worldwide. The purpose of our observational study was to evaluate the status of HER2 overexpression among new cases of breast neoplasia with an impact on the natural history of breast cancer disease and therapeutic personalization according to staging. This study included 45 breast cancer patients which have an overexpression of HER2 through the mutation of the EGFR-ERBB2 receptor. Immunohistochemical staining was performed on sections of formalin-fixed paraffin-embedded breast tissue. The patients were evaluated demographically and therapeutically in all stages. The post-surgical histopathological examination revealed complete pathological responses in 19 patients and pathological responses with residual disease either at the tumor level or lymphatic or both variants in a percentage of 44% (15 cases). The disease-free interval (DFI) under anti-HER2 therapy was recorded in 41 patients, representing 91% of the study group. Anti-HER2 therapy in any therapeutic stage has shown increased efficiency in blocking these tyrosine kinase receptors, evidenced by the high percentage of complete pathological responses, as well as the considerable percentage (47%) of complete remissions and stationary disease, in relation to the HER2-positive patient group.

3.
Immunopharmacol Immunotoxicol ; 46(4): 550-563, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39013809

ABSTRACT

OBJECTIVE: Inflammatory Bowel Disease (IBD) poses a persistent challenge in the realm of gastroenterology, necessitating continual exploration of innovative treatment strategies. The limited efficacy and potential side effects associated with existing therapeutic modalities underscore the urgent need for novel approaches in IBD management. This study aims to examine potential therapeutic targets and recent advancements in understanding the disease's intricate pathogenesis, with a spotlight on the gut microbiome, immune dysregulation, and genetic predispositions. METHODS: A comprehensive review was conducted to delve into the pressing demand for new avenues in IBD treatment. The study examined potential therapeutic targets such as phosphodiesterase 4 (PDE4) inhibitors, immune system modulators, Tyrosine kinase receptors (TYK), Toll-like receptors (TLRs), modulation of the gut microbiota, stem cell therapy, fibrosis management, interleukins (ILs) regulation, and oxidative stress mitigation. Additionally, advances in precision medicine, biologics, small molecule inhibitors, and microbiome modulation techniques were explored. RESULTS: The investigation unveiled promising therapeutic targets and provided insights into recent breakthroughs that herald a transformative era in the therapeutic landscape for IBD. Advances in precision medicine, biologics, small molecule inhibitors, and the exploration of microbiome modulation techniques stood out as pivotal milestones in the field of gastroenterology. CONCLUSIONS: The findings offer renewed hope for enhanced efficacy, reduced side effects, and improved patient outcomes in the treatment of IBD. These innovative approaches necessitate continual exploration and underscore the urgent need for novel strategies in IBD management, potentially revolutionizing the realm of gastroenterology.


Subject(s)
Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Humans , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/drug therapy , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/immunology , Animals , Phosphodiesterase 4 Inhibitors/therapeutic use , Molecular Targeted Therapy/methods , Precision Medicine/methods
4.
Neurochem Res ; 49(9): 2303-2318, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38856889

ABSTRACT

Brain-derived neurotrophic factor (BDNF) is vital for synaptic plasticity, cell persistence, and neuronal development in peripheral and central nervous systems (CNS). Numerous intracellular signalling pathways involving BDNF are well recognized to affect neurogenesis, synaptic function, cell viability, and cognitive function, which in turn affects pathological and physiological aspects of neurons. Stroke has a significant psycho-socioeconomic impact globally. Central post-stroke pain (CPSP), also known as a type of chronic neuropathic pain, is caused by injury to the CNS following a stroke, specifically damage to the somatosensory system. BDNF regulates a broad range of functions directly or via its biologically active isoforms, regulating multiple signalling pathways through interactions with different types of receptors. BDNF has been shown to play a major role in facilitating neuroplasticity during post-stroke recovery and a pro-nociceptive role in pain development in the nervous system. BDNF-tyrosine kinase receptors B (TrkB) pathway promotes neurite outgrowth, neurogenesis, and the prevention of apoptosis, which helps in stroke recovery. Meanwhile, BDNF overexpression plays a role in CPSP via the activation of purinergic receptors P2X4R and P2X7R. The neuronal hyperexcitability that causes CPSP is linked with BDNF-TrkB interactions, changes in ion channels and inflammatory reactions. This review provides an overview of BDNF synthesis, interactions with certain receptors, and potential functions in regulating signalling pathways associated with stroke and CPSP. The pathophysiological mechanisms underlying CPSP, the role of BDNF in CPSP, and the challenges and current treatment strategies targeting BDNF are also discussed.


Subject(s)
Brain-Derived Neurotrophic Factor , Stroke , Humans , Brain-Derived Neurotrophic Factor/metabolism , Animals , Stroke/metabolism , Stroke/complications , Neuralgia/metabolism , Neuralgia/etiology , Neuralgia/drug therapy , Receptor, trkB/metabolism , Signal Transduction/physiology , Neuronal Plasticity/physiology
5.
J Clin Med ; 13(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38892979

ABSTRACT

Background/Objectives: The inhibitory effects of tyrosine kinase inhibitors (TKIs) on glucose uptake through their binding to human glucose transporter-1 (GLUT-1) have been well documented. Thus, our research aimed to explore the potential impact of various TKIs of GLUT-1 on the standard [18F]FDG-PET monitoring of tumor response in patients. Methods: To achieve this, we conducted an analysis on three patients who were undergoing treatment with different TKIs and harbored actionable alterations. Alongside the assessment of FDG data (including SUVmax, total lesion glycolysis (TLG), and metabolic tumor volume (MTV)), we also examined the changes in tumor sizes through follow-up [18F]FDG-PET/CT imaging. Notably, our patients harbored alterations in BRAFV600, RET, and c-KIT and exhibited positive responses to the targeted treatment. Results: Our analysis revealed that FDG data derived from SUVmax, TLG, and MTV offered quantifiable outcomes that were consistent with the measurements of tumor size. Conclusions: These findings lend support to the notion that the inhibition of GLUT-1, as a consequence of treatment efficacy, could be indirectly gauged through [18F] FDG-PET/CT imaging in cancer patients undergoing TKI therapy.

6.
Biomed Pharmacother ; 176: 116892, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38876048

ABSTRACT

The lesson from many studies investigating the efficacy of targeted therapy in glioblastoma (GBM) showed that a future perspective should be focused on combining multiple target treatments. Our research aimed to assess the efficacy of drug combinations against glioblastoma stem cells (GSCs). Patient-derived cells U3042, U3009, and U3039 were obtained from the Human Glioblastoma Cell Culture resource. Additionally, the study was conducted on a GBM commercial U251 cell line. Gene expression analysis related to receptor tyrosine kinases (RTKs), stem cell markers and genes associated with significant molecular targets was performed, and selected proteins encoded by these genes were assessed using the immunofluorescence and flow cytometry methods. The cytotoxicity studies were preceded by analyzing the expression of specific proteins that serve as targets for selected drugs. The cytotoxicity study using the MTS assay was conducted to evaluate the effects of selected drugs/candidates in monotherapy and combinations. The most cytotoxic compounds for U3042 cells were Disulfiram combined with Copper gluconate (DSF/Cu), Dacomitinib, and Foretinib with IC50 values of 52.37 nM, 4.38 µM, and 4.54 µM after 24 h incubation, respectively. Interactions were assessed using SynergyFinder Plus software. The analysis enabled the identification of the most effective drug combinations against patient-derived GSCs. Our findings indicate that the most promising drug combinations are Dacomitinib and Foretinib, Dacomitinib and DSF/Cu, and Foretinib and AZD3759. Since most tested combinations have not been previously examined against glioblastoma stem-like cells, these results can shed new light on designing the therapeutic approach to target the GSC population.


Subject(s)
Drug Repositioning , Glioblastoma , Neoplastic Stem Cells , Protein Kinase Inhibitors , Humans , Glioblastoma/drug therapy , Glioblastoma/pathology , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Drug Repositioning/methods , Protein Kinase Inhibitors/pharmacology , Cell Line, Tumor , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/metabolism , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Agents/pharmacology , Cell Survival/drug effects
7.
Biomedicines ; 12(5)2024 May 10.
Article in English | MEDLINE | ID: mdl-38791016

ABSTRACT

Cardiovascular diseases remain the leading cause of death worldwide, with ischemic heart disease (IHD) as the most common. Ischemia-induced angiogenesis is a process in which vascular endothelial growth factor (VEGF) plays a crucial role. To conduct research in the field of VEGF's association in cardiovascular diseases, it is vital to understand its role in the physiological and pathological processes in the heart. VEGF-based therapies have demonstrated a promising role in preclinical studies. However, their potential in human therapies is currently under discussion. Furthermore, VEGF is considered a potential biomarker for collateral circulation assessment and heart failure (HF) mortality. Additionally, as VEGF is involved in angiogenesis, there is a need to elucidate the impact of VEGF-targeted therapies in terms of cardiovascular side effects.

8.
J Clin Med ; 13(5)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38592275

ABSTRACT

Immunity has evolved to balance the destructive nature of inflammation with wound healing to overcome trauma, infection, environmental insults, and rogue malignant cells. The inflammatory response is marked by overlapping phases of initiation, resolution, and post-resolution remodeling. However, the disruption of these events can lead to prolonged tissue damage and organ dysfunction, resulting long-term disease states. Macrophages are the archetypic phagocytes present within all tissues and are important contributors to these processes. Pleiotropic and highly plastic in their responses, macrophages support tissue homeostasis, repair, and regeneration, all while balancing immunologic self-tolerance with the clearance of noxious stimuli, pathogens, and malignant threats. Neuropilin-2 (Nrp2), a promiscuous co-receptor for growth factors, semaphorins, and integrins, has increasingly been recognized for its unique role in tissue homeostasis and immune regulation. Notably, recent studies have begun to elucidate the role of Nrp2 in both non-hematopoietic cells and macrophages with cardiothoracic disease. Herein, we describe the unique role of Nrp2 in diseases of the heart and lung, with an emphasis on Nrp2 in macrophages, and explore the potential to target Nrp2 as a therapeutic intervention.

9.
J Cutan Pathol ; 51(8): 572-575, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38661100

ABSTRACT

Neurotrophic receptor tyrosine kinase (NTRK)-rearranged spindle cell neoplasms are a recently described group of soft tissue tumors. They commonly present as a painless mass on the extremities of children and young adults. They are characterized microscopically by a heterogeneous spectrum of infiltrative spindle cell proliferations, which can morphologically mimic several other spindle cell neoplasms. Their identification is vital, as they may be amenable to treatment with tyrosine kinase-targeted therapy. This case report describes a rare NTRK3-rearranged spindle cell neoplasm in the groin of a 29-year-old female and provides further clinical and morphological features of this entity.


Subject(s)
Groin , Receptor, trkC , Soft Tissue Neoplasms , Humans , Female , Receptor, trkC/genetics , Adult , Soft Tissue Neoplasms/pathology , Soft Tissue Neoplasms/genetics , Soft Tissue Neoplasms/diagnosis , Groin/pathology , Diagnosis, Differential , Gene Rearrangement , Sarcoma/genetics , Sarcoma/pathology , Sarcoma/diagnosis
10.
Biomedicines ; 11(8)2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37626776

ABSTRACT

During the last 20 years, molecular alterations have gained increasing significance in the diagnosis and biological assessment of tumors. Gliomas represent the largest group of tumors of the central nervous system, and the main aim of this review is to present the current knowledge on molecular pathways and their alterations in gliomas. A wide range of new insights has been gained, including evidence for the involvement of the WNT pathway or the hippo pathway in the pathobiology of gliomas, indicating a broad involvement of different pathways formerly not considered to play a central role in gliomas. Even new aspects of angiogenic, apoptotic, and metabolic pathways are presented, as well as the rapidly growing field of epigenetic processes, including non-coding RNAs. The two major conclusions drawn from the present review are the distinct interconnectivity of the whole spectrum of molecular pathways and the prominent role of non-coding RNAs, especially circular RNAs, in the regulation of specific targets. All these new insights are discussed, even considering the topic of the resistance to therapy of gliomas, along with aspects that are still incompletely understood, like the role of hydroxymethylation, or even ferroptosis, in the pathobiology of gliomas.

11.
Pharmaceutics ; 15(7)2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37514101

ABSTRACT

C-Met is a receptor tyrosine kinase that is overexpressed in a range of different cancer types, and has been identified as a potential biomarker for cancer imaging and therapy. Previously, a 68Ga-labelled peptide, [68Ga]Ga-EMP-100, has shown promise for imaging c-Met in renal cell carcinoma in humans. Herein, we report the synthesis and preliminary biological evaluation of an [18F]AlF-labelled analogue, [18F]AlF-EMP-105, for c-Met imaging by positron emission tomography. EMP-105 was radiolabelled using the aluminium-[18F]fluoride method with 46 ± 2% RCY and >95% RCP in 35-40 min. In vitro evaluation showed that [18F]AlF-EMP-105 has a high specificity for c-Met-expressing cells. Radioactive metabolite analysis at 5 and 30 min post-injection revealed that [18F]AlF-EMP-105 has good blood stability, but undergoes transformation-transchelation, defluorination or demetallation-in the liver and kidneys. PET imaging in non-tumour-bearing mice showed high radioactive accumulation in the kidneys, bladder and urine, demonstrating that the tracer is cleared predominantly as [18F]fluoride by the renal system. With its high specificity for c-Met expressing cells, [18F]AlF-EMP-105 shows promise as a potential diagnostic tool for imaging cancer.

12.
Genes Chromosomes Cancer ; 62(8): 449-459, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36744864

ABSTRACT

Although well known as a fusion partner in hematological malignancies, fusion genes involving the ABL proto-oncogene 1 (ABL1), mapping to chromosomal region 9q34.12, have only been anecdotally reported in five soft tissue tumors. These neoplasms have been variously reported as perineurioma, angiofibroma, and solitary fibrous tumor, and all have harbored a GAB1::ABL1 gene fusion; however, the nosology and clinicopathological characteristics of soft tissue tumors carrying this rare fusion have not been delineated. We herein describe eight tumors containing the GAB1::ABL1 fusion and review previously reported cases in a series to define their morphological spectrum, address immunohistochemical evidence for a line of differentiation, with special reference to the presence or absence of a perineurial immunophenotype, and gather insight into their behavior. The patients included four females and four males, aged 13-37 years (median, 24 years). Two cases each originated in the shoulder area, trunk, hands, and lower extremities, with a size range of 1.5-8 cm (median, 3.4 cm). Four tumors were deep and four superficial. All tumors were morphologically similar, being composed of bland fibroblast-like spindle to ovoid cells diffusely arranged in a paucivascular fibrous to fibromyxoid stroma with variable resemblance to soft tissue perineurioma. Mitotic activity was generally low (0-8 mitoses in 10 high-power fields [HPFs]; median, 1). All lesions had at least focally infiltrative margins, but they otherwise lacked pleomorphism and necrosis. Immunohistochemistry showed focal reactivity for CD34 (5/7), epithelial membrane antigen (EMA) (3/8), claudin1 (2/3), GLUT1 (4/6), and S100 (2/7); other markers, including MUC4 (0/7), desmin (0/9), and smooth muscle actin (SMA) (0/4), were negative. RNA sequencing revealed a GAB1::ABL1 fusion in all cases with exon 6 of GAB1 fused to exon 2 of ABL1. Treatments included various forms of surgical intervention in seven cases; one tumor was biopsied only. Limited follow-up was available for five patients. One tumor regrew rapidly within 1 month to 1.5 cm after an initial marginal excision and was re-excised with close margins. Four patients were disease-free at 1, 3, 14, and 25 months of follow-up. Metastases have not, to date, been observed. This series characterizes "GAB1::ABL1 fusion-positive spindle cell neoplasm" as a distinct entity, with overlapping features with soft tissue perineurioma and predilection for children and young adults.


Subject(s)
Nerve Sheath Neoplasms , Soft Tissue Neoplasms , Female , Humans , Male , Young Adult , Adaptor Proteins, Signal Transducing , Biomarkers, Tumor , Cell Differentiation , Fibroblasts/pathology , Nerve Sheath Neoplasms/genetics , Soft Tissue Neoplasms/pathology , Adolescent , Adult
13.
Acta Anatomica Sinica ; (6): 660-667, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1015172

ABSTRACT

Objective To stud)' the nerve repair effect of olanzapine on schizophrenia model rats through its effect on cyclic AMP response element binding protein (CREB)/brain-derived neurotrophic factor (BDNF)/receptor tyrosine kinase receptors B (TrkB) pathway. Methods Total 60 rats were divided into control group, model group, olanzapine low, middle and high dose group. The rats in the model group, olanzapine low, middle and high dose groups were injected intraperitoneally with MK-801[0. 2 mg/(kg-d) ], while the control injected with the same amount of normal saline. The low, middle and high dose olanzapine groups were perfused with olanzapine solution of 0. 5 mg/(kg-d),1. 0 mg/(kg-d) and 1. 5 mg/(kg-d) respectively. The behavior of rats was scored according to ataxia and stereotyped behavior standards, cognitive function and learning ability were evaluated by Moms water maze test, serum tumor necrosis factor-a (TNF-a) and interleukin-6 (IL-6) levels were detected by ELISA method, hippocampal histopathology was observed under microscope, and apoptosis and expression of CREB/BDNF/TrkB pathway related proteins in hippocampus were detected. Results Compared with the control group, the ataxia, the score of stereotyped behavior, the expression of TNF-a, IL-6 and the rate of apoptosis in the model group increased significantly (P < 0 . 01). Compared with the control group, the number of crossing the platform, the time of staying in the target quadrant and the relative expression of CREB, p-CREB, p-TrkB, TrkB and BDNF protein in the model group decreased significantly (P<0. 01), and those in the low and middle dose olanzapine groups decreased significantly (P < 0 . 05). Compared with the model group, the times of crossing the platform and the stay time in the target quadrant increased significantly in the low and middle dose olanzapine groups (P< 0. 05). In the model group and the low dose olanzapine group, the hippocampal cells were swollen obviously, the nucleus was broken and divided, pyknosis, and the tissue aiTangement was disorderly, while the phenomenon of fragmentation and nuclear pyknosis was rarely seen in the middle and high dose olanzapine groups. Conclusion The nerve repair mechanism of olanzapine on schizophrenic model rats is related to improving cognitive impainnent, protecting hippocampal neurons and activating the expression of CREB/BDNF/TrkB signal pathway in rats.

14.
Cell Mol Life Sci ; 79(11): 583, 2022 Nov 05.
Article in English | MEDLINE | ID: mdl-36334147

ABSTRACT

Eph receptors and their ligands, Ephrins, are involved in the thymocyte-thymic epithelial cell (TEC) interactions, key for the functional maturation of both thymocytes and thymic epithelium. Several years ago, we reported that the lack of EphA4, a Eph of the subfamily A, coursed with reduced proportions of double positive (DP) thymocytes apparently due to an altered thymic epithelial stroma [Munoz et al. in J Immunol 177:804-813, 2006]. In the present study, we reevaluate the lymphoid, epithelial, and extracellular matrix (ECM) phenotype of EphA4-/- mice grouped into three categories with respect to their proportions of DP thymocytes. Our results demonstrate a profound hypocellularity, specific alterations of T cell differentiation that affected not only DP thymocytes, but also double negative and single positive T cell subsets, as well as the proportions of positively and negatively selected thymocytes. In correlation, thymic histological organization changed markedly, especially in the cortex, as well as the proportions of both Ly51+UEA-1- cortical TECs and Ly51-UEA-1+ medullary TECs. The alterations observed in the expression of ECM components (Fibronectin, Laminin, Collagen IV), integrin receptors (VLA-4, VLA-6), chemokines (CXCL12, CCL25, CCL21) and their receptors (CXCR4, CCR7, CCR9) and in vitro transwell assays on the capacity of migration of WT and mutant thymocytes suggest that the lack of EphA4 alters T-cell differentiation by presumably affecting cell adhesion between TECs and T-TEC interactions rather than by thymocyte migration.


Subject(s)
Thymocytes , Thymus Gland , Mice , Animals , Thymocytes/metabolism , Thymus Gland/metabolism , Lymphocyte Activation , Epithelial Cells/metabolism , Cell Differentiation , Receptors, Eph Family/metabolism , Extracellular Matrix
15.
Int J Mol Sci ; 23(22)2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36430263

ABSTRACT

Bone sarcomas are a heterogeneous group of rare tumors with a predominance in the young population. Few options of systemic treatment are available once they become unresectable and resistant to conventional chemotherapy. A better knowledge of the key role that tyrosine kinase receptors (VEGFR, RET, MET, AXL, PDGFR, KIT, FGFR, IGF-1R) may play in the pathogenesis of these tumors has led to the development of multi-target inhibitors (TKIs) that are progressively being incorporated into our therapeutic arsenal. Osteosarcoma (OS) is the most frequent primary bone tumor and several TKIs have demonstrated clinical benefit in phase II clinical trials (cabozantinib, regorafenib, apatinib, sorafenib, and lenvatinib). Although the development of TKIs for other primary bone tumors is less advanced, preclinical data and early trials have begun to show their potential benefit in advanced Ewing sarcoma (ES) and rarer bone tumors (chondrosarcoma, chordoma, giant cell tumor of bone, and undifferentiated pleomorphic sarcoma). Previous reviews have mainly provided information on TKIs for OS and ES. We aim to summarize the existing knowledge regarding the use of TKIs in all bone sarcomas including the most recent studies as well as the potential synergistic effects of their combination with other systemic therapies.


Subject(s)
Antineoplastic Agents , Bone Neoplasms , Osteosarcoma , Sarcoma , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Sarcoma/drug therapy , Bone Neoplasms/drug therapy , Osteosarcoma/drug therapy , Osteosarcoma/pathology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
16.
Biomedicines ; 10(10)2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36289793

ABSTRACT

Neurotrophins (NTs) represent a group of growth factors with pleiotropic activities at the central nervous system level. The prototype of these molecules is represented by the nerve growth factor (NGF), but other factors with similar functions have been identified, including the brain derived-growth factor (BDNF), the neurotrophin 3 (NT-3), and NT-4/5. These growth factors act by binding specific low (p75) and high-affinity tyrosine kinase (TrkA, TrkB, and TrkC) receptors. More recently, these growth factors have shown effects outside the nervous system in different organs, particularly in the lungs. These molecules are involved in the natural development of the lungs, and their homeostasis. However, they are also important in different pathological conditions, including lung cancer. The involvement of neurotrophins in lung cancer has been detailed most for non-small cell lung cancer (NSCLC), in particular adenocarcinoma. This review aimed to extensively analyze the current knowledge of NTs and lung cancer and clarify novel molecular mechanisms for diagnostic and therapeutic purposes. Several clinical trials on humans are ongoing using NT receptor antagonists in different cancer cell types for further therapeutic applications. The pharmacological intervention against NT signaling may be essential to directly counteract cancer cell biology, and also indirectly modulate it in an inhibitory way by affecting neurogenesis and/or angiogenesis with potential impacts on tumor growth and progression.

17.
Cell J ; 24(10): 555-568, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36259473

ABSTRACT

Angiogenesis is a characteristic of glioblastoma (GBM), the most fatal and therapeutic-resistant brain tumor. Highly expressed angiogenic cytokines and proliferated microvascular system made anti-angiogenesis treatments a thoroughly plausible approach for GBM treatment. Many trials have proved to be not only as a safe but also as an effective approach in GBM retardation in a certain time window as seen in radiographic response rates; however, they have failed to implement significant improvements in clinical manifestation whether alone or in combination with radio/chemotherapy. Bevasizumab, an anti-vascular endothelial growth factor-A (VEGF-A) antibody, is the only agent that exerts meaningful clinical influence by improving progression-free survival (PFS) and partially alleviate clinical symptoms, nevertheless, it could not prolong the overall survival (OS) in patients with GBM. The data generated from phase II trials clearly revealed a correlation between elevated reperfusion, subsequent to vascular normalization induction, and improved clinical outcomes which explicitly indicates anti-angiogenesis treatments are beneficial. In order to prolong these initial benefits observed in a certain period of time after anti-angiogenesis targeting, some aspects of the therapy should be tackled: recognition of other bypass angiogenesis pathways activated following antiangiogenesis therapy, identification of probable pathways that induce insensitivity to shortage of blood supply, and classifying the patients by mapping their GBM-related gene profile as biomarkers to predict their responsiveness to therapy. Herein, the molecular basis of brain vasculature development in normal and tumoral conditions is briefly discussed and it is explained how "vascular normalization" concept opened a window to a better comprehension of some adverse effects observed in anti-angiogenesis therapy in clinical condition. Then, the most targeted angiogenesis pathways focused on ligand/receptor interactions in GBM clinical trials are reviewed. Lastly, different targeting strategies applied in anti-angiogenesis treatment are discussed.

18.
Front Med (Lausanne) ; 9: 937142, 2022.
Article in English | MEDLINE | ID: mdl-36091713

ABSTRACT

Nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin3 (NT-3) bind to tyrosine kinase (Trk) receptors, TrkA, TrkB, and TrkC, respectively. This study investigated the efficacy of novel molecule agonists of Trk receptors in an in vivo model of dry eye disease (DED). Small molecule TrkC agonist (C1) and a pan-Trk agonist (pan) were synthesized for this. C57BL/6J mice were subjected to desiccating stress (DS) and received bilateral eye drops of C1, pan, or vehicle (2x/day). Dry eye signs, inflammation and expression of corneal barrier function, and conjunctival goblet cell (GC) densities were measured as part of the DED phenotype. Corneal epithelial lysates were collected for either western blot or RNA extraction. Extracted total RNAs were used for NanoString analyses. Immunofluorescent staining was performed on whole-mount corneas using anti-TNFAIP3 and anti-EP4 antibodies. Compared to vehicle, mice subjected to desiccating stress and treated with agonists pan and C1 showed improved corneal barrier function, while C1 also increased GC density. NanoString analyses revealed upregulation of specific mRNA transcripts (Ptger4, Tnfaip3, Il1a and Ptger4, Tlr3, Osal1) in pan- and C1-treated corneas compared to vehicle-treated corneas. Western blots showed that pan and C1 decreased vehicle-induced NFkB nuclear translocation after DS for one day and increased EP4 and TNFAIP3 protein levels after 5 days of DS in corneal epithelium lysates. We conclude that small-molecule agonists of Trk receptors improve DED by decreasing NFkB activation and increasing protein expression of anti-inflammatory molecules TNFAIP3 and EP4. Surprisingly, the most efficacious small molecule agonists were not TrkA selective but TrkC and panTrk, suggesting that wider exploration of TrkB and C and pan Trk agonists are warranted in efforts to treat DED.

19.
Int J Mol Sci ; 23(15)2022 Aug 04.
Article in English | MEDLINE | ID: mdl-35955806

ABSTRACT

Oncogenic fusion genes have emerged as successful targets in several malignancies, such as chronic myeloid leukemia and lung cancer. Fusion of the fibroblast growth receptor 3 and the transforming acidic coiled coil containing protein-FGFR3-TACC3 fusion-is prevalent in 3-4% of human glioblastoma. The fusion protein leads to the constitutively activated kinase signaling of FGFR3 and thereby promotes cell proliferation and tumor progression. The subgroup of FGFR3-TACC3 fusion-positive glioblastomas presents with recurrent clinical and histomolecular characteristics, defining a distinctive subtype of IDH-wildtype glioblastoma. This review aims to provide an overview of the available literature on FGFR3-TACC3 fusions in glioblastoma and possible implications for actual clinical practice.


Subject(s)
Glioblastoma , Lung Neoplasms , Gene Fusion , Glioblastoma/genetics , Humans , Microtubule-Associated Proteins/metabolism , Oncogene Fusion , Receptor, Fibroblast Growth Factor, Type 3/genetics , Receptor, Fibroblast Growth Factor, Type 3/metabolism
20.
Cancer Treat Rev ; 109: 102430, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35777135

ABSTRACT

Identifying molecular oncogenic drivers is crucial for precision oncology. Genetic rearrangements, including gene fusions and gene amplification, involving and activating receptor tyrosine kinases (RTKs) are recurrent in solid tumors, particularly in non-small cell lung cancer. Advances in the tools to detect these alterations have deepened our understanding of the underlying biology and tumor characteristics and have prompted the development of novel inhibitors targeting activated RTKs. Nowadays, druggable oncogenic rearrangements are found in around 15% of lung adenocarcinomas. However, taken separately, each of these alterations has a low prevalence, which poses a challenge to their diagnosis. The identification and characterization of novel targetable oncogenic rearrangements in lung cancer continue to expand, as shown by the recent discovery of the CLIP1-LTK fusion found in 0.4% of lung adenocarcinomas. While tyrosine kinase inhibitors that block the activity of RTKs have represented a breakthrough in the therapeutic landscape by improving the prognosis of this disease, prolonged treatment inevitably leads to the development of acquired resistance. Here, we review the oncogenic fusions and gene amplifications involving RTK in lung cancer. We address the genetic and molecular structure of oncogenic RTKs and the methods to diagnose them, emphasizing the role of next-generation sequencing technologies. Furthermore, we discuss the therapeutic implications of the different tyrosine kinase inhibitors, including the current clinical trials and the mechanisms responsible for acquired resistance. Finally, we provide an overview of the use of liquid biopsies to monitor the course of the disease.


Subject(s)
Adenocarcinoma of Lung , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Adenocarcinoma of Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Gene Fusion , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Precision Medicine , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Receptor Protein-Tyrosine Kinases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL