Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters











Publication year range
2.
Int J Biol Macromol ; 278(Pt 1): 134426, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39098687

ABSTRACT

BACKGROUND: Rapid proliferation is a hallmark of glioblastoma multiforme (GBM) and a major contributor to its recurrence. Aberrant ubiquitination has been implicated in various diseases, including cancer. In our preliminary studies, we identified Ubiquitin-conjugating enzyme E2S (UBE2S) as a potential glioma biomarker, exhibiting close associations with glioma grade and protein phosphatase 1, regulatory subunit 105 (Ki67) expression levels. However, the underlying molecular mechanisms remained elusive. NF-κB is an important signaling pathway that promotes GBM proliferation. Direct intervention targeting NF-κB has not yielded the expected results, prompting the exploration of new molecules for regulating NF-κB as a new direction. METHODS: This study employed methods including yeast two-hybrid and immunoprecipitation to uncover the interaction between UBE2S and A kinase interacting protein 1 (AKIP1). Laser confocal microscopy was used to observe the localization of UBE2S and AKIP1. Dual luciferase reporter genes were utilized to observe the activation of NF-κB. RESULTS: Our findings demonstrate that UBE2S deficiency significantly impedes GBM progression, both in vitro and in vivo. Mechanistically, UBE2S plays a crucial role in recruiting Ubiquitin Specific Peptidase 15 (USP15), facilitating the removal of K11-linked ubiquitination on AKIP1. This action enhances AKIP1 stability within the GBM context. The resulting increase in AKIP1 levels further augments nuclear factor kappa-B (NF-κB) transcriptional activity, leading to the upregulation of downstream genes regulated by the NF-κB pathway, thereby promoting GBM progression. CONCLUSIONS: In summary, our findings reveal the role of the UBE2S/AKIP1-NF-κB axis in regulating GBM progression and provide novel evidence supporting UBE2S as a potential drug target for GBM.


Subject(s)
Disease Progression , Glioblastoma , NF-kappa B , Signal Transduction , Ubiquitin-Conjugating Enzymes , Ubiquitination , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Humans , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/genetics , NF-kappa B/metabolism , Animals , Cell Line, Tumor , Mice , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Cell Proliferation , Gene Expression Regulation, Neoplastic , Protein Binding
4.
Clin Mol Hepatol ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38915206

ABSTRACT

Background/Aims: Ubiquitination is widely involved in the progression of hepatocellular carcinoma (HCC) by regulating various cellular processes. However, systematic strategies for screening core ubiquitin-related genes, clarifying their functions and mechanisms, and ultimately developing potential therapeutics for patients with HCC are still lacking. Methods: Cox and LASSO regression analyses were performed to construct a ubiquitin-related gene prediction model for HCC. Loss- and gain-of-function studies, transcriptomic and metabolomics analysis were used to explore the function and mechanism of UBE2S on HCC cell glycolysis and growth. Results: Based on 1423 ubiquitin-related genes, a four-gene signature was successfully constructed to evaluate the prognosis of patients with HCC. UBE2S was identified in this signature with the potential to predict the survival of patients with HCC. E2F2 transcriptionally upregulated UBE2S expression by directly binding to its promoter. UBE2S positively regulated glycolysis in a HIF-1α-dependent manner, thus promoting the proliferation of HCC cells. Mechanistically, UBE2S enhanced K11-linkage polyubiquitination at lysine residues 171 and 196 of VHL independent of E3 ligase, thereby indirectly stabilizing HIF-1α protein levels by mediating the degradation of VHL by the proteasome. In particular, the combination of cephalomannine, a small molecule compound that inhibits the expression of UBE2S, and PX-478, an inhibitor of HIF-1α, significantly improved the anti-tumor efficacy. Conclusions: UBE2S is identified as a key biomarker in HCC among the thousands of ubiquitin-related genes and promotes glycolysis by E3 enzyme-independent ubiquitination, thus serving as a therapeutic target for the treatment of HCC.

5.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(3): 455-464, 2024 Mar 20.
Article in Chinese | MEDLINE | ID: mdl-38597436

ABSTRACT

OBJECTIVE: To investigate the expression of the ubiquitination enzyme UBE2S in different cell types in hepatocellular carcinoma (HCC) microenvironment and its impact on proliferation and stemness of HCC cells. METHODS: TCGA and CPTAC database were used to analyze the transcriptional and promoter methylation levels and protein expressions of UBE2S in HCC. Specific expression patterns of UBE2S, intercellular communication and key transcription factors in different cell types were analyzed based on single-cell sequencing data from TISCH website. We further examined UBE2S expressions in clinical samples of HCC tissues, HCC cells and T cells using immunohistochemistry and immunofluorescence staining. We also tested the effects of UBE2S knockdown on stemness of HCC-LM3 and HepG2 cells using clone formation experiments and sphere formation assay. RESULTS: Analysis based on TCGA database suggested significant overexpression of UBE2S in both paired and non-paired tumor tissues (P < 0.001), and its transcriptional level increased with tumor grades. The methylation level of UBE2S promoter was significantly decreased in HCC (P < 0.001), and its transcription level increased obviously in HCC with TP53 mutation (P < 0.001). Analysis of CPTAC database also demonstrated overexpression of UBE2S protein in HCC tissues (P < 0.001). Three prognostic models suggested that HCC patients with high UBE2S expression had poorer prognosis (P < 0.001). Single-cell sequencing data analysis revealed high expressions of UBE2S in T cells and high intensities of interaction between endothelial cells, epithelial cells and fibroblasts in HCC microenvironment. Immunohistochemistry and immunofluorescence staining demonstrated high UBE2S expressions in clinical samples of HCC tissues, HCC cells and T cells. In HCC-LM3 and HepG2 cells, UBE2S knockdown significantly inhibited cell clone formation and tumor sphere formation (P < 0.05). CONCLUSION: UBE2S is highly expressed in T cells in HCC microenvironment in close correlation with a poor prognosis. High UBE2S expression promotes the stemness of HCC cells.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Endothelial Cells/pathology , Gene Expression Regulation, Neoplastic , Hep G2 Cells , Liver Neoplasms/pathology , Prognosis , Tumor Microenvironment
6.
Development ; 151(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38546043

ABSTRACT

The timely degradation of proteins that regulate the cell cycle is essential for oocyte maturation. Oocytes are equipped to degrade proteins via the ubiquitin-proteasome system. In meiosis, anaphase promoting complex/cyclosome (APC/C), an E3 ubiquitin-ligase, is responsible for the degradation of proteins. Ubiquitin-conjugating enzyme E2 S (UBE2S), an E2 ubiquitin-conjugating enzyme, delivers ubiquitin to APC/C. APC/C has been extensively studied, but the functions of UBE2S in oocyte maturation and mouse fertility are not clear. In this study, we used Ube2s knockout mice to explore the role of UBE2S in mouse oocytes. Ube2s-deleted oocytes were characterized by meiosis I arrest with normal spindle assembly and spindle assembly checkpoint dynamics. However, the absence of UBE2S affected the activity of APC/C. Cyclin B1 and securin are two substrates of APC/C, and their levels were consistently high, resulting in the failure of homologous chromosome separation. Unexpectedly, the oocytes arrested in meiosis I could be fertilized and the embryos could become implanted normally, but died before embryonic day 10.5. In conclusion, our findings reveal an indispensable regulatory role of UBE2S in mouse oocyte meiosis and female fertility.


Subject(s)
M Phase Cell Cycle Checkpoints , Meiosis , Animals , Female , Mice , Anaphase-Promoting Complex-Cyclosome/genetics , Anaphase-Promoting Complex-Cyclosome/metabolism , Oocytes/metabolism , Ubiquitins/metabolism
7.
Heliyon ; 10(2): e24465, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38312603

ABSTRACT

The Ubiquitin Conjugating Enzyme E2 S (UBE2S), was initially identified as a crucial member in controlling substrate ubiquitination during the late promotion of the complex's function. In recent years, UBE2S has emerged as a significant epigenetic modification in various diseases, including myocardial ischemia, viral hepatitis, and notably, cancer. Mounting evidence suggests that UBE2S plays a pivotal role in several human malignancies including breast cancer, lung cancer, hepatocellular carcinoma and etc. However, a comprehensive review of UBE2S in human tumor research remains absent. Therefore, this paper aims to fill this gap. This review provides a comprehensive analysis of the structural characteristics of UBE2S and its potential utility as a biomarker in diverse cancer types. Additionally, the role of UBE2S in conferring resistance to tumor treatment is examined. The findings suggest that UBE2S holds promise as a diagnostic and therapeutic target in multiple malignancies, thereby offering novel avenues for cancer therapy.

8.
Am J Cancer Res ; 13(8): 3705-3720, 2023.
Article in English | MEDLINE | ID: mdl-37693154

ABSTRACT

Multiple studies have shown that E2 conjugating enzyme family are dysregulated in various cancers and associated with tumor progression and poor prognosis. In present study, we screened and confirmed that UBE2S is one of the E2 conjugating enzymes highly expressed in non-small cell lung cancer (NSCLC), and it plays an oncogenic role by enhancing cell proliferation, migration and stemness in vitro. Using immunoprecipitation technology combined with mass spectrometry assay, we identified ribosomal protein RPL26 as the substrate protein of UBE2S in NSCLC. At the molecular level, overexpression of UBE2S accelerated the ubiquitination and degradation of RPL26, thus upregulating c-Myc to enhance the progression of NSCLC. In addition, the results of a xenograft experiment showed that inhibiting UBE2S could suppress RPL26-c-Myc mediated NSCLC tumor growth in vivo. Our data provided mechanistic evidence supporting the existence of a novel UBE2S-RPL26-c-Myc axis and its critical contribution to progression of NSCLC.

9.
Cancer Med ; 12(17): 18078-18097, 2023 09.
Article in English | MEDLINE | ID: mdl-37563971

ABSTRACT

BACKGROUND: Ubiquitin-conjugating enzyme E2S (UBE2S), an E2 enzyme, is associated with the development of various tumors and exerts oncogenic activities. UBE2S is overexpressed in tumors, including hepatocellular carcinoma (HCC). However, the key molecular mechanisms of UBE2S in HCC still need additional research. The aim of this study was to explore the role of UBE2S in HCC. METHODS: The expression levels of UBE2S in HCC tissues and cells were detected by western blot analysis, quantitative real-time polymerase chain reaction analysis (qRT-PCR), and immunohistochemistry (IHC). A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, wound healing assay, colony formation assay transwell assay, and animal models were used to detect the proliferation and migration ability of HCC cells. Western blot analysis, qRT-PCR, immunofluorescence, small-interfering RNA (siRNA), and plasmid transfection and coimmunoprecipitation (Co-IP) assays were performed to detect the interaction among UBE2S, von Hippel-Lindau (VHL), hypoxia-inducible factor 1-alpha (HIF-1α), Janus kinase-2 (JAK2), and signal transducer and activator of transcription 3 (STAT3). RESULTS: In this study, we found that high UBE2S expression was associated with poor prognosis in HCC patients. In addition, UBE2S expression was upregulated in HCC tissues and cell lines. Knockdown of UBE2S inhibited the proliferation and migration of HCC cells in vitro and in vivo by directly interacting with VHL to downregulate the HIF-1α and JAK2/STAT3 signaling pathways. Accordingly, overexpression of UBE2S significantly enhanced the proliferation and migration of HCC cells in vitro via VHL to upregulate HIF-1α and JAK2/STAT3 signaling pathways. Furthermore, we found that downregulation of UBE2S expression enhanced the sensitivity of HCC cells to sorafenib in vivo and in vitro. CONCLUSION: UBE2S enhances malignant properties via the VHL/HIF-1α and VHL/JAK2/STAT3 signaling pathways and reduces sensitivity to sorafenib in HCC. The findings of this study may open a new approach for HCC diagnosis and provide a potential option for the treatment of HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Sorafenib/pharmacology , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Signal Transduction , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , Janus Kinase 2/genetics , Janus Kinase 2/metabolism
10.
Front Oncol ; 13: 992233, 2023.
Article in English | MEDLINE | ID: mdl-36860312

ABSTRACT

Purpose: Ubiquitin-conjugating enzymes E2S (UBE2S) and E2C (UBE2C), which mediate the biological process of ubiquitination, have been widely reported in various cancers. Numb, the cell fate determinant and tumor suppressor, was also involved in ubiquitination and proteasomal degradation. However, the interaction between UBE2S/UBE2C and Numb and their roles in the clinical outcome of breast cancer (BC) are not widely elucidated. Methods: Oncomine, Cancer Cell Line Encyclopedia (CCLE), the Human Protein Atlas (HPA) database, qRT-PCR, and Western blot analyses were utilized to analyze UBE2S/UBE2C and Numb expression in various cancer types and their respective normal controls, breast cancer tissues, and breast cancer cell lines. The expression of UBE2S, UBE2C, and Numb in BC patients with different ER, PR, and HER2 status, grades, stages, and survival status was compared. By Kaplan-Meier plotter, we further evaluated the prognostic value of UBE2S, UBE2C, and Numb in BC patients. We also explored the potential regulatory mechanisms underlying UBE2S/UBE2C and Numb through overexpression and knockdown experiments in BC cell lines and performed growth and colony formation assays to assess cell malignancy. Results: In this study, we showed that UBE2S and UBE2C were overexpressed while Numb was downregulated in BC, and in BC of higher grade, stage, and poor survival. Compared to hormone receptor negative (HR-) BC cell lines or tissues, HR+ BC demonstrated lower UBE2S/UBE2C and higher Numb, corresponding to better survival. We also showed that increased UBE2S/UBE2C and reduced Numb predicted poor prognosis in BC patients, as well as in ER+ BC patients. In BC cell lines, UBE2S/UBE2C overexpression decreased the level of Numb and enhanced cell malignancy, while knocking down UBE2S/UBE2C demonstrated the opposite effects. Conclusion: UBE2S and UBE2C downregulated Numb and enhanced BC malignancy. The combination of UBE2S/UBE2C and Numb could potentially serve as novel biomarkers for BC.

11.
Clin. transl. oncol. (Print) ; 24(11): 2120-2135, noviembre 2022.
Article in English | IBECS | ID: ibc-210140

ABSTRACT

Despite significant improvement in therapeutic development in the past decades, breast cancer remains a formidable cause of death for women worldwide. The hormone positive subtype (HR(+)) (also known as luminal type) is the most prevalant category of breast cancer, comprising ~70% of patients. The clinical success of the three CDK4/6 inhibitors palbociclib, ribociclib, and abemaciclib has revolutionized the treatment of choice for metastatic HR(+) breast cancer. Accumulating evidence demonstrate that the properties of CDK4/6 inhibitors extend beyond inhibition of the cell cycle, including modulation of immune function, sensitizing PI3K inhibitors, metabolism reprogramming, kinome rewiring, modulation of the proteosome, and many others. The ubiquitin–proteasome pathway (UPP) is a crucial cellular proteolytic system that maintains the homeostasis and turnover of proteins.MethodsWe performed transcriptional profiling of the HR(+) breast cancer cell lines MCF7 and T47D treated with Palbociclib. Differential expressed genes were analyzed for novel pathways enriched. The results were further validated with biochemical assays and with real world clinical database cohorts.ResultsWe uncovered a novel mechanism that demonstrate the CDK4/6 inhibitors suppress the expression of three ubiquitin conjugating enzymes UBE2C, UBE2S, UBE2T. Further validation in the HR(+) cell lines show that Palbociclib and ribociclib decrease UBE2C at both the mRNA and protein level, but this phenomenon was not shared with abemaciclib. These three E2 enzymes modulate several E3 ubiquitin ligases, including the APC/C complex which plays a role in G1/S progression. We further demonstrate the UBE2C/UBE2T expression levels are associated with breast cancer survival, and HR(+) breast cancer cells demonstrate dependence on the UBE2C.ConclusionsOur study suggests a novel link between CDK4/6 inhibitor and UPP pathway, adding to the potential mechanisms of their clinical efficacy in cancer. (AU)


Subject(s)
Humans , Aminopyridines , Benzimidazoles , Breast Neoplasms/pathology , Hormones/therapeutic use , Phosphatidylinositol 3-Kinases , Ubiquitins/therapeutic use , Purines , RNA, Messenger
12.
Clin Transl Oncol ; 24(11): 2120-2135, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35917055

ABSTRACT

PURPOSE: Despite significant improvement in therapeutic development in the past decades, breast cancer remains a formidable cause of death for women worldwide. The hormone positive subtype (HR(+)) (also known as luminal type) is the most prevalant category of breast cancer, comprising ~70% of patients. The clinical success of the three CDK4/6 inhibitors palbociclib, ribociclib, and abemaciclib has revolutionized the treatment of choice for metastatic HR(+) breast cancer. Accumulating evidence demonstrate that the properties of CDK4/6 inhibitors extend beyond inhibition of the cell cycle, including modulation of immune function, sensitizing PI3K inhibitors, metabolism reprogramming, kinome rewiring, modulation of the proteosome, and many others. The ubiquitin-proteasome pathway (UPP) is a crucial cellular proteolytic system that maintains the homeostasis and turnover of proteins. METHODS: We performed transcriptional profiling of the HR(+) breast cancer cell lines MCF7 and T47D treated with Palbociclib. Differential expressed genes were analyzed for novel pathways enriched. The results were further validated with biochemical assays and with real world clinical database cohorts. RESULTS: We uncovered a novel mechanism that demonstrate the CDK4/6 inhibitors suppress the expression of three ubiquitin conjugating enzymes UBE2C, UBE2S, UBE2T. Further validation in the HR(+) cell lines show that Palbociclib and ribociclib decrease UBE2C at both the mRNA and protein level, but this phenomenon was not shared with abemaciclib. These three E2 enzymes modulate several E3 ubiquitin ligases, including the APC/C complex which plays a role in G1/S progression. We further demonstrate the UBE2C/UBE2T expression levels are associated with breast cancer survival, and HR(+) breast cancer cells demonstrate dependence on the UBE2C. CONCLUSIONS: Our study suggests a novel link between CDK4/6 inhibitor and UPP pathway, adding to the potential mechanisms of their clinical efficacy in cancer.


Subject(s)
Breast Neoplasms , Aminopyridines , Benzimidazoles , Breast Neoplasms/pathology , Cyclin-Dependent Kinase 4 , Cyclin-Dependent Kinase 6 , Female , Hormones/therapeutic use , Humans , Phosphatidylinositol 3-Kinases , Proteasome Endopeptidase Complex/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Purines , RNA, Messenger , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitins/therapeutic use
13.
Exp Cell Res ; 419(1): 113293, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35863455

ABSTRACT

Ubiquitin binding enzyme E2S (UBE2S) is a member of ubiquitin binding enzyme family involved in a variety of biological functions, including cell cycle regulation, apoptosis, and regulation of the ubiquitination of proteins, which are closely correlated with the development of various tumors. However, its role in gastric cancer (GC) remains unknown. In this study, we found that UBE2S was upregulated in GC tissues and cells. Further, its high expression positively correlated with the tumor stage and indicated a poor prognosis. Knockout of UBE2S by CRISPR/Cas9-mediated strategy suppressed the growth of GC in vitro and in vivo. Moreover, RNA-Seq-based transcriptome analysis and tandem mass tag (TMT)-based quantitative proteomics analysis was performed for exploring the underlying mechanism. The multi-omics and verification results showed that UBE2S knockout-induced apoptosis and proliferation inhibition of GC cells was related to upregulation of FAS and the activation of the FAS-mediated apoptotic pathway. Moreover, a negative correlation between UBE2S and FAS expression was observed in GC tissue samples. Finally, the ubiquitination assay confirmed that knockout of UBE2S might activate endogenous FAS by inhibiting ubiquitination and degradation of p53 in GC cells. Collectively, UBE2S is expected to be a novel prognostic biomarker and potential therapeutic target for GC.


Subject(s)
Stomach Neoplasms , fas Receptor , Apoptosis , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Humans , Ubiquitin-Conjugating Enzymes , Ubiquitins
14.
World J Hepatol ; 14(5): 956-971, 2022 May 27.
Article in English | MEDLINE | ID: mdl-35721293

ABSTRACT

BACKGROUND: Liver cancer ranks the third cause of cancer-related death worldwide. The most common type of liver cancer is hepatocellular carcinoma (HCC). The survival time for HCC patients is very limited by years due to the lack of efficient treatment, failure of early diagnosis, and poor prognosis. Ubiquitination plays an essential role in the biochemical processes of a variety of cellular functions. AIM: To investigate three ubiquitination-associated genes in HCC. METHODS: Herein, the expression levels of ubiquitin-conjugating enzymes 2 (UBE2) including UBE2C, UBE2T, and UBE2S in tumor samples of HCC patients and non-tumor controls at the Cancer Genome Atlas (TCGA) database, was comprehensively analyzed. The relationship of UBE2 gene expression level with cancer stage, prognostic outcome, and TP53 mutant status was studied. RESULTS: Our results showed that UBE2C, UBE2T, and UBE2S genes were overexpressed in HCC samples compared to non-tumor tissues. Dependent on the cancer progression stage, three UBE2 genes showed higher expression in tumor tissues at all four stages compared to non-tumor control samples. Furthermore, a significantly higher expression of these genes was found in stage 2 and stage 3 cancers compared to stage 1 cancer. Additionally, overexpression of those genes was negatively associated with prognostic outcome and overall survival time. Patients with TP53 mutation showed a higher expression level of three UBE2 genes, indicating an association between UBE2 expression with p53 function. CONCLUSION: In summary, this study shed light on the potential roles of UBE2C, UBE2T, UBE2S on diagnostic and prognostic biomarkers for HCC. Moreover, based on our findings, it is appealing to further explore the correlation of those genes with TP53 mutation in HCC and the related mechanisms.

15.
Int J Biol Sci ; 18(8): 3528-3543, 2022.
Article in English | MEDLINE | ID: mdl-35637955

ABSTRACT

Bone metastasis is the main site of metastasis and causes the most deaths in patients with prostate cancer (PCa). The mechanism of bone metastasis is complex and not fully clarified. By RNA sequencing and analysing key pathways in bone metastases of PCa, we found that one of the most important characteristics during PCa bone metastasis was G1/S transition acceleration caused by low protein levels of p16INK4a (p16). Interestingly, we demonstrated that UBE2S bound and degraded p16 through K11- rather than K48- or K63-linked ubiquitination, which accelerated PCa tumour cell G1/S transition in vivo and in vitro. Moreover, UBE2S also stabilized ß-catenin through K11-linked ubiquitination, leading to enhanced migration and invasion of tumour cells in PCa bone metastasis. Based on our cohorts and public databases, UBE2S was overexpressed in bone metastases and positively correlated with a high Gleason score, advanced nodal metastasis status and poor prognosis in PCa. Finally, targeting UBE2S with cephalomannine inhibited proliferation and invasion in vitro, and bone metastasis of PCa in vivo. This study innovatively discovered that UBE2S plays an oncogenic role in bone metastasis of PCa by degrading p16 and stabilizing ß-catenin via K11-linked ubiquitination, suggesting that it may serve as a multipotent target for metastatic PCa treatment.


Subject(s)
Bone Neoplasms , Cyclin-Dependent Kinase Inhibitor p16 , Prostatic Neoplasms , Ubiquitin-Conjugating Enzymes , beta Catenin , Bone Neoplasms/metabolism , Bone Neoplasms/secondary , Cell Line, Tumor , Cyclin-Dependent Kinase Inhibitor p16/genetics , Humans , Male , Neoplasm Metastasis , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Ubiquitin-Conjugating Enzymes/genetics , beta Catenin/genetics
16.
EMBO J ; 41(3): e108823, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34942047

ABSTRACT

Polyubiquitination by E2 and E3 enzymes is crucial to cell cycle control, epigenetic regulation, and development. The hallmark of the E2 family is the ubiquitin (Ub)-conjugating (UBC) domain that forms a dynamic thioester conjugate with ubiquitin (E2~Ub). Numerous studies have focused on E2 surfaces, such as the N-terminal and crossover helices, that directly interact with an E3 or the conjugated ubiquitin to stabilize the active, "closed" state of the E2~Ub. However, it remains unclear how other E2 surfaces regulate ubiquitin transfer. Here, we demonstrate the helix-turn-helix (HTH) motif of the UBC tunes the intrinsic polyubiquitination activity through distinct functions in different E2s. Interestingly, the E2HTH motif is repurposed in UBE2S and UBE2R2 to interact with the conjugated or acceptor ubiquitin, respectively, modulating ubiquitin transfer. Furthermore, we propose that Anaphase-Promoting Complex/Cyclosome binding to the UBE2SHTH reduces the conformational space of the flexible E2~Ub, demonstrating an atypical E3-dependent activation mechanism. Altogether, we postulate the E2HTH motif evolved to provide new functionalities that can be harnessed by E3s and permits additional regulation to facilitate specific E2-E3-mediated polyubiquitination.


Subject(s)
Ubiquitin-Conjugating Enzymes/chemistry , Amino Acid Motifs , Catalytic Domain , Humans , Ubiquitin/metabolism , Ubiquitin-Conjugating Enzymes/metabolism
17.
Cell Oncol (Dordr) ; 44(6): 1325-1338, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34582005

ABSTRACT

PURPOSE: Nuclear factor (NF)-κB signaling in cancer cells has been reported to be involved in tumorigenesis. Phosphorylation and degradation of inhibitor of NF-κBα (IκBα) is a canonical pathway of NF-κB signaling. Here, we aimed to identify and characterize noncanonical activation of NF-κB signaling by ubiquitin-conjugating enzyme E2S (UBE2S) in lung adenocarcinoma cells. METHODS: TCGA and the Human Atlas Protein Database were used to analyze the survival rate of lung adenocarcinoma patients in conjunction with UBE2S expression. In addition, PC9, H460, H441 and A549 lung adenocarcinoma cells were used in this study. PC9 and H460 cells were selected for further analysis because they expressed different UBE2S protein levels. Specific IKK inhibitors, PS1145 and SC514, were used to assess IκBα phosphorylation. Western blot analysis was used to assess protein levels in PC9 and H460 cells. A scratch wound-healing assay was used to analyze the migrative abilities of PC9 and H460 cells. Overexpression and knockdown of UBE2S in H460 and PC9 cells were used to analyze their effects on downstream protein levels. Immunoprecipitation, immunofluorescent staining, glutathione S transferase (GST) pull-down and in vitro binding assays were used to analyze the interaction between UBE2S and IκBα. A luciferase assay was used to analyze activation of NF-κB signaling regulated by UBE2S. An in vivo zebrafish xenograft model was used to assess metastasis of PC9 cells regulated by UBE2S. RESULTS: We found that UBE2S expression in lung adenocarcinoma patients was negatively related to survival rate. The protein level of UBE2S was higher in PC9 cells than in H460 cells, which was opposite to that observed for IκBα. PC9 cells showed a higher UBE2S expression and migrative ability than H460 cells. Phosphorylation of IκBα was not changed by treatment with the IKK-specific inhibitors PS1145 and SC514 in PC9 and H460 cells. Overexpression and knockdown of UBE2S in H460 and PC9 cells revealed that the protein levels of IκBα were inversely regulated. Immunoprecipitation, immunofluorescent staining, GST pull-down and in vitro binding assays revealed direct binding of UBE2S with IκBα. Nuclear P65 protein levels and luciferase assays showed that NF-κB signaling was regulated by UBE2S. The expression of epithelial-to-mesenchymal (EMT) markers and the migrative ability of lung adenocarcinoma cells were also regulated by UBE2S. A zebrafish xenograft tumor model showed a reduction in the metastasis of PC9 cells that was induced by UBE2S knockdown. CONCLUSIONS: Higher UBE2S expression in lung adenocarcinomas may lead to increased binding with IκBα to activate NF-κB signaling and promote adenocarcinoma cell metastasis. UBE2S may serve as a potential therapeutic target for lung adenocarcinomas.


Subject(s)
Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , NF-KappaB Inhibitor alpha/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Adenocarcinoma of Lung/genetics , Animals , Cell Line, Tumor , Enzyme Activation , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Humans , I-kappa B Kinase/metabolism , Kaplan-Meier Estimate , Models, Biological , NF-kappa B/metabolism , Neoplasm Metastasis , Protein Binding , Protein Stability , Signal Transduction , Transcription Factor RelA/metabolism , Xenograft Model Antitumor Assays , Zebrafish
18.
J Ovarian Res ; 14(1): 121, 2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34535173

ABSTRACT

BACKGROUND: Ovarian cancer is the most lethal gynecologic malignancy worldwide. Olaparib, an inhibitor of poly (ADP-ribose) polymerase (PARP), is becoming widely used in ovarian cancer treatment. The overall survival of ovarian cancer has not been significantly changed over the past decades and ovarian cancer has become increasingly resistant to the Olaparib. Ubiquitin-conjugating enzyme E2S (UBE2S) has been proved to promote malignant behaviors in many cancers. However, the function of UBE2S in the development and Olaparib resistance of ovarian cancer are unclear. MATERIALS AND METHODS: In this study, we detected the expression of UBE2S in normal fallopian tube (FT) and HGSOC tissues. A2780 and SKOV3 cells were stably transfected with PCMV-UBE2S, PCMV-UBE2S-C95S, UBE2S shRNAs, and negative controls. The CCK8 assay and clonogenic assay were conducted to analyze ovarian cancer proliferation and Olaparib resistance. The transwell assay was performed to determine the migration and invasion of ovarian cancer cells. The relative protein levels of the Wnt/ß-catenin signaling pathway were tested using western blot. The ovarian cancer cells were treated with XAV-939 to investigate the role of Wnt/ß-catenin signaling pathway in Olaparib resistance. Moreover, we repeated some above procedures in the xenograft model. RESULTS: The results demonstrated that UBE2S was highly upregulated in HGSOC and that high UBE2S expression was correlated with poor outcomes in HGSOC. UBE2S promoted ovarian cancer proliferation and drived the migration and invasion of ovarian cancer cells. UBE2S activated the Wnt/ß-catenin signaling pathway in ovarian cancer resulting in Olaparib resistance in vitro and in vivo. Furthermore, UBE2S enhanced the proliferation and Olaparib resistance of ovarian cancer in its enzymatic activity dependent manner. CONCLUSIONS: These data suggest a possible molecular mechanism of proliferation and metastasis of ovarian cancer and highlight the potential role of UBE2S as a therapeutic target in ovarian cancer.


Subject(s)
Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Phthalazines/pharmacology , Piperazines/pharmacology , Ubiquitin-Conjugating Enzymes/metabolism , Wnt Signaling Pathway , beta Catenin/metabolism , Disease Progression , Drug Resistance, Neoplasm , Female , Humans , Middle Aged , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology
19.
Biochem Biophys Res Commun ; 578: 7-14, 2021 11 12.
Article in English | MEDLINE | ID: mdl-34520980

ABSTRACT

Ubiquitin-conjugating enzyme E2S (UBE2S), an important E2 enzyme in the process of ubiquitination, has exhibited oncogenic activities in various malignant tumors. However, it remains unknown whether UBE2S plays a role in urinary bladder cancer (UBC) development. In the current study, our data confirmed UBE2S upregulation in UBC. In vitro and in vivo experiments demonstrated that UBE2S knockdown resulted in attenuated proliferation and enhanced apoptosis, which was inverse to the phenotypes with UBE2S overexpression. Gain and loss of function assays confirmed that UBE2S exerts oncogenic activities in UBC by mediating the activation of the mammalian target of rapamycin complex 1 (mTORC1) pathway. Furthermore, we discovered that this UBE2S-modulated carcinogenic mechanism was in the consequence of directly targeting tuberous sclerosis 1 (TSC1), which is the upstream inhibitor of mTOR signaling for ubiquitous degradation. Taken together, this study demonstrated that UBE2S is a carcinogen in UBC and promotes UBC progression by ubiquitously degrading TSC1. This consequently mediates the activation of the mTOR pathway, suggesting a potential therapeutic regimen for UBC by targeting the newly identified UBE2S/TSC1/mTOR axis.


Subject(s)
TOR Serine-Threonine Kinases/metabolism , Tuberous Sclerosis Complex 1 Protein/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Urinary Bladder Neoplasms/pathology , Animals , Cell Line , Cell Line, Tumor , Computational Biology/methods , Databases, Genetic , Heterografts , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Signal Transduction , Survival Rate , TOR Serine-Threonine Kinases/genetics , Tuberous Sclerosis Complex 1 Protein/genetics , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitination , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/metabolism
20.
Front Oncol ; 11: 640910, 2021.
Article in English | MEDLINE | ID: mdl-34123793

ABSTRACT

Glioblastoma is the most common and lethal brain cancer globally. Clinically, this cancer has heterogenous molecular and clinical characteristics. Studies have shown that UBE2S is highly expressed in many cancers. But its expression profile in glioma, and the correlation with clinical outcomes is unknown. RNA sequencing data of glioma samples was downloaded from the Chinese Glioma Genome Atlas and The Cancer Genome Atlas. A total of 114 cases of glioma tissue samples (WHO grades II-IV) were used to conduct protein expression assays. The molecular and biological characteristics of UBE2S, and its prognostic value were analyzed. The results showed that high UBE2S expression was associated with a higher grade of glioma and PTEN mutations. In addition, UBE2S affected the degree of malignancy of glioma and the development of chemo-radiotherapy resistance. It was also found to be an independent predictor of worse survival of LGG patients. Furthermore, we identified five UBE2S ubiquitination sites and found that UBE2S was associated with Akt phosphorylation in malignant glioblastoma. The results also revealed that UBE2S expression was negatively correlated with 1p19q loss and IDH1 mutation; positively correlated with epidermal growth factor receptor amplification and PTEN mutation. This study demonstrates that UBE2S expression strongly correlates with glioma malignancy and resistance to chemo-radiotherapy. It is also a crucial biomarker of poor prognosis.

SELECTION OF CITATIONS
SEARCH DETAIL