Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 664
Filter
1.
Cell Rep ; 43(7): 114425, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970789

ABSTRACT

Obesity is a global health challenge with limited therapeutic solutions. Here, we demonstrate the engineering of an energy-dissipating hybrid tissue (EDHT) in the body for weight control. EDHT is constructed by implanting a synthetic gel matrix comprising immunomodulatory signals and functional cells into the recipient mouse. The immunomodulatory signals induce the host stromal cells to create an immunosuppressive niche that protects the functional cells, which are overexpressing the uncoupling protein 1 (UCP1), from immune rejection. Consequently, these endogenous and exogenous cells co-develop a hybrid tissue that sustainedly produces UCP1 to accelerate the host's energy expenditure. Systematic experiments in high-fat diet (HFD) and transgenic (ob/ob) mice show that EDHT efficiently reduces body weight and relieves obesity-associated pathological conditions. Importantly, an 18-month observation for safety assessment excludes cell leakage from EDHT and reports no adverse physiological responses. Overall, EDHT demonstrates convincing efficacy and safety in controlling body weight.

2.
Cell Metab ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38889724

ABSTRACT

Deficiency of the epigenome modulator histone deacetylase 3 (HDAC3) in brown adipose tissue (BAT) impairs the ability of mice to survive in near-freezing temperatures. Here, we report that short-term exposure to mild cold temperature (STEMCT: 15°C for 24 h) averted lethal hypothermia of mice lacking HDAC3 in BAT (HDAC3 BAT KO) exposed to 4°C. STEMCT restored the induction of the thermogenic coactivator PGC-1α along with UCP1 at 22°C, which is greatly impaired in HDAC3-deficient BAT, and deletion of either UCP1 or PGC-1α prevented the protective effect of STEMCT. Remarkably, this protection lasted for up to 7 days. Transcriptional activator C/EBPß was induced by short-term cold exposure in mouse and human BAT and, uniquely, remained high for 7 days following STEMCT. Adeno-associated virus-mediated knockdown of BAT C/EBPß in HDAC3 BAT KO mice erased the persistent memory of STEMCT, revealing the existence of a C/EBPß-dependent and HDAC3-independent cold-adaptive epigenomic memory.

3.
J Nutr Sci Vitaminol (Tokyo) ; 70(3): 193-202, 2024.
Article in English | MEDLINE | ID: mdl-38945884

ABSTRACT

Oleuropein aglycone (OA), which is the absorbed form of oleuropein, is a major phenolic compound in extra virgin olive oil. We analyzed the anti-obesity effect of OA intake combined with mild treadmill walking (MTW, 4 m/min for 20 min/d, 5-6 d/wk, without electric shocks and slope) in rats under a high-fat diet (HF). Four-week-old male Sprague-Dawley rats (n=28) were equally divided into four groups: control (HF), 0.08% oleuropein-supplemented HF (HFO), HF with MTW (HF+W), and HFO with MTW (HFO+W) groups. After 28 d, the inguinal subcutaneous fat content and weight gain were significantly lower in the HFO+W group than in the control group. The HFO+W group also had significantly higher levels of urinary noradrenaline secretion, interscapular brown adipose tissue, uncoupling protein 1, brain transient receptor potential ankyrin subtype 1 (TRPA1), vanilloid subtype 1 (TRPV1), and brain-derived neurotrophic factor (BDNF) than the control group. Especially, the HFO+W group showed a synergistic effect on noradrenaline secretion. Therefore, OA combined with MTW may accelerate the enhancement of UCP1 and BDNF levels in rats with HF-induced obesity by increasing noradrenaline secretion after TRPA1 and TRPV1 activation.


Subject(s)
Adipose Tissue, Brown , Brain-Derived Neurotrophic Factor , Diet, High-Fat , Iridoid Glucosides , Iridoids , Norepinephrine , Obesity , Rats, Sprague-Dawley , TRPA1 Cation Channel , Uncoupling Protein 1 , Animals , Male , Uncoupling Protein 1/metabolism , Iridoid Glucosides/pharmacology , Obesity/metabolism , Adipose Tissue, Brown/metabolism , Adipose Tissue, Brown/drug effects , Iridoids/pharmacology , Norepinephrine/metabolism , TRPA1 Cation Channel/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Rats , Anti-Obesity Agents/pharmacology , Walking , Weight Gain/drug effects , Physical Conditioning, Animal , TRPV Cation Channels
4.
Biomolecules ; 14(6)2024 May 23.
Article in English | MEDLINE | ID: mdl-38927022

ABSTRACT

Recent studies increasingly suggest that targeting brown/beige adipose tissues to enhance energy expenditure offers a novel therapeutic approach for treating metabolic diseases. Brown/beige adipocytes exhibit elevated expression of uncoupling protein 1 (UCP1), which is a thermogenic protein that efficiently converts energy into heat, particularly in response to cold stimulation. Polyphenols possess potential anti-obesity properties, but their pharmacological effects are limited by their bioavailability and distribution within tissue. This study discovered 18a, a polyphenol compound with a favorable distribution within adipose tissues, which transcriptionally activates UCP1, thereby promoting thermogenesis and enhancing mitochondrial respiration in brown adipocytes. Furthermore, in vivo studies demonstrated that 18a prevents high-fat-diet-induced weight gain and improves insulin sensitivity. Our research provides strong mechanistic evidence that UCP1 is a complex mediator of 18a-induced thermogenesis, which is a critical process in obesity mitigation. Brown adipose thermogenesis is triggered by 18a via the AMPK-PGC-1α pathway. As a result, our research highlights a thermogenic controlled polyphenol compound 18a and clarifies its underlying mechanisms, thus offering a potential strategy for the thermogenic targeting of adipose tissue to reduce the incidence of obesity and its related metabolic problems.


Subject(s)
Diet, High-Fat , Obesity , Polyphenols , Thermogenesis , Uncoupling Protein 1 , Uncoupling Protein 1/metabolism , Uncoupling Protein 1/genetics , Thermogenesis/drug effects , Animals , Obesity/metabolism , Obesity/drug therapy , Polyphenols/pharmacology , Mice , Diet, High-Fat/adverse effects , Adipose Tissue, Brown/metabolism , Adipose Tissue, Brown/drug effects , Male , Mice, Inbred C57BL , Humans , Energy Metabolism/drug effects
5.
Biochem Biophys Res Commun ; 727: 150309, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38936224

ABSTRACT

Versican is a large chondroitin sulfate proteoglycan in the extracellular matrix. It plays a pivotal role in the formation of the provisional matrix. S100a4, previously known as fibroblast-specific protein, functions as a calcium channel-binding protein. To investigate the role of versican expressed in fibroblasts, we generated conditional knockout mice in which versican expression is deleted in cells expressing S100a4. We found that S100a4 is expressed in adipose tissues, and these mice exhibit obesity under a normal diet, which becomes apparent as early as five months. The white adipose tissues of these mice exhibited decreased expression levels of S100a4 and versican and hypertrophy of adipocytes. qRT-PCR showed a reduced level of UCP1 in their white adipose tissues, indicating that the basic energy metabolism is diminished. These results suggest that versican in adipose tissues maintains the homeostasis of adipose tissues and regulates energy metabolism.

6.
Front Biosci (Landmark Ed) ; 29(6): 236, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38940054

ABSTRACT

BACKGROUND: This study aimed to elucidate the molecular mechanism through which C1q/tumor necrosis factor (TNF)-related protein 9 (CTRP9) acts in the formation and differentiation of brown adipose tissue (BAT). METHODS: Adenovirus particles encoding CTRP9 and green fluorescent protein were inoculated into the scapula of C57BL/6J mice and fed a high-fat diet for 8 weeks; the body weight, lipid droplet morphology, glucose tolerance, insulin tolerance, and protein expression levels were analyzed. In addition, CTRP9 adenovirus was transfected into brown preadipocytes, and differentiation was induced to identify the effect of CTRP9 overexpression on adipocyte differentiation. RESULTS: CTRP9 overexpression significantly increased the weight gain of mice. Additionally, the CTRP9 overexpression group exhibited significantly increased adipose tissue weight and glucose clearance rates and decreased insulin sensitivity and serum triglyceride levels compared to the control group. Furthermore, CTRP9 overexpression significantly upregulated the adipose triglyceride lipase (ATGL) and perilipin 1 protein expression levels in BAT. The cell experiment results confirmed that CTRP9 overexpression significantly inhibited the adipogenesis of brown adipocytes as evidenced by the downregulation of uncoupling protein 1, beta-3 adrenergic receptor, ATGL, and hormone-sensitive lipase mRNA levels and the significant suppression of uncoupling protein 1, ATGL, and perilipin 1 protein levels in brown adipocytes. CONCLUSIONS: The finding of this study demonstrated that CTRP9 promotes lipolysis by upregulating ATGL expression in vivo and inhibits the differentiation of brown preadipocytes in vitro.


Subject(s)
Adipose Tissue, Brown , Diet, High-Fat , Lipolysis , Mice, Inbred C57BL , Animals , Diet, High-Fat/adverse effects , Adipose Tissue, Brown/metabolism , Male , Mice , Adiponectin/metabolism , Adiponectin/genetics , Insulin Resistance , Lipase/metabolism , Lipase/genetics , Cell Differentiation , Adipogenesis/genetics , Perilipin-1/metabolism , Perilipin-1/genetics , Acyltransferases , Glycoproteins
7.
Molecules ; 29(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38893431

ABSTRACT

BACKGROUND: With the changes in lifestyle and diet structure, the incidence of obesity has increased year by year, and obesity is one of the inducements of many chronic metabolic diseases. Epigallocatechin gallate (EGCG), which is the most abundant component of tea polyphenols, has been used for many years to improve obesity and its complications. Though it has been reported that EGCG can improve obesity through many molecular mechanisms, EGCG may have many mechanisms yet to be explored. In this study, we explored other possible mechanisms through molecular docking and in vitro experiments. METHODS: AutoDock Vina was selected for conducting the molecular docking analysis to elucidate the interaction between EGCG and Notch1, while molecular dynamics simulations were employed to validate this interaction. Then, the new regulation mechanism of EGCG on obesity was verified with in vitro experiments, including a Western blot experiment, immunofluorescence experiment, oil red O staining, and other experiments in 3T3-L1 adipocytes. RESULTS: The molecular docking results showed that EGCG could bind to Notch1 protein through hydrogen bonding. In vitro cell experiments demonstrated that EGCG can significantly reduce the sizes of lipid droplets of 3T3-L1 adipocytes and promote UCP-1 expression by inhibiting the expression of Notch1 in 3T3-L1 adipocytes, thus promoting mitochondrial biogenesis. CONCLUSIONS: In this study, molecular docking and in vitro cell experiments were used to explore the possible mechanism of EGCG to improve obesity by inhibiting Notch1.


Subject(s)
Adipogenesis , Catechin , Molecular Docking Simulation , Receptor, Notch1 , Animals , Mice , 3T3-L1 Cells , Adipogenesis/drug effects , Catechin/analogs & derivatives , Catechin/pharmacology , Catechin/chemistry , Gene Expression Regulation/drug effects , Molecular Dynamics Simulation , Obesity/drug therapy , Obesity/metabolism , Receptor, Notch1/metabolism , Uncoupling Protein 1/metabolism
8.
Eur J Endocrinol ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38917410

ABSTRACT

OBJECTIVE: Brown adipose tissue (BAT) is a therapeutic target for obesity. 18F-Fluorodeoxyglucose positron emission tomography (18F-FDG-PET) is commonly used to quantify human BAT mass and activity. Detectable 18F-FDG uptake by BAT is associated with reduced prevalence of cardiometabolic disease. However, 18F-FDG uptake may not always be a reliable marker of BAT thermogenesis, for example insulin resistance may reduce glucose uptake. Uncoupling protein 1 (UCP1) is the key thermogenic protein in BAT. Therefore, we hypothesized that UCP1 expression may be altered in individuals with cardiometabolic risk factors. METHODS: We quantified UCP1 expression as an alternative marker of thermogenic capacity in BAT and white adipose tissue (WAT) samples (n = 53) and in differentiated brown and white pre-adipocytes (n = 85). RESULTS: UCP1 expression in BAT, but not in WAT or brown/white differentiated pre-adipocytes, was reduced with increasing age, obesity and adverse cardiometabolic risk factors such as fasting glucose, insulin and blood pressure. However, UCP1 expression in BAT was preserved in obese subjects of <40 years of age. To determine if BAT activity was also preserved in vivo, we undertook a case-control study, performing 18F-FDG scanning during mild cold exposure in young (mean age ∼22y) normal weight and obese volunteers. 18F-FDG uptake by BAT and BAT volume were similar between groups, despite increased insulin resistance. CONCLUSION: 18F-FDG uptake by BAT and UCP1 expression are preserved in young obese adults. Older subjects retain precursor cells with the capacity to form new thermogenic adipocytes. These data highlight the therapeutic potential of BAT mass expansion and activation in obesity.

9.
Genes Nutr ; 19(1): 8, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702594

ABSTRACT

BACKGROUND: Evidences have shown that obesity is influenced by various factors, including various hormones such as thyroid hormones and the body's metabolism rate. It seems that practical solutions such as weight loss diets and common drugs can affect these potential disorders. In this study, we investigate one of these common drugs, N-Acetylcysteine (NAC), on expressions of UCP1 and factors related to thyroid function in adults with obesity. METHODS AND ANALYSIS: The current investigation was carried out as a randomized clinical trial (RCT) including 43 adults with obesity who were potential candidates for bariatric surgery. These individuals were randomly divided into two groups: 600 mg of NAC (n = 22) or placebo (n = 21) for a duration of 8 weeks. Visceral adipose tissue was utilized in the context of bariatric surgery to investigate the gene expression of UCP1 and thyroid function. Polymerase chain reaction (PCR) was performed in duplicate for UCP1, DIO2, DIO3, THRα and ß, and 18s RNA (as an internal control) using the provided instructions to investigate the expression of the respective genes. RESULTS: Our findings revealed that after 8 weeks compared to placebo, NAC caused a significant decrease in the expression of the DIO3 gene as one of the genes related to thyroid function and metabolism. However, regarding other related genes, no statistically significant was found (despite the increase in UCP1, DIO2, and THRα expression and decrease in THRß expression). In addition, after adjustment of possible confounders, no significant effect was observed on anthropometric factors and serum levels of thyroid hormones. CONCLUSION: The results of this study indicate that, following an 8-week period, NAC effectively decreases the expression of the DIO3 gene in the visceral fat tissue, in comparison to the placebo.

10.
JMA J ; 7(2): 172-177, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38721091

ABSTRACT

Adipose tissues, such as white, brown, and beige tissues, play pivotal roles in maintaining energy balance and metabolic health. Whereas white adipocytes store energy, brown and beige adipocytes exhibit high energy expenditure owing to their distinct mitochondrial density and UCP1 expression. Dysfunction in these tissues contributes to metabolic disorders such as type 2 diabetes and cardiovascular diseases. Adipose tissue expansion through cell enlargement or increased cell numbers caused by excess energy storage in white adipocytes substantially influences metabolic health. In obesity, hypertrophic adipocytes trigger inflammation, fibrosis, and hypoxia, whereas smaller adipocytes exert favorable metabolic effects, contributing to insulin sensitivity. Brown and beige adipocytes consume energy for thermogenesis to maintain body temperature, contributing to metabolic homeostasis. The intricate interactions between brown adipose tissues and various organs, such as the liver and heart, highlight the systemic implications of adipose tissue functions. Understanding the complex underlying mechanisms may lead to the development of innovative therapies targeting metabolic disorders by modulating the functions of brown adipose tissue and its interactions with other physiological systems. In this review, we discuss insights into the mechanisms underlying the dysregulation of metabolism owing to abnormalities in adipose tissue remodeling. We focus on the endocrine functions of thermogenic brown and beige adipocytes and explore the interorgan interactions that influence whole-body metabolism.

11.
Sci Rep ; 14(1): 10789, 2024 05 11.
Article in English | MEDLINE | ID: mdl-38734719

ABSTRACT

Brown adipocytes are potential therapeutic targets for the prevention of obesity-associated metabolic diseases because they consume circulating glucose and fatty acids for heat production. Angiotensin II (Ang II) peptide is involved in the pathogenesis of obesity- and cold-induced hypertension; however, the mechanism underlying the direct effects of Ang II on human brown adipocytes remains unclear. Our transcriptome analysis of chemical compound-induced brown adipocytes (ciBAs) showed that the Ang II type 1 receptor (AGTR1), but not AGTR2 and MAS1 receptors, was expressed. The Ang II/AGTR1 axis downregulated the expression of mitochondrial uncoupling protein 1 (UCP1). The simultaneous treatment with ß-adrenergic receptor agonists and Ang II attenuated UCP1 expression, triglyceride lipolysis, and cAMP levels, although cAMP response element-binding protein (CREB) phosphorylation was enhanced by Ang II mainly through the protein kinase C pathway. Despite reduced lipolysis, both coupled and uncoupled mitochondrial respiration was enhanced in Ang II-treated ciBAs. Instead, glycolysis and glucose uptake were robustly activated upon treatment with Ang II without a comprehensive transcriptional change in glucose metabolic genes. Elevated mitochondrial energy status induced by Ang II was likely associated with UCP1 repression. Our findings suggest that the Ang II/AGTR1 axis participates in mitochondrial thermogenic functions via glycolysis.


Subject(s)
Adipocytes, Brown , Angiotensin II , Glycolysis , Mitochondria , Thermogenesis , Humans , Adipocytes, Brown/metabolism , Angiotensin II/pharmacology , Angiotensin II/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Glucose/metabolism , Lipolysis , Mitochondria/metabolism , Receptor, Angiotensin, Type 1/metabolism , Receptor, Angiotensin, Type 1/genetics , Uncoupling Protein 1/metabolism , Uncoupling Protein 1/genetics
12.
Mol Cell Endocrinol ; 591: 112268, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38735622

ABSTRACT

Menopause causes important bodily and metabolic changes, which favor the increased occurrence of cardiovascular diseases, obesity, diabetes, and osteoporosis. Resveratrol exerts proven effects on body metabolism, improving glucose and lipid homeostasis and reducing inflammation and oxidative stress in various organs and tissues. Accordingly, this study evaluates the effects of resveratrol supplementation on the expression of markers associated with thermogenesis in brown adipose tissue, and on the body, metabolic and hormonal parameters of female mice submitted to bilateral oophorectomy. Eighteen female mice were randomized into three groups: G1: control (CONTROL), G2: oophorectomy (OOF), and G3: oophorectomy + resveratrol (OOF + RSV); the animals were kept under treatment for twelve weeks, being fed a standard diet and treated with resveratrol via gavage. Body, biochemical, hormonal, and histological parameters were measured; in addition to the expression of markers associated with thermogenesis in brown adipose tissue. The results showed that animals supplemented with resveratrol showed reduced body weight and visceral adiposity, in addition to glucose, total cholesterol, and triglyceride levels; decreased serum FSH levels and increased estrogen levels were observed compared to the OOF group and mRNA expression of PRDM16, UCP1, and SIRT3 in brown adipose tissue. The findings of this study suggest the important role of resveratrol in terms of improving body, metabolic, and hormonal parameters, as well as modulating markers associated with thermogenesis in brown adipose tissue of female mice submitted to oophorectomy.


Subject(s)
Adipose Tissue, Brown , Dietary Supplements , Ovariectomy , Resveratrol , Thermogenesis , Uncoupling Protein 1 , Animals , Resveratrol/pharmacology , Resveratrol/administration & dosage , Female , Thermogenesis/drug effects , Thermogenesis/genetics , Mice , Adipose Tissue, Brown/metabolism , Adipose Tissue, Brown/drug effects , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism , Administration, Oral , Gene Expression Regulation/drug effects , Transcription Factors/genetics , Transcription Factors/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Sirtuin 3/genetics , Sirtuin 3/metabolism , Body Weight/drug effects , Hormones/blood
13.
Article in English | MEDLINE | ID: mdl-38723743

ABSTRACT

Ambient temperatures have great impacts on thermoregulation of small mammals. Brown adipose tissue (BAT), an obligative thermogenic tissue for small mammals, is localized not only in the interscapular depot (iBAT), but also in supraclavicular, infra/subscapular, cervical, paravertebral, and periaortic depots. The iBAT is known for its cold-induced thermogenesis, however, less has been paid attention to the function of BAT at other sites. Here, we investigated the function of BAT at different sites of the body during cold acclimation in a small rodent species. As expected, Brandt's voles (Lasiopodomys brandtii) consumed more food and reduced the body mass gain when they were exposed to cold. The voles increased resting metabolic rate and maintained a relatively lower body temperature in the cold (36.5 ± 0.27 °C) compared to those in the warm condition (37.1 ± 0.36 °C). During cold acclimation, the uncoupling protein 1 (UCP1) increased in aBAT (axillary), cBAT (anterior cervical), iBAT (interscapular), nBAT (supraclavicular), and sBAT (suprascapular). The levels of proliferating cell nuclear antigen (PCNA), a marker for cell proliferation, were higher in cBAT and iBAT in the cold than in the warm group. The pAMPK/AMPK and pCREB/CREB were increased in cBAT and iBAT during cold acclimation, respectively. These data indicate that these different sites of BAT play the cold-induced thermogenic function for small mammals.


Subject(s)
Acclimatization , Adipose Tissue, Brown , Arvicolinae , Cold Temperature , Thermogenesis , Uncoupling Protein 1 , Animals , Adipose Tissue, Brown/physiology , Adipose Tissue, Brown/metabolism , Arvicolinae/physiology , Acclimatization/physiology , Uncoupling Protein 1/metabolism , Thermogenesis/physiology , Male , Body Temperature Regulation/physiology , Basal Metabolism
14.
J Lipid Res ; 65(6): 100559, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729351

ABSTRACT

Adipogenesis is one of the major mechanisms for adipose tissue expansion, during which spindle-shaped mesenchymal stem cells commit to the fate of adipocyte precursors and differentiate into round-shaped fat-laden adipocytes. Here, we investigated the lipidomic profile dynamics of ex vivo-differentiated brown and white adipocytes derived from the stromal vascular fractions of interscapular brown (iBAT) and inguinal white adipose tissues. We showed that sphingomyelin was specifically enriched in terminally differentiated brown adipocytes, but not white adipocytes. In line with this, freshly isolated adipocytes of iBAT showed higher sphingomyelin content than those of inguinal white adipose tissue. Upon cold exposure, sphingomyelin abundance in iBAT gradually decreased in parallel with reduced sphingomyelin synthase 1 protein levels. Cold-exposed animals treated with an inhibitor of sphingomyelin hydrolases failed to maintain core body temperature and showed reduced oxygen consumption and iBAT UCP1 levels. Conversely, blockade of sphingomyelin synthetic enzymes resulted in enhanced nonshivering thermogenesis, reflected by elevated body temperature and UCP1 levels. Taken together, our results uncovered a relation between sphingomyelin abundance and fine-tuning of UCP1-mediated nonshivering thermogenesis.


Subject(s)
Sphingomyelins , Thermogenesis , Uncoupling Protein 1 , Animals , Uncoupling Protein 1/metabolism , Uncoupling Protein 1/genetics , Sphingomyelins/metabolism , Mice , Male , Adipose Tissue, White/metabolism , Adipose Tissue, Brown/metabolism , Mice, Inbred C57BL
15.
FASEB J ; 38(11): e23709, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38809700

ABSTRACT

Brown adipose tissue (BAT) is correlated to cardiovascular health in rodents and humans, but the physiological role of BAT in the initial cardiac remodeling at the onset of stress is unknown. Activation of BAT via 48 h cold (16°C) in mice following transverse aortic constriction (TAC) reduced cardiac gene expression for LCFA uptake and oxidation in male mice and accelerated the onset of cardiac metabolic remodeling, with an early isoform shift of carnitine palmitoyltransferase 1 (CPT1) toward increased CPT1a, reduced entry of long chain fatty acid (LCFA) into oxidative metabolism (0.59 ± 0.02 vs. 0.72 ± 0.02 in RT TAC hearts, p < .05) and increased carbohydrate oxidation with altered glucose transporter content. BAT activation with TAC reduced early hypertrophic expression of ß-MHC by 61% versus RT-TAC and reduced pro-fibrotic TGF-ß1 and COL3α1 expression. While cardiac natriuretic peptide expression was yet to increase at only 3 days TAC, Nppa and Nppb expression were elevated in Cold TAC versus RT TAC hearts 2.7- and 2.4-fold, respectively. Eliminating BAT thermogenic activation with UCP1 KO mice eliminated differences between Cold TAC and RT TAC hearts, confirming effects of BAT activation rather than autonomous cardiac responses to cold. Female responses to BAT activation were blunted, with limited UCP1 changes with cold, partly due to already activated BAT in females at RT compared to thermoneutrality. These data reveal a previously unknown physiological mechanism of UCP1-dependent BAT activation in attenuating early cardiac hypertrophic and profibrotic signaling and accelerating remodeled metabolic activity in the heart at the onset of cardiac stress.


Subject(s)
Adipose Tissue, Brown , Fibrosis , Uncoupling Protein 1 , Animals , Adipose Tissue, Brown/metabolism , Mice , Male , Uncoupling Protein 1/metabolism , Fibrosis/metabolism , Carnitine O-Palmitoyltransferase/metabolism , Carnitine O-Palmitoyltransferase/genetics , Mice, Inbred C57BL , Cardiomegaly/metabolism , Cardiomegaly/pathology , Myocardium/metabolism , Myocardium/pathology , Stress, Physiological , Ventricular Remodeling/physiology , Mice, Knockout , Cold Temperature
16.
Curr Issues Mol Biol ; 46(5): 3866-3876, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38785508

ABSTRACT

Cold stress significantly affects gene expression in adipocytes; studying this phenomenon can help reveal the pathogeneses of conditions such as obesity and insulin resistance. Adipocyte triglyceride lipase (ATGL); cell death-inducing deoxyribonucleic acid (DNA) fragmentation factor subunit alpha (DFFA)-like effector (CIDEA); and uncoupling protein genes UCP1, UCP2, and UCP3 are the most studied genes in pig adipose tissues under cold stress. However, contradictory results have been observed in gene expression changes to UCP3 and UCP2 when adipose tissues under cold stress were examined. Therefore, we conducted a meta-analysis of 32 publications in total on the effect of cold stress on the expression of ATGL, CIDEA, UCP2, and UCP3. Our results showed that cold stress affected the expression of swine adipocyte genes; specifically, it was positively correlated with the expression of UCP3 in swine adipocytes. Conversely, expression of ATGL was negatively affected under cold stress conditions. In addition, the loss of functional UCP1 in pigs likely triggered a compensatory increase in UCP3 activity. We also simulated the docking results of UCP2 and UCP3. Our results showed that UCP2 could strongly bind to adenosine triphosphate (ATP), meaning that UCP3 played a more significant role in pig adipocytes.

17.
Elife ; 122024 May 22.
Article in English | MEDLINE | ID: mdl-38775132

ABSTRACT

The energy-burning capability of beige adipose tissue is a potential therapeutic tool for reducing obesity and metabolic disease, but this capacity is decreased by aging. Here, we evaluate the impact of aging on the profile and activity of adipocyte stem and progenitor cells (ASPCs) and adipocytes during the beiging process in mice. We found that aging increases the expression of Cd9 and other fibro-inflammatory genes in fibroblastic ASPCs and blocks their differentiation into beige adipocytes. Fibroblastic ASPC populations from young and aged mice were equally competent for beige differentiation in vitro, suggesting that environmental factors suppress adipogenesis in vivo. Examination of adipocytes by single nucleus RNA-sequencing identified compositional and transcriptional differences in adipocyte populations with aging and cold exposure. Notably, cold exposure induced an adipocyte population expressing high levels of de novo lipogenesis (DNL) genes, and this response was severely blunted in aged animals. We further identified Npr3, which encodes the natriuretic peptide clearance receptor, as a marker gene for a subset of white adipocytes and an aging-upregulated gene in adipocytes. In summary, this study indicates that aging blocks beige adipogenesis and dysregulates adipocyte responses to cold exposure and provides a resource for identifying cold and aging-regulated pathways in adipose tissue.


Subject(s)
Adipocytes, Beige , Adipogenesis , Aging , Cold Temperature , Animals , Adipogenesis/genetics , Aging/metabolism , Aging/physiology , Mice , Adipocytes, Beige/metabolism , Mice, Inbred C57BL , Male , Adipocytes/metabolism , Cell Differentiation , Cellular Reprogramming , Metabolic Reprogramming
18.
Front Nutr ; 11: 1387806, 2024.
Article in English | MEDLINE | ID: mdl-38784133

ABSTRACT

Objective: Obesity is defined as excess body fat and is a current health epidemic associated with increased risk for type 2 diabetes and cardiovascular disease. The ClC-3 chloride channel/antiporter, encoded by the Clcn3, is associated with some diseases, like carcinoma, nervous system diseases, and metabolic diseases. To verify the relationship between the Clcn3 and weight including metabolic changes, searching for a new target for metabolic therapy of obesity, we designed the experiment. Methods: The mice were divided into 4 different groups: Clcn3+/+ mice + high-fat diet (HFD), Clcn3-/- mice + HFD, Clcn3+/+ mice + normal diet (ND), Clcn3-/- mice + ND, and fed for 16 weeks. After the glucose tolerance test and insulin tolerance test, peripheral blood and adipose tissues were collected. Moreover, we performed transcriptome sequencing for the epididymal white adipose tissue from Clcn3+/+ and Clcn3-/- mice with the high-fat diet. Western blotting verified the changes in protein levels of relevant metabolic genes. Results: We found that the Clcn3-/- mice had lower body weight and visceral fat, refining glucose and lipid metabolism in HFD-induced mice, but had no effect in normal diet mice. RNA-seq and Western blotting indicated that Clcn3 deficiency may inhibit obesity through the AMPK-UCP1 axis. Conclusion: Modulation of Clcn3 may provide an appealing therapeutic target for obesity and associated metabolic syndrome.

19.
Mol Cell Endocrinol ; 588: 112225, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38570133

ABSTRACT

Although Liraglutide (Lira) increases serum irisin levels in type 2 diabetes mellitus (T2DM), it is unclear whether it induces expression of uncoupling protein 1 (UCP1) of adipocytes via promoting irisin secretion from skeletal muscle. Male T2DM rats were treated with 0.4 mg/kg/d Lira twice a day for 8 weeks, and the protein expression of phosphorylated AMP kinase (p-AMPK), phosphorylated acetyl-CoA carboxylase 1 (p-ACC1) and UCP1 in white adipose tissues were detected. Differentiated C2C12 cells were treated with palmitic acid (PA) and Lira to detect the secretion of irisin. Differentiated 3T3-L1 cells were treated with irisin, supernatant from Lira-treated C2C12 cells, Compound C or siAMPKα1, the triglyceride (TG) content and the related gene expression were measured. The transcriptome in irisin-treated differentiated 3T3-L1 cells was analyzed. Lira elevated serum irisin levels, decreased the adipocyte size and increased the protein expression of UCP1, p-AMPK and p-ACC1 in WAT. Moreover, it promoted the expression of PGC1α and FNDC5, the secretion of irisin in PA-treated differentiated C2C12 cells. The irisin and supernatant decreased TG synthesis and promoted the expression of browning- and lipolysis-related genes in differentiated 3T3-L1 cells. While Compound C and siAMPKα1 blocked AMPK activities and expression, irisin partly reversed the pathway. Finally, the transcriptome analysis indicated that differently expressed genes are mainly involved in browning and lipid metabolism. Overall, our findings showed that Lira modulated muscle-to-adipose signaling pathways in diabetes via irisin-mediated AMPKα/ACC1/UCP1/PPARα pathway. Our results suggest a new mechanism for the treatment of T2DM by Lira.


Subject(s)
3T3-L1 Cells , Adipocytes , Fibronectins , Lipolysis , Liraglutide , Uncoupling Protein 1 , Animals , Fibronectins/metabolism , Fibronectins/genetics , Mice , Uncoupling Protein 1/metabolism , Uncoupling Protein 1/genetics , Male , Adipocytes/metabolism , Adipocytes/drug effects , Lipolysis/drug effects , Liraglutide/pharmacology , Rats , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/drug therapy , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , AMP-Activated Protein Kinases/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Rats, Sprague-Dawley , Cell Differentiation/drug effects , Gene Expression Regulation/drug effects , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/drug effects
20.
Mol Biol Evol ; 41(4)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38606905

ABSTRACT

The molecular evolution of the mammalian heater protein UCP1 is a powerful biomarker to understand thermoregulatory strategies during species radiation into extreme climates, such as aquatic life with high thermal conductivity. While fully aquatic mammals lost UCP1, most semiaquatic seals display intact UCP1 genes, apart from large elephant seals. Here, we show that UCP1 thermogenic activity of the small-bodied harbor seal is equally potent compared to terrestrial orthologs, emphasizing its importance for neonatal survival on land. In contrast, elephant seal UCP1 does not display thermogenic activity, not even when translating a repaired or a recently highlighted truncated version. Thus, the thermogenic benefits for neonatal survival during terrestrial birth in semiaquatic pinnipeds maintained evolutionary selection pressure on UCP1 function and were only outweighed by extreme body sizes among elephant seals, fully eliminating UCP1-dependent thermogenesis.


Subject(s)
Body Size , Seals, Earless , Thermogenesis , Uncoupling Protein 1 , Animals , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism , Thermogenesis/genetics , Seals, Earless/genetics , Evolution, Molecular , Phoca/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...