Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
1.
Anticancer Res ; 44(8): 3587-3591, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39060048

ABSTRACT

BACKGROUND/AIM: Acetyl glucose adducts (UTX-114, -115, and -116) were prepared from gefitinib, and their characteristics (e.g., anticancer activity, structural property) were analyzed. MATERIALS AND METHODS: Cytotoxicity and radiosensitizing properties of the UTX-114 family were examined using A431 cells. Supramolecular associations between the UTX-114 family compounds and the tyrosine kinase domain of epidermal growth factor receptor (EGFR-tyk) were also examined. The interactive analyses of the UTX-114 family compounds with EGFR-tyk were performed using docking simulation technique. RESULTS: The UTX-114 family showed a similar cytotoxicity as gefitinib, yielding IC50 values of 31.2 µM (gefitinib), 34.3 µM (UTX-114), 36.8 µM (UTX-115), and 39.4 µM (UTX-116). The EGFR-tyk inhibition ratios (IR) of UTX-114, -115, and -116 to gefitinib were 1.515, 0.983, and 0.551, respectively. The EGFR-tyk inhibitory activity of UTX-114 was higher than that of gefitinib. UTX-114 also showed the highest radiosensitizing activity among the tested compounds. UTX-114 expressed 1841 conformers (-8.989~15.718 kcal/mol) with the solvation free energy (dGW) of UTX-114 decreasing with increasing conformational energy, ranging between -354.955~ -260.815 kJ/mol. Interactive energies of gefitinib, UTX-114, -115, and -116 with EGFR-tyk were -123.640, -144.053, -120.830, and -124.658 kcal/mol, respectively. CONCLUSION: UTX-114 yielded the lowest interaction energy with EGFR-tyk among tested compounds. Given the association behavior between UTX-114 and EGFR-tyk, along with its other observed properties, UTX-114 appears to be a viable therapeutic possibility.


Subject(s)
ErbB Receptors , Gefitinib , Molecular Docking Simulation , Gefitinib/pharmacology , Humans , ErbB Receptors/metabolism , ErbB Receptors/genetics , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/chemistry , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Glycosylation , Protein Kinase Inhibitors/pharmacology , Radiation-Sensitizing Agents/pharmacology , Radiation-Sensitizing Agents/chemistry
2.
Clin Epigenetics ; 16(1): 51, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38576048

ABSTRACT

BACKGROUND: The intriguing connection between selenium and cancer resembles a captivating puzzle that keeps researchers engaged and curious. While selenium has shown promise in reducing cancer risks through supplementation, its interaction with epigenetics in cervical cancer remains a fascinating yet largely unexplored realm. Unraveling the intricacies of selenium's role and its interaction with epigenetic factors could unlock valuable insights in the battle against this complex disease. RESULT: Selenium has shown remarkable inhibitory effects on cervical cancer cells in various ways. In in vitro studies, it effectively inhibits the proliferation, migration, and invasion of cervical cancer cells, while promoting apoptosis. Selenium also demonstrates significant inhibitory effects on human cervical cancer-derived organoids. Furthermore, in an in vivo study, the administration of selenium dioxide solution effectively suppresses the growth of cervical cancer tumors in mice. One of the mechanisms behind selenium's inhibitory effects is its ability to inhibit histone demethylases, specifically JMJD3 and UTX. This inhibition is observed both in vitro and in vivo. Notably, when JMJD3 and UTX are inhibited with GSK-J4, similar biological effects are observed in both in vitro and in vivo models, effectively inhibiting organoid models derived from cervical cancer patients. Inhibiting JMJD3 and UTX also induces G2/M phase arrest, promotes cellular apoptosis, and reverses epithelial-mesenchymal transition (EMT). ChIP-qPCR analysis confirms that JMJD3 and UTX inhibition increases the recruitment of a specific histone modification, H3K27me3, to the transcription start sites (TSS) of target genes in cervical cancer cells (HeLa and SiHa cells). Furthermore, the expressions of JMJD3 and UTX are found to be significantly higher in cervical cancer tissues compared to adjacent normal cervical tissues, suggesting their potential as therapeutic targets. CONCLUSIONS: Our study highlights the significant inhibitory effects of selenium on the growth, migration, and invasion of cervical cancer cells, promoting apoptosis and displaying promising potential as a therapeutic agent. We identified the histone demethylases JMJD3 and UTX as specific targets of selenium, and their inhibition replicates the observed effects on cancer cell behavior. These findings suggest that JMJD3 and UTX could be valuable targets for selenium-based treatments of cervical cancer.


Subject(s)
Selenium , Uterine Cervical Neoplasms , Female , Humans , Animals , Mice , Selenium/pharmacology , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/genetics , DNA Methylation , Jumonji Domain-Containing Histone Demethylases/genetics , Histone Demethylases/genetics
3.
Free Radic Biol Med ; 217: 48-59, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38527695

ABSTRACT

The transcription factor NRF2 plays a pivotal role in maintaining redox and metabolic homeostasis by orchestrating oxidative stress-dependent transcription programs. Despite growing evidence implicating various cellular components in the regulation of NRF2 activity at the posttranslational stage, relatively less is known about the factors dictating the transcriptional activation of NRF2 in response to oxidative stress. In this study, we report the crucial roles of MLL1, an H3K4-specific methyltransferase, and UTX, an H3K27-specific histone demethylase, in the NRF2-dependent transcription program under oxidative stress. We find that the depletion of MLL1 or UTX results in increased susceptibility to oxidative stress, accompanied by higher intracellular ROS and the failed activation of antioxidant genes, including NRF2. In addition, MLL1 and UTX selectively target the NRF2 promoter, and exogenous FLAG-NRF2 expression increases the viability of MLL1-or UTX-depleted cells upon exposure to hydrogen peroxide. RNA-seq analysis demonstrates that depletion of MLL1 or UTX affects the changes in NRF2-dependent transcriptome in response to oxidative stress. Furthermore, ChIP and ChIP-seq analyses find that MLL1 and UTX functionally cooperate to establish a chromatin environment that favors active transcription at the H3K4me3/H3K27me3 bivalent NRF2 promoter in response to ROS-induced oxidative stress. Collectively, these findings provide a molecular mechanism underlying the cellular response to oxidative stress and highlight the importance of the chromatin structure and function in maintaining redox homeostasis.


Subject(s)
Histone Demethylases , NF-E2-Related Factor 2 , Histone Demethylases/genetics , Histone Demethylases/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Reactive Oxygen Species , Histone Methyltransferases/genetics , Histone Methyltransferases/metabolism , Methylation , Chromatin , Oxidative Stress
4.
Cell Commun Signal ; 22(1): 155, 2024 02 29.
Article in English | MEDLINE | ID: mdl-38424563

ABSTRACT

BACKGROUND: Vascular endothelial cells are pivotal in the pathophysiological progression following spinal cord injury (SCI). The UTX (Ubiquitously Transcribed Tetratripeptide Repeat on Chromosome X) serves as a significant regulator of endothelial cell phenotype. The manipulation of endogenous neural stem cells (NSCs) offers a compelling strategy for the amelioration of SCI. METHODS: Two mouse models were used to investigate SCI: NSCs lineage-traced mice and mice with conditional UTX knockout (UTX KO) in endothelial cells. To study the effects of UTX KO on neural differentiation, we harvested extracellular vesicles (EVs) from both UTX KO spinal cord microvascular endothelial cells (SCMECs) and negative control SCMECs. These EVs were then employed to modulate the differentiation trajectory of endogenous NSCs in the SCI model. RESULTS: In our NSCs lineage-traced mice model of SCI, a marked decrease in neurogenesis was observed post-injury. Notably, NSCs in UTX KO SCMECs mice showed enhanced neuronal differentiation compared to controls. RNA sequencing and western blot analyses revealed an upregulation of L1 cell adhesion molecule (L1CAM), a gene associated with neurogenesis, in UTX KO SCMECs and their secreted EVs. This aligns with the observed promotion of neurogenesis in UTX KO conditions. In vivo administration of L1CAM-rich EVs from UTX KO SCMECs (KO EVs) to the mice significantly enhanced neural differentiation. Similarly, in vitro exposure of NSCs to KO EVs resulted in increased activation of the Akt signaling pathway, further promoting neural differentiation. Conversely, inhibiting Akt phosphorylation or knocking down L1CAM negated the beneficial effects of KO EVs on NSC neuronal differentiation. CONCLUSIONS: In conclusion, our findings substantiate that EVs derived from UTX KO SCMECs can act as facilitators of neural differentiation following SCI. This study not only elucidates a novel mechanism but also opens new horizons for therapeutic interventions in the treatment of SCI. Video Abstract.


Subject(s)
Extracellular Vesicles , Neural Cell Adhesion Molecule L1 , Neural Stem Cells , Spinal Cord Injuries , Animals , Mice , Cell Differentiation , Disease Models, Animal , Endothelial Cells/metabolism , Extracellular Vesicles/metabolism , Neural Cell Adhesion Molecule L1/metabolism , Neural Cell Adhesion Molecule L1/pharmacology , Neural Stem Cells/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/therapy
5.
J Cell Physiol ; 239(4): e31178, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38214211

ABSTRACT

Glioblastoma stem cells (GSCs) exert a crucial influence on glioblastoma (GBM) development, progression, resistance to therapy, and recurrence, making them an attractive target for drug discovery. UTX, a histone H3K27 demethylase, participates in regulating multiple cancer types. However, its functional role in GSCs remains insufficiently explored. This study aims to investigate the role and regulatory mechanism of UTX on GSCs. Analysis of TCGA data revealed heightened UTX expression in glioma, inversely correlating with overall survival. Inhibiting UTX suppressed GBM cell growth and induced apoptosis. Subsequently, we cultured primary GSCs from three patients, observing that UTX inhibition suppressed cell proliferation and induced apoptosis. RNA-seq was performed to analyze the gene expression changes after silencing UTX in GSCs. The results indicated that UTX-mediated genes were strongly correlated with GBM progression and regulatory tumor microenvironment. The transwell co-cultured experiment showed that silencing UTX in the transwell chamber GSCs inhibited the well plate cell proliferation. Protein-protein interaction analysis revealed that periostin (POSTN) played a role in the UTX-mediated transcriptional regulatory network. Replenishing POSTN reversed the effects of UTX inhibition on GSC proliferation and apoptosis. Our study demonstrated that UTX inhibition hindered POSTN expression by enhancing the H3K27me2/3 level, eventually resulting in inhibiting proliferation and promoting apoptosis of patient-derived GSCs. Our findings may provide a novel and effective strategy for the treatment of GBM.


Subject(s)
Brain Neoplasms , Glioblastoma , Histone Demethylases , Neoplastic Stem Cells , Humans , Apoptosis/genetics , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/pathology , Neoplastic Stem Cells/pathology , Periostin , Tumor Microenvironment , Histone Demethylases/antagonists & inhibitors , Histone Demethylases/metabolism
6.
Biol Reprod ; 110(2): 391-407, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-37861693

ABSTRACT

Paternal chromatin undergoes extensive structural and epigenetic changes during mammalian spermatogenesis, producing sperm with an epigenome optimized for the transition to embryogenesis. Lysine demethylase 6a (KDM6A, also called UTX) promotes gene activation in part via demethylation of H3K27me3, a developmentally important repressive modification abundant throughout the epigenome of spermatogenic cells and sperm. We previously demonstrated increased cancer risk in genetically wild-type mice derived from a paternal germ line lacking Kdm6a (Kdm6a cKO), indicating a role for KDM6A in regulating heritable epigenetic states. However, the regulatory function of KDM6A during spermatogenesis is not known. Here, we show that Kdm6a is transiently expressed in spermatogenesis, with RNA and protein expression largely limited to late spermatogonia and early meiotic prophase. Kdm6a cKO males do not have defects in fertility or the overall progression of spermatogenesis. However, hundreds of genes are deregulated upon loss of Kdm6a in spermatogenic cells, with a strong bias toward downregulation coinciding with the time when Kdm6a is expressed. Misregulated genes encode factors involved in chromatin organization and regulation of repetitive elements, and a subset of these genes was persistently deregulated in the male germ line across two generations of offspring of Kdm6a cKO males. Genome-wide epigenetic profiling revealed broadening of H3K27me3 peaks in differentiating spermatogonia of Kdm6a cKO mice, suggesting that KDM6A demarcates H3K27me3 domains in the male germ line. Our findings highlight KDM6A as a transcriptional activator in the mammalian male germ line that is dispensable for spermatogenesis but important for safeguarding gene regulatory state intergenerationally.


Subject(s)
Histones , Meiosis , Male , Animals , Mice , Histones/genetics , Histones/metabolism , Semen/metabolism , Histone Demethylases/genetics , Histone Demethylases/metabolism , Spermatogenesis/genetics , Spermatogonia/metabolism , Gene Expression , Mammals/genetics
7.
Nan Fang Yi Ke Da Xue Xue Bao ; 43(10): 1697-1705, 2023 Oct 20.
Article in Chinese | MEDLINE | ID: mdl-37933645

ABSTRACT

OBJECTIVE: To explore the mechanism through which curcumol reverses primary drug resistance in glioma cells. METHODS: The inhibitory effect of 10, 20, and 40 µg/mL curcumol were observed in human glioma cell lines A172 and U251. UTX-overexpressing glioma cells constructed by lentiviral transfection were treated with curcumol (40 µg/mL), temozolomide (TMZ; 10 µg/mL), or both, and the changes in cell viability, clone formation capacity and apoptosis were assessed using MTT assay, cell clone formation experiment, and flow cytometry; UTX activity in the cells was determined using a UTX detection kit, and the enrichment of UTX and H3K27me3 in the MGMT promoter region was detected with ChiP-qPCR. The protein expressions in glioma cells were detected using Western blotting and immunohistochemistry. In a nude mouse model bearing glioma xenografts, the effects of curcumol (20 mg/kg), TMZ (20 mg/kg) and their combination on tumor growth and expressions of UTX, H3K27me3 and MGMT were evaluated. RESULTS: Curcumol significantly inhibited the proliferation (P<0.05) and promoted apoptosis of cultured glioma cells (P<0.01). Curcumol, but not TMZ, produced significant inhibitory effect on tumor growth in the tumor-bearing mice (P<0.01). Curcumol significantly inhibited UTX activity and increased the expression level of H3K27me3 protein in the glioma cells. UTX overexpression obviously decreased H3K27me3 protein expression and reversed the effects of curcumol on glioma cell proliferation and apoptosis (P<0.01). Curcumol reduced the enrichment of UTX and H3K27me3 in the MGMT promoter region (P<0.05) and decreased MGMT protein expression, which was reversed by UTX overexpression. In both the in vivo and in vitro experiments, curcumol combined with TMZ significantly increased H3K27me3 protein expression in the glioma cells, reduced the expression of its downstream target gene MGMT, and enhanced TMZ sensitivity of the glioma cells. CONCLUSION: Curcumol can enhance glioma cell sensitivity to TMZ by regulating the UTX/MGMT axis.


Subject(s)
Brain Neoplasms , Glioma , Humans , Animals , Mice , Temozolomide/pharmacology , Temozolomide/therapeutic use , Histones , Cell Line, Tumor , Glioma/pathology , Drug Resistance, Neoplasm , Brain Neoplasms/pathology , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , DNA Modification Methylases/genetics , DNA Modification Methylases/metabolism , DNA Modification Methylases/pharmacology , Tumor Suppressor Proteins/genetics , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , DNA Repair Enzymes/therapeutic use
8.
Cancers (Basel) ; 15(22)2023 Nov 09.
Article in English | MEDLINE | ID: mdl-38001607

ABSTRACT

The alcohol-averse drug disulfiram has been reported to have anti-tumor effects and is well suited for drug combinations. In order to identify potential drug combinations in esophageal squamous cell carcinoma (ESCC), we screened a bioactive compound library with the disulfiram copper chelation product CuET. The Jumonji domain-containing protein 3 (JMJD3) and the ubiquitously transcribed tetratricopeptide repeat protein X-linked (UTX) inhibitor GSK J4 were identified. To further understand the molecular mechanism underlying the efficient drug combination, we applied quantitative mass spectrometry to analyze the signaling pathway perturbation after drug treatment. The data revealed that the synergistic effect of GSK J4 and CuET was due to the interaction among JMJD3 and UTX, which may play important roles in maintaining endoplasmic reticulum (ER) homeostasis in tumor cells. Interestingly, our clinical data analysis showed that high expression of JMJD3 and UTX was associated with T stage and worse prognosis of ESCC patients, further supporting the importance of the above findings. In conclusion, our findings suggest that the combination of CuET and targeting JMJD3/UTX may be a safe, effective, and available treatment for ESCC.

9.
J Neuroinflammation ; 20(1): 259, 2023 Nov 11.
Article in English | MEDLINE | ID: mdl-37951955

ABSTRACT

Spinal cord injury (SCI) can prompt an immediate disruption to the blood-spinal cord barrier (BSCB). Restoring the integrity of this barrier is vital for the recovery of neurological function post-SCI. The UTX protein, a histone demethylase, has been shown in previous research to promote vascular regeneration and neurological recovery in mice with SCI. However, it is unclear whether UTX knockout could facilitate the recovery of the BSCB by reducing its permeability. In this study, we systematically studied BSCB disruption and permeability at different time points after SCI and found that conditional UTX deletion in endothelial cells (ECs) can reduce BSCB permeability, decrease inflammatory cell infiltration and ROS production, and improve neurological function recovery after SCI. Subsequently, we used RNA sequencing and ChIP-qPCR to confirm that conditional UTX knockout in ECs can down-regulate expression of myosin light chain kinase (MLCK), which specifically mediates myosin light chain (MLC) phosphorylation and is involved in actin contraction, cell retraction, and tight junctions (TJs) protein integrity. Moreover, we found that MLCK overexpression can increase the ratio of p-MLC/MLC, further break TJs, and exacerbate BSCB deterioration. Overall, our findings indicate that UTX knockout could inhibit the MLCK/p-MLC pathway, resulting in decreased BSCB permeability, and ultimately promoting neurological recovery in mice. These results suggest that UTX is a promising new target for treating SCI.


Subject(s)
Myosin Light Chains , Spinal Cord Injuries , Animals , Mice , Rats , Blood-Brain Barrier/metabolism , Endothelial Cells/metabolism , Histone Demethylases/genetics , Myosin Light Chains/metabolism , Myosin-Light-Chain Kinase/metabolism , Permeability , Phosphorylation , Rats, Sprague-Dawley , Spinal Cord/metabolism , Spinal Cord Injuries/metabolism
10.
Exp Hematol Oncol ; 12(1): 77, 2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37679762

ABSTRACT

BACKGROUND: UTX (encoded by KDM6A), a histone demethylase for H3K27me2/3, is frequently mutated in human cancers. However, its functional and regulatory mechanisms in colorectal cancer (CRC) remain unclear. METHODS: Immunohistochemistry staining was used to investigate the clinical relevance of UTX in CRC. Additionally, we generated a spontaneous mouse CRC model with conditional Utx knockout to explore the role of UTX in the colorectal tumorigenesis. Post-translational regulation of UTX was determined by co-immunoprecipitation and immunoblot analyses. RESULTS: Herein, we identify that downregulation of UTX, mediated by the Cullin 4B-DNA Damage Binding Protein-1-Constitutive Photomorphogenesis Protein 1 (CUL4B-DDB1-COP1) complex, promotes CRC progression. Utx deletion in intestinal epithelial cells enhanced the susceptibility to tumorigenesis in AOM/DSS-induced spontaneous mouse CRC model. However, this effect is primarily alleviated by GSK126, an inhibitor of histone methyltransferase EZH2. Mechanistically, EMP1 and AUTS2 are identified as putative UTX target genes mediating UTX functions in limiting intestinal tumorigenesis. Notably, the CUL4B-DDB1-COP1 complex is identified as the functional E3 ligase responsible for targeting UTX for degradation in CRC cells. Thus, Cop1 deficiency in mouse intestinal tissue results in UTX accumulation and restricts tumorigenesis. Furthermore, patient cohort analysis reveals that UTX expression is negatively correlated with clinical stage, favorable disease outcomes, and COP1 expression. CONCLUSIONS: In the current study, the tumor suppressor function and regulation of UTX in CRC provide a molecular basis and the rationale to target EZH2 in UTX-deficient CRC.

11.
Adv Exp Med Biol ; 1433: 139-165, 2023.
Article in English | MEDLINE | ID: mdl-37751139

ABSTRACT

Histone lysine methylation is a major epigenetic modification that participates in several cellular processes including gene regulation and chromatin structure. This mark can go awry in disease contexts such as cancer. Two decades ago, the discovery of histone demethylase enzymes thirteen years ago sheds light on the complexity of the regulation of this mark. Here we address the roles of lysine demethylases JMJD3 and UTX in physiological and disease contexts. The two demethylases play pivotal roles in many developmental and disease contexts via regulation of di- and trimethylation of lysine 27 on histone H3 (H3K27me2/3) in repressing gene expression programs. JMJD3 and UTX participate in several biochemical settings including methyltransferase and chromatin remodeling complexes. They have histone demethylase-dependent and -independent activities and a variety of context-specific interacting factors. The structure, amounts, and function of the demethylases can be altered in disease due to genetic alterations or aberrant gene regulation. Therefore, academic and industrial initiatives have targeted these enzymes using a number of small molecule compounds in therapeutic approaches. In this chapter, we will touch upon inhibitor formulations, their properties, and current efforts to test them in preclinical contexts to optimize their therapeutic outcomes. Demethylase inhibitors are currently used in targeted therapeutic approaches that might be particularly effective when used in conjunction with systemic approaches such as chemotherapy.


Subject(s)
Epigenesis, Genetic , Lysine , Epigenomics , Histone Demethylases/genetics , Histones/genetics
12.
Front Neuroendocrinol ; 71: 101102, 2023 10.
Article in English | MEDLINE | ID: mdl-37689249

ABSTRACT

The brain synthesizes a variety of neurosteroids, including neuroestradiol. Inhibition of neuroestradiol synthesis results in alterations in basic neurodevelopmental processes, such as neurogenesis, neuroblast migration, neuritogenesis and synaptogenesis. Although the neurodevelopmental actions of neuroestradiol are exerted in both sexes, some of them are sex-specific, such as the well characterized effects of neuroestradiol derived from the metabolism of testicular testosterone during critical periods of male brain development. In addition, recent findings have shown sex-specific actions of neuroestradiol on neuroblast migration, neuritic growth and synaptogenesis in females. Among other factors, the epigenetic regulation exerted by X linked genes, such as Kdm6a/Utx, may determine sex-specific actions of neuroestradiol in the female brain. This review evidences the impact of neuroestradiol on brain formation in both sexes and highlights the interaction of neural steriodogenesis, hormones and sex chromosomes in sex-specific brain development.


Subject(s)
Epigenesis, Genetic , Neurosteroids , Female , Male , Humans , Neurons/metabolism , Neurosteroids/metabolism , Testosterone/metabolism
13.
Front Cell Dev Biol ; 11: 1193344, 2023.
Article in English | MEDLINE | ID: mdl-37476157

ABSTRACT

Fibrosis, or excessive scarring, is characterized by the emergence of alpha-smooth muscle actin (αSMA)-expressing myofibroblasts and the excessive accumulation of fibrotic extracellular matrix (ECM). Currently, there is a lack of effective treatment options for fibrosis, highlighting an unmet need to identify new therapeutic targets. The acquisition of a fibrotic phenotype is associated with changes in chromatin structure, a key determinant of gene transcription activation and repression. The major repressive histone mark, H3K27me3, has been linked to dynamic changes in gene expression in fibrosis through alterations in chromatin structure. H3K27-specific homologous histone methylase (HMT) enzymes, Enhancer of zeste 1 and 2 (EZH1, EZH2), which are the alternative subunits of the Polycomb Repressive Complex 2 (PRC2) and demethylase (KDM) enzymes, Ubiquitously transcribed tetratricopeptide repeat, X chromosome (UTX), and Lysine demethylase 6B (KDM6B), are responsible for regulating methylation status of H3K27me3. In this review, we explore how these key enzymes regulate chromatin structure to alter gene expression in fibrosis, highlighting them as attractive targets for the treatment of fibrosis.

14.
J Nanobiotechnology ; 21(1): 225, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37454119

ABSTRACT

Macrophages polarized to the M2 subtype after spinal cord injury (SCI) are beneficial for promoting neurological recovery. The crosstalk between endothelial cells (ECs) and macrophages is crucial for the imbalance between proinflammatory and pro-resolving responses caused by macrophage heterogeneity; however, this crosstalk is strengthened post-SCI, leading to inflammatory cascades and second damage. As a powerful means to regulate gene expression, epigenetic regulation of the interaction between immune cells and ECs in SCI is still largely unknown. Our previous research demonstrated that the histone demethylase UTX deletion in ECs (UTX-/- ECs) promotes neurological recovery, while the precise mechanism is unrevealed. Here, we discovered that UTX-/- ECs polarize macrophages toward the M2 subtype post-SCI. Macrophage deficiency could block the neurological recovery caused by the knockdown of UTX. The exosomes from UTX-/- ECs mediate this crosstalk. In addition, we found UTX, H3K27, and miR-467b-3p/Sfmbt2 promoters forming a regulatory complex that upregulates the miR-467b-3p in UTX-/- ECs. And then, miR-467b-3p transfers to macrophages by exosomes and activates the PI3K/AKT/mTOR signaling by decreasing PTEN expression, finally polarizing macrophage to the M2 subtype. This study reveals a mechanism by epigenetic regulation of ECs-macrophages crosstalk and identifies potential targets, which may provide opportunities for treating SCI.


Subject(s)
MicroRNAs , Spinal Cord Injuries , Humans , Endothelial Cells/metabolism , Epigenesis, Genetic , Phosphatidylinositol 3-Kinases/metabolism , Macrophages/metabolism , Spinal Cord Injuries/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism
15.
Methods Mol Biol ; 2684: 101-109, 2023.
Article in English | MEDLINE | ID: mdl-37410229

ABSTRACT

The human COMPASS complexes regulate gene expression during development and cell differentiation. Three distinct subunits, KMT2C, KMT2D, and KDM6A (also known as UTX), are frequently mutated in urothelial carcinoma, possibly disrupting the formation of functional COMPASS complexes. Here, we describe methods to evaluate the formation of these large native protein complexes in urothelial carcinoma (UC) cell lines harboring different mutations in KMT2C/D. To this end COMPASS complexes were purified from nuclear extracts by size exclusion chromatography (SEC) using a Sepharose 6 column. SEC fractions were then separated by 3-8% Tris-acetate gradient polyacrylamide gel and the COMPASS complex subunits KMT2C, UTX, WDR5, and RBBP5 were detected by immunoblotting. In this fashion, the formation of a COMPASS complex could be observed in UC cells with wild-type but not in cells with mutant KMT2C and KMTD.


Subject(s)
Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/genetics , Cell Nucleus , Cell Differentiation , Chromatography, Gel , Intracellular Signaling Peptides and Proteins
16.
Epigenetics ; 18(1): 2222245, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37300822

ABSTRACT

The histone H3K27 demethylase, UTX/KDM6A, plays a critical role in the early development of vertebrates, and mutations are frequently found in various cancers. Several studies on developmental and cancer biology have focused on preferential transcriptional regulation by UTX independently of its H3K27 demethylase catalytic activity. Here, we analysed gene expression profiles of wild-type (WT) UTX and a catalytic activity-defective mutant in 786-O and HCT116 cells and confirmed that catalytic activity-dependent and -independent regulation contributes to the expression of most of the target genes. Indeed, the catalytic activity-defective mutant indeed suppressed colony formation similar to the WT in our assay system. However, the expression of several genes was significantly dependent on the catalytic activity of UTX in a cell type-specific manner, which could account for the inherent variation in the transcriptional landscape of various cancer types. The promoter/enhancer regions of the catalytic activity-dependent genes identified here were found to be preferentially modified with H3K4me1 and less with H3K27me3 than those of the independent genes. These findings, combined with previous reports, highlight not only the understanding of determinants for the catalytic activity dependency but also the development and application of pharmaceutical agents targeting the H3K27 or H3K4 modifications.


Subject(s)
Histone Demethylases , Histones , Neoplasms , Humans , Catalytic Domain , DNA Methylation , Genes, Tumor Suppressor , Histone Demethylases/genetics , Histone Demethylases/metabolism , Histones/genetics , Histones/metabolism , Neoplasms/genetics , Cell Line, Tumor
17.
Cancer Sci ; 114(7): 2787-2797, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37068788

ABSTRACT

CD8+ T cells play a central role in antitumor immune responses. Epigenetic gene regulation is essential to acquire the effector function of CD8+ T cells. However, the role of Utx, a demethylase of histone H3K27, in antitumor immunity remains unclear. In this study, we examined the roles of Utx in effector CD8+ T-cell differentiation and the antitumor immune response. In a murine tumor-bearing model, an increased tumor size and decreased survival rate were observed in T-cell-specific Utx KO (Utx KO) mice compared with wild-type (WT) mice. The number of CD8+ T cells in tumor-infiltrating lymphocytes (TILs) was significantly decreased in Utx KO mice. We found that the acquisition of effector function was delayed and attenuated in Utx KO CD8+ T cells. RNA sequencing revealed that the expression of effector signature genes was decreased in Utx KO effector CD8+ T cells, while the expression of naïve or memory signature genes was increased. Furthermore, the expression of Cxcr3, which is required for the migration of effector CD8+ T cells to tumor sites, was substantially decreased in Utx KO CD8+ T cells. These findings suggest that Utx promotes CD8+ T-cell-dependent antitumor immune responses partially through epigenetic regulation of the effector function.


Subject(s)
CD8-Positive T-Lymphocytes , Epigenesis, Genetic , Mice , Animals , CD8-Positive T-Lymphocytes/metabolism , Histone Demethylases/genetics , Histone Demethylases/metabolism , Gene Expression Regulation , Histones/metabolism
18.
Stem Cells Dev ; 32(13-14): 398-409, 2023 07.
Article in English | MEDLINE | ID: mdl-37078151

ABSTRACT

The five flat bones of developing cranial plates are bounded by fibrous sutures, which remain open during development to accommodate for the growing brain. Kdm6A is a demethylase that removes the epigenetic repressive mark, trimethylated lysine 27 on histone 3 (H3K27me3), from the promoters of osteogenic genes, and has previously been reported to promote osteogenesis in cranial bone cells. This study generated a mesenchyme-specific deletion of a histone demethylase, Kdm6a, to assess the effects of Kdm6a loss, in cranial plate development and suture fusion. The results showed that the loss of Kdm6a in Prx1+ cranial cells caused increased anterior width and length in the calvaria of both male and female mice. However, the posterior length was further decreased in female mice. Moreover, loss of Kdm6a resulted in suppression of late suture development and calvarial frontal bone formation predominantly in female mice. In vitro assessment of calvaria cultures isolated from female Kdm6a knockout mice found significantly suppressed calvarial osteogenic differentiation potential, associated with decreased gene expression levels of Runx2 and Alkaline Phosphatase and increased levels of the suppressive mark, H3K27me3, on the respective gene promoters. Conversely, cultured calvaria bone cultures isolated from male Kdm6a knockout mice exhibited an increased osteogenic differentiation potential. Interestingly, the milder effects on cranial suture development in Kdm6a knockout male mice, were associated with an overcompensation of the Kdm6a Y-homolog, Kdm6c, and increased expression levels of Kdm6b in calvarial bone cultures. Taken together, these data demonstrate a role for Kdm6a during calvarial development and patterning, predominantly in female mice, and highlight the potential role of Kdm6 family members in patients with unexplained craniofacial deformities.


Subject(s)
Cranial Sutures , Frontal Bone , Animals , Female , Male , Mice , Cranial Sutures/metabolism , Frontal Bone/metabolism , Histone Demethylases/genetics , Histone Demethylases/metabolism , Histones/metabolism , Mice, Knockout , Osteogenesis/genetics , Sex Factors
19.
Cell Immunol ; 386: 104703, 2023 04.
Article in English | MEDLINE | ID: mdl-36889216

ABSTRACT

Epigenetic regulation affects the development and differentiation of iNKT cells. Our previous study found that the number of iNKT cells in thymus of RA mice was reduced and the ratio of subsets was unbalanced, but the related mechanism remains unclear. We adopted an adoptive infusion of iNKT2 cells with specific phenotypes and functions to RA mice and used the α-Galcer treatment group as control. The findings revealed that: 1. Adoptive treatment of iNKT cells decreased the proportion of iNKT1 and iNKT17 subsets in the thymus of RA mice, and increased the proportion of iNKT2 subsets. 2. Following treatment with iNKT cells, the expression of PLZF in thymus DP T cells was increased whereas the expression of T-bet in thymus iNKT cells was decreased in RA mice. 3. Adoptive therapy reduced the modification levels of H3Kb7me3 and H3K4me3 in the promoter regions of Zbtb16 (encoding PLZF) and Tbx21 (encoding T-bet) gene in thymus DP T cells and iNKT cells, and the reduction of H3K4me3 was particularly significant in the cell treatment group. Furthermore, adoptive therapy also upregulated the expression of UTX (histone demethylase) in thymus lymphocytes of RA mice. As a result, it is hypothesized that adoptive therapy of iNKT2 cells may affect the level of histone methylation in the promoter region of important transcription factor genes for iNKT development and differentiation, thereby directly or indirectly correcting the imbalance of iNKT subsets in the thymus of RA mice. These findings offer a fresh rationale and concept for the management of RA that targets.


Subject(s)
Epigenesis, Genetic , Natural Killer T-Cells , Mice , Animals , Natural Killer T-Cells/metabolism , Thymus Gland , Cell Differentiation , Thymocytes , Mice, Inbred C57BL
20.
Curr Mol Med ; 23(6): 527-535, 2023.
Article in English | MEDLINE | ID: mdl-35619323

ABSTRACT

BACKGROUND: Uterine ischemia/reperfusion (I/R) injury often occurs during many complex surgical procedures, such as uterus transplantation, cesarean, and myomectomy, which may lead to the loss of uterine function and failure of the operation. Crocetin (CRO), as one of the major active constituents from saffron extract, shows protective effects against reactive oxygen species, inflammation, and apoptosis. However, the role of CRO in protecting the uterus against I/R-induced injury has never been investigated. This study aims to clarify the protective role of CRO against I/R injury and the underlying mechanisms. MATERIALS AND METHODS: Sprague-Dawley rats were randomly divided into five groups: the control group, I/R group, 20 mg/kg CRO-treated I/R group, 40 mg/kg CRO-treated I/R group, and 80 mg/kg CRO-treated I/R group. Rats were given daily gavages with different doses of CRO or vehicle for five consecutive days. The rat uterine I/R model was created by routine method with 1h ischemia and 3h reperfusion. The serum and uterine tissues were collected, the changes in malondialdehyde (MDA) level and superoxide dismutase (SOD) activity, the mRNA and protein levels of interleukin (IL)-1ß, IL-6, tumor necrosis factor (TNF)-α and IL-10, the protein levels of B-cell chronic lymphocytic leukemia/lymphoma (Bcl)-2, Bcl-2-associated X protein (Bax), caspase-3, nuclear factor erythroid 2-related factor (Nrf)-2, and heme oxygenase (HO)-1, were measured. The histological changes were examined by HE staining. The number of apoptotic cells was analyzed by flow cytometry. RESULTS: Uterine I/R significantly induced MDA level, suppressed SOD activity, upregulated levels of pro-inflammatory cytokines, down-regulated level of the antiinflammatory cytokine, induced caspase-3-dependent apoptosis, activated the protein expression of Nrf-2 and HO-1, and caused uterine damage. However, pre-administration of CRO effectively reversed I/R-induced above changes and further enhanced Nrf-2/HO- 1 activation in a dose-dependent manner. CONCLUSION: Pre-administration of CRO effectively alleviates I/R-induced oxidative stress, inflammation, apoptosis, and tissue injury probably through activating the Nrf- 2/HO-1 pathway, suggesting a protective role of CRO in I/R-induced uterus injury.


Subject(s)
Reperfusion Injury , Female , Rats , Animals , Rats, Sprague-Dawley , Caspase 3/metabolism , Reperfusion Injury/drug therapy , Ischemia/complications , Oxidative Stress , Inflammation/drug therapy , Inflammation/metabolism , Cytokines/metabolism , Tumor Necrosis Factor-alpha/metabolism , Reperfusion/adverse effects , Apoptosis , Superoxide Dismutase/metabolism , Superoxide Dismutase/pharmacology , Superoxide Dismutase/therapeutic use , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL