Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
Mol Ecol Resour ; 24(2): e13891, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38010340

ABSTRACT

With declining biodiversity worldwide, a better understanding of species diversity and their relationships is imperative for conservation and management efforts. Marine sponges are species-rich ecological key players on coral reefs, but their species diversity is still poorly understood. This is particularly true for the demosponge order Haplosclerida, whose systematic relationships are contentious due to the incongruencies between morphological and molecular phylogenetic hypotheses. The single gene markers applied in previous studies did not resolve these discrepancies. Hence, there is a high need for a genome-wide approach to derive a phylogenetically robust classification and understand this group's evolutionary relationships. To this end, we developed a target enrichment-based multilocus probe assay for the order Haplosclerida using transcriptomic data. This probe assay consists of 20,000 enrichment probes targeting 2956 ultraconserved elements in coding (i.e. exon) regions across the genome and was tested on 26 haplosclerid specimens from the Red Sea. Our target-enrichment approach correctly placed our samples in a well-supported phylogeny, in agreement with previous haplosclerid molecular phylogenies. Our results demonstrate the applicability of high-resolution genomic methods in a systematically complex marine invertebrate group and provide a promising approach for robust phylogenies of Haplosclerida. Subsequently, this will lead to biologically unambiguous taxonomic revisions, better interpretations of biological and ecological observations and new avenues for applied research, conservation and managing declining marine diversity.


Subject(s)
Porifera , Animals , Porifera/genetics , Phylogeny , Indian Ocean , Coral Reefs , Biodiversity
2.
Insect Sci ; 29(6): 1819-1833, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35289982

ABSTRACT

The halictid genus Lasioglossum, as one of the most species-rich bee groups with persistently contentious subgeneric boundaries, is one of the most challenging bee groups from a systematic standpoint. An enduring question is the relationship of Lasioglossum and Homalictus, whether all halictine bees with weakened distal wing venation comprise one or multiple genera. Here, we analyzed the phylogenetic relationships among the subgroups within Lasioglossum s.l. based on thousands of single-copy orthologs and ultraconserved elements, which were extracted from 23 newly sequenced low-coverage whole genomes alongside a published genome (22 ingroups plus 2 outgroups). Both marker sets provided consistent results across maximum likelihood and coalescent-based species tree approaches. The phylogenetic and topology test results show that the Lasioglossum and Hemihalictus series are reciprocally monophyletic and Homalictus and Rostrohalictus are valid subgenera of Lasioglossum. Consequently, we lower Homalictus to subgenus status within Lasioglossum again, and we also raise Rostrohalictus to subgenus status from its prior synonymy with subgenus Hemihalictus. Lasioglossum przewalskyi is also transferred to the subgenus Hemihalictus. Ultimately, we redefine Lasioglossum to include all halictine bees with weakened distal wing venation.


Subject(s)
Hymenoptera , Bees/genetics , Animals , Phylogeny , Base Sequence
3.
Mol Phylogenet Evol ; 170: 107151, 2022 05.
Article in English | MEDLINE | ID: mdl-33741535

ABSTRACT

The mining bee subfamily Andreninae (Hymenoptera: Andrenidae) is a widely distributed and diverse group of ground-nesting solitary bees, including numerous species known to be important pollinators. Most of the species diversity of Andreninae is concentrated in the mainly Holarctic genus Andrena, comprising ca. 1550 described species. The subfamily and especially the genus have remained relatively neglected by recent molecular phylogenetic studies, with current classifications relying largely on morphological characters. We sampled ultraconserved element (UCE) sequences from 235 taxa, including all andrenine genera and 98 out of 104 currently recognized Andrena subgenera. Using 419,858 aligned nucleotide sites from 1009 UCE loci, we present a comprehensive molecular phylogenetic analysis of the subfamily. Our analysis supports the recognition of seven distinct genera in the Andreninae: Alocandrena, Ancylandrena, Andrena, Cubiandrena, Euherbstia, Megandrena, and Orphana. Within the genus Andrena, present-day subgeneric concepts revealed high degrees of paraphyly and polyphyly, due to strong homoplasy of morphological characters, necessitating a thorough, extensive revision of the higher classification of the genus. Based on our findings, we place the subgenus Calcarandrena in synonymy with Andrena (Lepidandrena); Hyperandrena, Nemandrena, Scoliandrena, Tylandrena and Zonandrena with A. (Melandrena); Distandrena, Fumandrena and Proxiandrena with A. (Micrandrena); Carandrena with A. (Notandrena); Agandrena with A. (Plastandrena); Geandrena and Xanthandrena with A. (Ptilandrena); Xiphandrena with A. (Scrapteropsis); and Platygalandrena and Poliandrena with A. (Ulandrena) (new synonymies). We additionally reestablish the groups known as Opandrena and Truncandrena as valid subgenera of Andrena. Our results also show that the MRCA of Andrena + Cubiandrena dispersed from the New World to the Palaearctic probably during the Eocene-early Oligocene, followed by 10-14 Neogene dispersal events from the Palaearctic to the Nearctic and 1-6 Neogene dispersals back into the Palaearctic, all within the genus Andrena.


Subject(s)
Hymenoptera , Animals , Bees/genetics , Phylogeny
4.
Mol Ecol Resour ; 20(3)2020 May.
Article in English | MEDLINE | ID: mdl-32065730

ABSTRACT

Genomic data sets are increasingly central to ecological and evolutionary biology, but far fewer resources are available for invertebrates. Powerful new computational tools and the rapidly decreasing cost of Illumina sequencing are beginning to change this, enabling rapid genome assembly and reference marker extraction. We have developed and tested a practical workflow for developing genomic resources in nonmodel groups with real-world data on Collembola (springtails), one of the most dominant soil animals on Earth. We designed universal molecular marker sets, single-copy orthologues (BUSCOs) and ultraconserved elements (UCEs), using three existing and 11 newly generated genomes. Both marker types were tested in silico via marker capture success and phylogenetic performance. The new genomes were assembled with Illumina short reads and 9,585-14,743 protein-coding genes were predicted with ab initio and protein homology evidence. We identified 1,997 benchmarking universal single-copy orthologues (BUSCOs) across 14 genomes and created and assessed a custom BUSCO data set for extracting single-copy genes. We also developed a new UCE probe set containing 46,087 baits targeting 1,885 loci. We successfully captured 1,437-1,865 BUSCOs and 975-1,186 UCEs across 14 genomes. Phylogenomic reconstructions using these markers proved robust, giving new insight on deep-time collembolan relationships. Our study demonstrates the feasibility of generating thousands of universal markers from highly efficient whole-genome sequencing, providing a valuable resource for genome-scale investigations in evolutionary biology and ecology.


Subject(s)
Arthropods/genetics , Conserved Sequence/genetics , Animals , Biological Evolution , Genetic Loci/genetics , Genome/genetics , Genomics/methods , High-Throughput Nucleotide Sequencing/methods , Phylogeny , Sequence Analysis, DNA/methods , Whole Genome Sequencing/methods
5.
PeerJ ; 7: e6864, 2019.
Article in English | MEDLINE | ID: mdl-31110925

ABSTRACT

The atypoid mygalomorphs include spiders from three described families that build a diverse array of entrance web constructs, including funnel-and-sheet webs, purse webs, trapdoors, turrets and silken collars. Molecular phylogenetic analyses have generally supported the monophyly of Atypoidea, but prior studies have not sampled all relevant taxa. Here we generated a dataset of ultraconserved element loci for all described atypoid genera, including taxa (Mecicobothrium and Hexurella) key to understanding familial monophyly, divergence times, and patterns of entrance web evolution. We show that the conserved regions of the arachnid UCE probe set target exons, such that it should be possible to combine UCE and transcriptome datasets in arachnids. We also show that different UCE probes sometimes target the same protein, and under the matching parameters used here show that UCE alignments sometimes include non-orthologs. Using multiple curated phylogenomic matrices we recover a monophyletic Atypoidea, and reveal that the family Mecicobothriidae comprises four separate and divergent lineages. Fossil-calibrated divergence time analyses suggest ancient Triassic (or older) origins for several relictual atypoid lineages, with late Cretaceous/early Tertiary divergences within some genera indicating a high potential for cryptic species diversity. The ancestral entrance web construct for atypoids, and all mygalomorphs, is reconstructed as a funnel-and-sheet web.

6.
Cancer Biomark ; 22(4): 781-785, 2018.
Article in English | MEDLINE | ID: mdl-29843223

ABSTRACT

BACKGROUND: Long noncoding RNA ultraconserved element 338 (uc.338) is a long non-coding RNA reported to function as a promoter in non-small cell lung cancer (NSCLC). However, the function and potential mechanism of uc.338 in NSCLC is still unclear. OBJECTIVE: The aim of the present study was to assess the effect of uc.338 on the prognosis of patients with NSCLC. METHODS: The expression levels of uc.338 in NSCLC tissues and matched normal lung tissues were examined by real-time quantitative PCR. Then the association between uc.338 levels with clinical variables as well as survival time was investigated. RESULTS: We found that uc.338 expression levels were significantly upregulated in NSCLC compared with the matched noncancerous lung tissues (P< 0.01). In addition, increased uc.338 expression was significantly associated with TNM stage (P< 0.003), lymph node metastasis (P< 0.006) and distant metastasis (P< 0.002). More importantly, Kaplan-Meier survival analysis demonstrated that higher uc.338 expression levels were associated with a shorter overall survival (P< 0.0016) and disease-free survival (p< 0.0001) in NSCLC patients. Finally, univariate and multivariate Cox regression analyses revealed that uc.338 was an independent risk factor for overall survival and disease-free survival. CONCLUSIONS: Our results show that uc.338 may play an important role in tumorigenesis and progression and could serve as a potential independent prognostic biomarker for patients with NSCLC.


Subject(s)
Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Prognosis , RNA, Long Noncoding/genetics , Adult , Aged , Carcinogenesis/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Disease-Free Survival , Female , Gene Expression Regulation, Neoplastic , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Neoplasm Staging
7.
Mol Ecol Resour ; 18(2): 281-295, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29131534

ABSTRACT

Anthozoans (e.g., corals, anemones) are an ecologically important and diverse group of marine metazoans that occur from shallow to deep waters worldwide. However, our understanding of the evolutionary relationships among the ~7,500 species within this class is hindered by the lack of phylogenetically informative markers that can be reliably sequenced across a diversity of taxa. We designed and tested 16,306 RNA baits to capture 720 ultraconserved element loci and 1,071 exon loci. Library preparation and target enrichment were performed on 33 taxa from all orders within the class Anthozoa. Following Illumina sequencing and Trinity assembly, we recovered 1,774 of 1,791 targeted loci. The mean number of loci recovered from each species was 638 ± 222, with more loci recovered from octocorals (783 ± 138 loci) than hexacorals (475 ± 187 loci). Parsimony informative sites ranged from 26 to 49% for alignments at differing hierarchical taxonomic levels (e.g., Anthozoa, Octocorallia, Hexacorallia). The per cent of variable sites within each of three genera (Acropora, Alcyonium, and Sinularia) for which multiple species were sequenced ranged from 4.7% to 30%. Maximum-likelihood analyses recovered highly resolved trees with topologies matching those supported by other studies, including the monophyly of the order Scleractinia. Our results demonstrate the utility of this target-enrichment approach to resolve phylogenetic relationships from relatively old to recent divergences. Redesigning the baits with improved affinities to capture loci within each subclass will provide a valuable toolset to address systematic questions, further our understanding of the timing of diversifications and help resolve long-standing controversial relationships in the class Anthozoa.


Subject(s)
Anthozoa/classification , Anthozoa/genetics , Genetics, Population/methods , Genotyping Techniques/methods , Animals
8.
Mol Ecol Resour ; 18(2): 251-263, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29091348

ABSTRACT

PCR is a universal tool for the multiplication of specific DNA sequences. For example, PCR-based sex determination is widely used, and a diversity of primer sets is available. However, this protocol requires thermal cycling and electrophoresis, so results are typically obtained in laboratories and several days after sampling. Loop-mediated isothermal amplification (LAMP) is an alternative to PCR that can take molecular ecology outside the laboratory. Although its application has been successfully probed for sex determination in three species of a single avian Family (raptors, Accipitridae), its generality remains untested and suitable primers across taxa are lacking. We designed and tested the first LAMP-based primer set for sex determination across the modern birds (NEO-W) based on a fragment of the gene chromo-helicase-DNA-binding protein located on the female-specific W chromosome. As nucleotide identity is expected to increase among more related taxa, taxonomically targeted primers were also developed for the Order Falconiformes and Families Psittacidae, Ciconiidae, Estrildidae and Icteridae as examples. NEO-W successfully determined sex in a subset of 21 species within 17 Families and 10 Orders and is therefore a candidate primer for all modern birds. Primer sets designed specifically for the selected taxa correctly assigned sex to the evaluated species. A short troubleshooting guide for new LAMP users is provided to identify false negatives and optimize LAMP reactions. This study represents the crucial next step towards the use of LAMP for molecular sex determination in birds and other applications in molecular ecology.


Subject(s)
Birds/classification , Birds/genetics , Nucleic Acid Amplification Techniques/methods , Sex Determination Analysis/methods , Animals , DNA Primers/genetics
9.
Oncol Lett ; 13(6): 4526-4532, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28599453

ABSTRACT

Ultraconserved regions (UCRs) are non-protein-coding gene sequences that are strictly conserved across numerous distinct species. It has been demonstrated previously that UCRs encoding non-coding RNAs serve as regulators of gene expression. In recent decades, there has been increasing evidence for the involvement of UCRs in carcinogenesis. In previous studies, the non-coding RNA transcribed ultraconserved element 338 (TUC338) was identified to serve an oncogenic role in hepatocellular cancer; however, thus far, the role of TUC338 in cervical cancer (CC) remains undefined. The results of the present study revealed that TUC338 is significantly upregulated in CC tissues and cell lines, and that the upregulation of TUC338 is associated with lymph node metastasis. Transfection with small interfering RNA (siRNA) against TUC338 could markedly inhibit cell migration and invasion in HeLa and C33A CC cell lines. Using a dual-luciferase reporter assay, tissue inhibitor of metalloproteinase 1 (TIMP1) was demonstrated to be negatively regulated by TUC338 at the post-transcriptional level, via a specific target site within the 3' untranslated region. The expression of TIMP1 was also observed to be inversely associated with TUC338 expression in CC tissues. Overexpression of TIMP1 with MigRI-TIMP1-green fluorescent protein inhibited CC cell migration and invasion and downregulated matrix metalloproteinase 9, resembling the effects of TUC338 siRNA. Therefore, the results of the present study suggest that TUC338 acts as a novel oncogene by targeting the TIMP1 gene, and inhibiting CC cell migration and invasion.

10.
BMC Bioinformatics ; 17: 385, 2016 Sep 20.
Article in English | MEDLINE | ID: mdl-27645252

ABSTRACT

BACKGROUND: Perfectly or highly conserved DNA elements were found in vertebrates, invertebrates, and plants by various methods. However, little is known about such elements in protists. The evolutionary distance between apicomplexans can be very high, in particular, due to the positive selection pressure on them. This complicates the identification of highly conserved elements in alveolates, which is overcome by the proposed algorithm. RESULTS: A novel algorithm is developed to identify highly conserved DNA elements. It is based on the identification of dense subgraphs in a specially built multipartite graph (whose parts correspond to genomes). Specifically, the algorithm does not rely on genome alignments, nor pre-identified perfectly conserved elements; instead, it performs a fast search for pairs of words (in different genomes) of maximum length with the difference below the specified edit distance. Such pair defines an edge whose weight equals the maximum (or total) length of words assigned to its ends. The graph composed of these edges is then compacted by merging some of its edges and vertices. The dense subgraphs are identified by a cellular automaton-like algorithm; each subgraph defines a cluster composed of similar inextensible words from different genomes. Almost all clusters are considered as predicted highly conserved elements. The algorithm is applied to the nuclear genomes of the superphylum Alveolata, and the corresponding phylogenetic tree is built and discussed. CONCLUSION: We proposed an algorithm for the identification of highly conserved elements. The multitude of identified elements was used to infer the phylogeny of Alveolata.


Subject(s)
Algorithms , Alveolata/classification , Alveolata/genetics , Conserved Sequence , Sequence Analysis, DNA/methods , Base Sequence , DNA/chemistry , Evolution, Molecular , Genome , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL