Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
1.
Foods ; 13(17)2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39272519

ABSTRACT

Honey differentiation based on the botanical origin is crucial to guarantee product authenticity, especially considering the increasing number of fraud cases. This study assessed the metabolomic differences arising from various botanical origins in honey products sold in Spanish markets, focusing on two goals: (1) discrimination within monofloral samples (eucalyptus, rosemary, and orange blossom honey) and (2) differentiation between multifloral vs. monofloral honey samples. An omics strategy based on ultra-high-performance liquid chromatography coupled with quadrupole-Orbitrap-high-resolution mass spectrometry (UHPLC-Q-Orbitrap-HRMS) was applied for the reliable identification of specific honey markers selected by orthogonal partial least squares discriminant analysis (OPLS-DA) (R2Y = 0.929-0.981 and Q2 = 0.868-0.952), followed by the variable importance in projection (VIP) approach. Key amino acid, alkaloid, and trisaccharide markers were identified to distinguish between honey samples. Some Amadori compounds were highlighted as eucalyptus honey markers, suggesting their potential use for honey aging and botanical origin differentiation. L-phenylalanine and raffinose were markers of rosemary honey. Four markers (e.g., trigonelline, L-isoleucine, and N-(1-deoxy-1-fructosyl)isoleucine) were found in higher levels in multifloral samples, indicating a greater availability of amino acids, potentially increasing the Maillard reaction. This research is the first to address the botanical origin's impact on honey by identifying novel markers not previously described.

2.
ACS Chem Neurosci ; 15(19): 3525-3534, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39302151

ABSTRACT

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic, complex illness characterized by severe and often disabling physical and mental fatigue. So far, scientists have not been able to fully pinpoint the biological cause of the illness and yet it affects millions of people worldwide. To gain a better understanding of ME/CFS, we compared the metabolic networks in the plasma of 38 ME/CFS patients to those of 24 healthy control participants. This involved an untargeted metabolomics approach in addition to the measurement of targeted substances including tryptophan and its metabolites, as well as tyrosine, phenylalanine, B vitamins, and hypoxanthine using liquid chromatography coupled to mass spectrometry. We observed significant alterations in several metabolic pathways, including the vitamin B3, arginine-proline, and aspartate-asparagine pathways, in the untargeted analysis. The targeted analysis revealed changes in the levels of 3-hydroxyanthranilic acid, 3-hydroxykynurenine, hypoxanthine, and phenylalanine in ME/CFS patients compared to the control group. These findings suggest potential alterations in immune system response and oxidative stress in ME/CFS patients.


Subject(s)
Fatigue Syndrome, Chronic , Metabolomics , Tryptophan , Humans , Tryptophan/metabolism , Tryptophan/blood , Metabolomics/methods , Male , Female , Adult , Middle Aged , Fatigue Syndrome, Chronic/metabolism , Fatigue Syndrome, Chronic/blood , Mass Spectrometry/methods , Kynurenine/metabolism , Kynurenine/blood , Kynurenine/analogs & derivatives , Healthy Volunteers , Phenylalanine/blood , Phenylalanine/metabolism , Hypoxanthine/blood , Hypoxanthine/metabolism , 3-Hydroxyanthranilic Acid/metabolism , Chromatography, Liquid/methods
3.
Environ Sci Technol ; 58(37): 16302-16315, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39236221

ABSTRACT

Chemical exposomes can now be comprehensively measured in human blood, but knowledge of their variability and longitudinal stability is required for robust application in cohort studies. Here, we applied high-resolution chemical exposomics to plasma of 46 adults, each sampled 6 times over 2 years in a multiomic cohort, resulting in 276 individual exposomes. In addition to quantitative analysis of 83 priority target analytes, we discovered and semiquantified substances that have rarely or never been reported in humans, including personal care products, pesticide transformation products, and polymer additives. Hierarchical cluster analysis for 519 confidently annotated substances revealed unique and distinctive coexposures, including clustered pesticides, poly(ethylene glycols), chlorinated phenols, or natural substances from tea and coffee; interactive heatmaps were publicly deposited to support open exploration of the complex (meta)data. Intraclass correlation coefficients (ICC) for all annotated substances demonstrated the relatively low stability of the exposome compared to that of proteome, microbiome, and endogenous small molecules. Implications are that the chemical exposome must be measured more frequently than other omics in longitudinal studies and four longitudinal exposure types are defined that can be considered in study design. In this small cohort, mixed-effect models nevertheless revealed significant associations between testosterone and perfluoroalkyl substances, demonstrating great potential for longitudinal exposomics in precision health research.


Subject(s)
Exposome , Humans , Cohort Studies , Longitudinal Studies , Environmental Exposure , Male , Adult , Female
4.
Waste Manag ; 189: 148-158, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39197183

ABSTRACT

Paper packaging made with recycled paperboard is used to pack various consumer goods that can include amongst others, electronics, toys, food, cosmetics, and stationery. Chemical profiling of the various paper recycling grades used in the manufacture of recycled paperboard was undertaken to investigate possible sources of contaminants and their propagation in the paper recycling chain. Pre-consumer, retail and post-consumer paper-based materials were collected at papermills, corrugators, grocery stores, household waste, solid waste disposal sites and recycling facilities. In the GC-MS analysis, phthalates, long-chain aliphatic compounds, and fatty acids were the most commonly detected compounds whilst phthalates and bisphenols featured most prevalently in the LC-MS analysis. The factors that were identified as likely contributors to the detection of the different chemical compounds included the presence of wood derivatives, the use of certain chemical additives during manufacturing, and exposure of paper to contaminants from consumers, other goods and the environment. Waste mingling, recovery, sorting and reprocessing into recycled paper were also shown to influence the chemical profile of paper materials. Sparse partial least squares-discriminate analysis indicated that newspaper and office paper had unique chemical constituents, whilst cartons were shown to have higher variability. By looking at key stages of paper recycling, this study showed that the possible persistence and transformation of chemical compounds in additives must be evaluated when considering the recyclability of paper-based materials. Further, it highlighted that different separation approaches may be required to reduce contaminant exposure opportunities in post-consumer paper materials.


Subject(s)
Gas Chromatography-Mass Spectrometry , Paper , Recycling , Recycling/methods , Gas Chromatography-Mass Spectrometry/methods , Phthalic Acids/analysis , Chromatography, Liquid/methods , Phenols/analysis , Benzhydryl Compounds/analysis , Solid Waste/analysis , Liquid Chromatography-Mass Spectrometry
5.
Chemosphere ; 363: 142904, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39033859

ABSTRACT

Non-targeted analysis and suspect screening of per- and polyfluoroalkyl substances (PFAS) in various matrices have gained traction with advancements in accurate mass analytical instruments. This study employed ultra-high performance liquid chromatography coupled to quadrupole orbitrap high-resolution mass spectrometry for PFAS suspect screening of paper grades used in the paper recycling chain. The samples were prepared using two extraction techniques; selective accelerated solvent extraction with weak anionic exchange solid-phase extraction and non-selective ultrasonic-assisted extraction. A suspect screening protocol was established to tentatively identify suspected PFAS against spectral databases using a systematic approach of peak filtering and study-specific thresholds for reporting, linked to a confidence level. The possible prevalence of previously unreported PFAS in several paper materials across the various collection sites in the paper recycling chain was inferred by the common detection of short-chain polyfluoroalkyl ketones and diketones in the paper recycling chain. The suspect screening tentatively identified 41 unique PFAS, with 3 common to both pre-treatment techniques. The detection of unique PFAS by the two sample pre-treatment techniques highlighted the significance of both selective and non-selective extraction in PFAS screening endeavours. Further, it showed the importance of understanding the acquisition mechanisms employed in mass spectrometry where data-dependent acquisition triggered fragmentation in certain identified compounds, and not in others. The tentatively identified PFAS indicated that there were several previously unreported PFAS in the paper recycling chain and that additional studies were required to investigate their abundance, possible persistence, bioaccumulation and toxicity, in relation to their functional groups and carbon chains.


Subject(s)
Fluorocarbons , Paper , Chromatography, High Pressure Liquid , Fluorocarbons/analysis , Solid Phase Extraction/methods , Mass Spectrometry , Environmental Pollutants/analysis , Recycling , Environmental Monitoring/methods
6.
J Proteome Res ; 23(7): 2552-2560, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38864484

ABSTRACT

Detection of exhaled volatile organic compounds (VOCs) is promising for noninvasive screening of esophageal cancer (EC). Cellular VOC analysis can be used to investigate potential biomarkers. Considering the crucial role of methionine (Met) during cancer development, exploring associated abnormal metabolic phenotypes becomes imperative. In this work, we employed headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) to investigate the volatile metabolic profiles of EC cells (KYSE150) and normal esophageal epithelial cells (HEECs) under a Met regulation strategy. Using untargeted approaches, we analyzed the metabolic VOCs of the two cell types and explored the differential VOCs between them. Subsequently, we utilized targeted approaches to analyze the differential VOCs in both cell types under gradient Met culture conditions. The results revealed that there were five/six differential VOCs between cells under Met-containing/Met-free culture conditions. And the difference in levels of two characteristic VOCs (1-butanol and ethyl 2-methylbutyrate) between the two cell types intensified with the increase of the Met concentration. Notably, this is the first report on VOC analysis of EC cells and the first to consider the effect of Met on volatile metabolic profiles. The present work indicates that EC cells can be distinguished through VOCs induced by Met regulation, which holds promise for providing novel insights into diagnostic strategies.


Subject(s)
Esophageal Neoplasms , Gas Chromatography-Mass Spectrometry , Methionine , Volatile Organic Compounds , Methionine/metabolism , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/pathology , Humans , Gas Chromatography-Mass Spectrometry/methods , Cell Line, Tumor , Solid Phase Microextraction , Epithelial Cells/metabolism , Epithelial Cells/drug effects
7.
Foods ; 13(8)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38672929

ABSTRACT

Spirulina, a cyanobacterium widely used as a food supplement due to its high nutrient value, contains volatile organic compounds (VOCs). It is crucial to assess the presence of VOCs in commercial spirulina products, as they could influence sensory quality, various processes, and technological aspects. In this study, the volatile profiles of seventeen commercial spirulina food supplements were determined using headspace solid-phase microextraction (HS-SPME), coupled with gas chromatography-mass spectrometry (GC-MS). The identification of volatile compounds was achieved using a workflow that combined data processing with software tools and reference databases, as well as retention indices (RI) and elution order data. A total of 128 VOCs were identified as belonging to chemical groups of alkanes (47.2%), ketones (25.7%), aldehydes (10.9%), alcohols (8.4%), furans (3.7%), alkenes (1.8%), esters (1.1%), pyrazines (0.8%), and other compounds (0.4%). Major volatiles among all samples were hydrocarbons, especially heptadecane and heptadec-8-ene, followed by ketones (i.e., 4-(2,6,6-trimethyl-1-cyclohexen-1-yl)-3-buten-2-one, ß-ionone, 2,2,6-trimethylcyclohexan-1-one), aldehydes (i.e., hexanal), and the alcohol oct-1-en-3-ol. Several volatiles were found in spirulina dietary supplements for the first time, including 6,10-dimethylundeca-5,9-dien-2-one (geranylacetone), 6,10,14-trimethylpentadecan-2-one, hept-2-enal, octanal, nonanal, oct-2-en-1-ol, heptan-1-ol, nonan-1-ol, tetradec-9-en-1-ol, 4,4-dimethylcyclohex-2-en-1-ol, 2,6-diethylpyrazine, and 1-(2,5-dimethylfuran-3-yl) ethanone. The methodology used for VOC analysis ensured high accuracy, reliability, and confidence in compound identification. Results reveal a wide variety of volatiles in commercial spirulina products, with numerous newly discovered compounds, prompting further research on sensory quality and production methods.

8.
Anal Bioanal Chem ; 416(6): 1349-1361, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38217698

ABSTRACT

Smoking-related diseases remain a significant public health concern, and heated tobacco products (HTPs) have emerged as a potential alternative to cigarettes. While several studies have confirmed that HTP aerosols contain lower levels of harmful and potentially harmful constituents (HPHCs) than cigarette smoke, less is known about constituents that are intrinsically higher in HTP aerosols. This study provides a comprehensive comparative assessment of an HTP aerosol produced with Tobacco Heating System 2.2 (THS) and comparator cigarette (CC) smoke aiming at identifying all unique or increased compounds in THS aerosol by applying a broad set of LC-MS and GC × GC-MS methods. To focus on differences due to heating versus burning tobacco, confounding factors were minimized by using the same tobacco in both test items and not adding flavorants. Of all analytical features, only 3.5%-corresponding to 31 distinctive compounds-were significantly more abundant in THS aerosol than in CC smoke. A notable subset of these compounds was identified as reaction products of glycerol. The only compound unique to THS aerosol was traced back to its presence in a non-tobacco material in the test item and not a direct product of heating tobacco. Our results demonstrate that heating a glycerol-containing tobacco substrate to the temperatures applied in THS does not introduce new compounds in the resulting aerosol compared to CC smoke which are detectable with the method portfolio applied in this study. Overall, this study contributes to a better understanding of the chemical composition of HTP aerosols and their potential impact on human health.


Subject(s)
Cigarette Smoking , Tobacco Products , Humans , Heating , Glycerol , Aerosols/chemistry
9.
Anal Bioanal Chem ; 416(4): 925-944, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38214704

ABSTRACT

Lipids are a diverse class of molecules involved in many biological functions including cell signaling or cell membrane assembly. Owing to this relevance, LC-MS/MS-based lipidomics emerged as a major field in modern analytical chemistry. Here, we thoroughly characterized the influence of MS and LC settings - of a Q Exactive HF operated in Full MS/data-dependent MS2 TOP N acquisition mode - in order to optimize the semi-quantification of polar lipids. Optimization of MS-source settings improved the signal intensity by factor 3 compared to default settings. Polar lipids were separated on an ACQUITY Premier CSH C18 reversed-phase column (100 × 2.1 mm, 1.7 µm, 130 Å) during an elution window of 28 min, leading to a sufficient number of both data points across the chromatographic peaks, as well as MS2 spectra. Analysis was carried out in positive and negative ionization mode enabling the detection of a broader spectrum of lipids and to support the structural characterization of lipids. Optimal sample preparation of biological samples was achieved by liquid-liquid extraction using MeOH/MTBE resulting in an excellent extraction recovery > 85% with an intra-day and inter-day variability < 15%. The optimized method was applied on the investigation of changes in the phospholipid pattern in plasma from human subjects supplemented with n3-PUFA (20:5 and 22:6). The strongest increase was observed for lipids bearing 20:5, while 22:4 bearing lipids were lowered. Specifically, LPC 20:5_0:0 and PC 16:0_20:5 were found to be strongest elevated, while PE 18:0_22:4 and PC 18:2_18:2 were decreased by n3-PUFA supplementation. These results were confirmed by targeted LC-MS/MS using commercially available phospholipids as standards.


Subject(s)
Lipidomics , Phospholipids , Humans , Phospholipids/analysis , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Liquid Chromatography-Mass Spectrometry , Chromatography, High Pressure Liquid
10.
Molecules ; 28(15)2023 Jul 29.
Article in English | MEDLINE | ID: mdl-37570718

ABSTRACT

Color is a major quality trait of rosé wines due to their packaging in clear glass bottles. This color is due to the presence of phenolic pigments extracted from grapes to wines and products of reactions taking place during the wine-making process. This study focuses on changes occurring during the alcoholic fermentation of Syrah, Grenache and Cinsault musts, which were conducted at laboratory (250 mL) and pilot (100 L) scales. The color and phenolic composition of the musts and wines were analyzed using UV-visible spectrophotometry, and metabolomics fingerprints were acquired by ultra-high performance liquid chromatography-high-resolution mass spectrometry. Untargeted metabolomics data highlighted markers of fermentation stage (must or wine) and markers related to the grape variety (e.g., anthocyanins in Syrah, hydroxycinnamates and tryptophan derivatives in Grenache, norisoprenoids released during fermentation in Cinsault). Cinsault wines contained higher molecular weight compounds possibly resulting from the oxidation of phenolics, which may contribute to their high absorbance values.


Subject(s)
Vitis , Wine , Wine/analysis , Anthocyanins/chemistry , Fermentation , Chromatography, High Pressure Liquid , Fruit/chemistry , Color , Vitis/chemistry , Phenols/chemistry
11.
Anal Chim Acta ; 1273: 341537, 2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37423668

ABSTRACT

Despite the advances in low-field nuclear magnetic resonance (NMR), there are limited spectroscopic applications for untargeted analysis and metabolomics. To evaluate its potential, we combined high-field and low-field NMR with chemometrics for the differentiation between virgin and refined coconut oil and for the detection of adulteration in blended samples. Although low-field NMR has less spectral resolution and sensitivity compared to high-field NMR, it was still able to achieve a differentiation between virgin and refined coconut oils, as well as between virgin coconut oil and blends, using principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and random forest techniques. These techniques were not able to distinguish between blends with different levels of adulteration; however, partial least squares regression (PLSR) enabled the quantification of adulteration levels for both NMR approaches. Given the significant benefits of low-field NMR, including economic and user-friendly analysis and fitting in an industrial environment, this study establishes the proof of concept for its utilization in the challenging scenario of coconut oil authentication. Also, this method has the potential to be used for other similar applications that involve untargeted analysis.


Subject(s)
Food Contamination , Plant Oils , Olive Oil/analysis , Coconut Oil/analysis , Food Contamination/analysis , Plant Oils/analysis , Magnetic Resonance Spectroscopy
12.
J Sep Sci ; 46(18): e2300351, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37464972

ABSTRACT

This work describes a comprehensive achiral × chiral two-dimensional liquid chromatography separation for enantioselective amino acid analysis coupled to electrospray ionization-tandem mass spectrometry detection using data-independent acquisition. Flow splitting after the first and second dimension separation was utilized for volumetric flow reduction and for enabling a multi-detector approach (with ultraviolet, fluorescence, charged aerosol, and MS detection), respectively. Derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate provided a chromophore, a fluorophore, and an efficient mass tag for efficient ionization in positive electrospray ionization-mass spectrometry. Chiral columns often have limitations in terms of their chemoselectivity, which may be a problem when complex sample mixtures with structurally related compounds need to be separated. It can be alleviated by a reversed-phase×chiral two-dimensional-liquid chromatography setup, in which the first dimension provides the chemoselectivity and a chiral tandem column constituted of quinine-carbamate derived weak anion-exchanger and zwitterionic ion-exchanger in the second dimension separation of D- and L-amino acid enantiomers. The method was used to control the stereointegrity of the therapeutic peptide octreotide. After hydrolysis, all amino acid constituents were detected with the correct configuration and composition. Some options for flow splitting and integration of destructive detectors in the first dimension separation are outlined.


Subject(s)
Amino Acids , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Amino Acids/analysis , Stereoisomerism , Spectrometry, Mass, Electrospray Ionization , Chromatography, Liquid/methods , Chromatography, High Pressure Liquid/methods
13.
Article in English | MEDLINE | ID: mdl-37478724

ABSTRACT

In this work, a new approach for the identification of unknown compounds in human tears has been developed and validated using ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) linked to an intelligent data acquisition mode (AcquireX DS-dd-MS2) coupled to an automated data processing software (Compound Discoverer™ 3.2). As a pilot research study, four human tear samples from volunteers were analyzed. Data were acquired in both positive and negative ionization modes and exact mass, isotope pattern, and MS2 spectra match were used for the tentative identification. Following this approach, 58 substances were identified, 47 in positive mode and 11 in negative mode, with an estimated concentration ranging from 0.1 to 9000 ng mL-1. Most of them were amino acids, hormones, metabolites, and pharmaceuticals. In order to validate the proposed method, the system suitability was evaluated and 29 commercial analytical standards of the tentatively identified substances were analyzed, of which 28 were confirmed obtaining a high identification accuracy (96.6 %). These results confirm that the screening tool presented in this work can facilitate the discovery of new metabolites, novel potential biomarkers, and substances to which the person is exposed, such as pollutants.


Subject(s)
Tears , Humans , Chromatography, High Pressure Liquid/methods , Pilot Projects , Mass Spectrometry/methods
14.
Arch Toxicol ; 97(9): 2357-2369, 2023 09.
Article in English | MEDLINE | ID: mdl-37389646

ABSTRACT

Nicotine pouches are oral products that deliver nicotine without containing tobacco. Previous studies mainly focused on the determination of known tobacco toxicants, while yet no untargeted analysis has been published on unknown constituents, possibly contributing to toxicity. Furthermore, additives might enhance product attractiveness. We therefore performed an aroma screening with 48 different nicotine-containing and two nicotine-free pouches using gas chromatography coupled to mass spectrometry, following acidic and basic liquid-liquid extraction. For toxicological assessment of identified substances, European and international classifications for chemical and food safety were consulted. Further, ingredients listed on product packages were counted and grouped by function. Most abundant ingredients comprised sweeteners, aroma substances, humectants, fillers, and acidity regulators. 186 substances were identified. For some substances, acceptable daily intake limits set by European Food Safety Agency (EFSA) and Joint FAO/WHO Expert Committee on Food Additives are likely exceeded by moderate pouch consumption. Eight hazardous substances are classified according to the European CLP regulation. Thirteen substances were not authorized as food flavorings by EFSA, among them impurities such as myosmine and ledol. Three substances were classified by International Agency for Research on Cancer as possibly carcinogenic to humans. The two nicotine-free pouches contain pharmacologically active ingredients such as ashwagandha extract and caffeine. The presence of potentially harmful substances may point to the need for regulation of additives in nicotine-containing and nicotine-free pouches that could be based on provisions for food additives. For sure, additives may not pretend positive health effects in case the product is used.


Subject(s)
Flavoring Agents , Nicotine , Humans , Nicotine/toxicity , Nicotine/analysis , Gas Chromatography-Mass Spectrometry , Flavoring Agents/toxicity , Flavoring Agents/analysis , Food Additives/toxicity
15.
Curr Drug Metab ; 24(3): 200-210, 2023.
Article in English | MEDLINE | ID: mdl-37157207

ABSTRACT

BACKGROUND: Global xenobiotic profiling (GXP) is to detect and structurally characterize all xenobiotics in biological samples using mainly liquid chromatography-high resolution mass spectrometry (LC-HRMS) based methods. GXP is highly needed in drug metabolism study, food safety testing, forensic chemical analysis, and exposome research. For detecting known or predictable xenobiotics, targeted LC-HRMS data processing methods based on molecular weights, mass defects and fragmentations of analytes are routinely employed. For profiling unknown xenobiotics, untargeted and LC-HRMS based metabolomics and background subtraction-based approaches are required. OBJECTIVE: This study aimed to evaluate the effectiveness of untargeted metabolomics and the precise and thorough background subtraction (PATBS) in GXP of rat plasma. METHODS: Rat plasma samples collected from an oral administration of nefazodone (NEF) or Glycyrrhizae Radix et Rhizoma (Gancao, GC) were analyzed by LC-HRMS. NEF metabolites and GC components in rat plasma were thoroughly searched and characterized via processing LC-HRMS datasets using targeted and untargeted methods. RESULTS: PATBS detected 68 NEF metabolites and 63 GC components, while the metabolomic approach (MS-DIAL) found 67 NEF metabolites and 60 GC components in rat plasma. The two methods found 79 NEF metabolites and 80 GC components with 96% and 91% successful rates, respectively. CONCLUSION: Metabolomics methods are capable of GXP and measuring alternations of endogenous metabolites in a group of biological samples, while PATBS is more suited for sensitive GXP of a single biological sample. A combination of metabolomics and PATBS approaches can generate better results in the untargeted profiling of unknown xenobiotics.


Subject(s)
Metabolomics , Xenobiotics , Rats , Animals , Metabolomics/methods , Mass Spectrometry/methods , Chromatography, Liquid/methods , Administration, Oral
16.
J Cheminform ; 15(1): 7, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36653829

ABSTRACT

The field of high-resolution mass spectrometry (HRMS) and ancillary hyphenated techniques comprise a rapidly expanding and evolving area. As popularity of HRMS instruments grows, there is a concurrent need for tools and solutions to simplify and automate the processing of the large and complex datasets that result from these analyses. Constellation is one such of these tools, developed by our group over the last two years to perform unsupervised trend detection for repeating, polymeric units in HRMS data of complex mixtures such as natural organic matter, oil, or lignin. In this work, we develop two new unsupervised algorithms for finding chemically-meaningful changing units in HRMS data, and incorporate a molecular-formula-finding algorithm from the open-source CoreMS software package, both demonstrated here in the Constellation software environment. These algorithms are evaluated on a collection of open-source HRMS datasets containing polymeric analytes (PEG 400 and NIST standard reference material 1950, both metabolites in human plasma, as well as a swab extract containing polymers), and are able to successfully identify all known changing units in the data, including assigning the correct formulas. Through these new developments, we are excited to add to a growing body of open-source software specialized in extracting useful information from complex datasets without the high costs, technical knowledge, and processor-demand typically associated with such tools.

17.
Food Chem ; 407: 135123, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36493482

ABSTRACT

The metabolic composition of thyme, one of the most used aromatic herbs, is influenced by environmental and post-harvest processing factors, presenting the possibility of exploiting thyme fingerprint to assess its authenticity. In this study, a comprehensive UHPLC-QTOF-HRMS fingerprinting approach was applied with a dual objective: (1) tracing thyme from three regions of production (Spain, Morocco, and Poland) and (2) evaluating the metabolic differences in response to processing, considering sterilized thyme samples. Multivariate statistics reveal 37 and 33 key origin and processing differentiation compounds, respectively. The findings highlighted the remarkable "terroir" influence on thyme fingerprint, noticing flavonoids, amino acids, and peptides among the most discriminant chemical classes. Thyme sterilization led to an overall metabolite enrichment, most likely due to the facilitated compound accessibility as a result of processing. The findings provide a comprehensive metabolomics insight into the origin and processing effect on thyme composition for product traceability and quality assessment.


Subject(s)
Thymus Plant , Discriminant Analysis , Chromatography, High Pressure Liquid , Chemometrics , Metabolomics
18.
Metabolites ; 12(12)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36557217

ABSTRACT

Glycation products produced by the non-enzymatic reaction between reducing carbohydrates and amino compounds have received increasing attention in both food- and health-related research. Although liquid chromatography mass spectrometry (LC-MS) methods for analyzing glycation products already exist, only a few common advanced glycation end products (AGEs) are usually covered by quantitative methods. Untargeted methods for comprehensively analyzing glycation products are still lacking. The aim of this study was to establish a method for simultaneously characterizing a wide range of free glycation products using the untargeted metabolomics approach. In this study, Maillard model systems consisting of a multitude of heterogeneous free glycation products were chosen for systematic method optimization, rather than using a limited number of standard compounds. Three types of hydrophilic interaction liquid chromatography (HILIC) columns (zwitterionic, bare silica, and amide) were tested due to their good retention for polar compounds. The zwitterionic columns showed better performance than the other two types of columns in terms of the detected feature numbers and detected free glycation products. Two zwitterionic columns were selected for further mobile phase optimization. For both columns, the neutral mobile phase provided better peak separation, whereas the acidic condition provided a higher quality of chromatographic peak shapes. The ZIC-cHILIC column operating under acidic conditions offered the best potential to discover glycation products in terms of providing good peak shapes and maintaining comparable compound coverage. Finally, the optimized HILIC-MS method can detect 70% of free glycation product features despite interference from the complex endogenous metabolites from biological matrices, which showed great application potential for glycation research and can help discover new biologically important glycation products.

19.
Biol Proced Online ; 24(1): 20, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36456991

ABSTRACT

Chemically diverse in compounds, urine can give us an insight into metabolic breakdown products from foods, drinks, drugs, environmental contaminants, endogenous waste metabolites, and bacterial by-products. Hundreds of them are volatile compounds; however, their composition has never been provided in detail, nor has the methodology used for urine volatilome untargeted analysis. Here, we summarize key elements for the untargeted analysis of urine volatilome from a comprehensive compilation of literature, including the latest reports published. Current achievements and limitations on each process step are discussed and compared. 34 studies were found retrieving all information from the urine treatment to the final results obtained. In this report, we provide the first specific urine volatilome database, consisting of 841 compounds from 80 different chemical classes.

20.
Food Chem ; 394: 133538, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-35759841

ABSTRACT

Mislabelling the geographic origin of same-species aquaculture products is difficult to identify. This study applied untargeted small-molecule fingerprinting to discriminating between Atlantic salmon originating from Chile and Norway. The acquired liquid chromatography-high-resolution mass spectrometry data from Chilean (n = 32) and Norwegian (n = 29) salmon were chemometrically processed. The partial least squares discriminant analysis (PLS-DA) models successfully discriminated between Chilean and Norwegian salmon at both positive and negative ionisation modes (R2 > 0.96, Q2 > 0.81). Univariate analyses facilitated the selection of approximately 100 candidate markers with high statistical confidence (> 95%). Of these, 37 confirmed markers of Chilean and Norwegian salmon were primarily associated with feed formulations, including lipid derivatives and feed additives. None of the markers were residues or contaminants of potential food safety concern.


Subject(s)
Salmo salar , Animals , Aquaculture , Chromatography, Liquid , Food Safety , Seafood/analysis
SELECTION OF CITATIONS
SEARCH DETAIL