Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 302
Filter
1.
J Histotechnol ; : 1-5, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39312273

ABSTRACT

The HistoEnder, an inexpensive open-source 3D printer published as an automated histological slide stainer, has been adapted for conventional biological transmission electron microscopy (TEM) batch grid staining. Details are presented of the 3D printed apparatus, assembly, G-code programming, and operation on the 3D printer to post-section stains up to 20 grids through aqueous uranyl acetate, distilled water rinses, and lead stains. TEM Results are identical to manual staining with the advantages of automation using the low cost HistoEnder, apparatus, and equipment.

2.
Molecules ; 29(17)2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39274925

ABSTRACT

Recent years have seen increasing interest in uranyl(VI) photocatalysis. In this study, uranyl complexes were successfully synthesized from ligands L1-L6 and UO2(NO3)2·6H2O under reflux conditions, yielding products 1-6 with yields ranging from 30% to 50%. The complexes were thoroughly characterized using NMR spectroscopy, single-crystal X-ray diffraction, and elemental analysis. The results indicate that complexes 1-5 possess a pentagonal bipyramidal geometry, whereas complex 6 exhibits an octahedral structure. The photocatalytic properties of these novel complexes for sp3 C-H bond functionalization were explored. The results demonstrate that complex 4 functions as an efficient photocatalyst for converting C-H bonds to C-C bonds via hydrogen atom transfer under blue light irradiation.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 325: 125111, 2024 Sep 08.
Article in English | MEDLINE | ID: mdl-39270366

ABSTRACT

In view of exploiting natural resources for designing of effectual materials in favor of detection and obliteration of water pollutants, a fluorescent nanomaterial (CDBHCF) based on biomass derived carbon dots (CDs) was constructed. The CDs and cobalt ferrite (CF) particles were anchored on boehmite (BH) which served as a support material for CDs. The CDBHCF nanocomposite was prepared via facile hydrothermal treatment for selective recognition of Methyl parathion (MP) pesticide and uranyl ions (UO22+). The corresponding structural, morphological and opto-electronic properties of the nanomaterials have been investigated by different physicochemical techniques. The fluorescent CDBHCF probe was employed to detect extremely low concentration of MP and UO22+ with detection limit of 22.4 nM and 4.4 nM, respectively. Ultimately, the proposed sensing platform was validated through real sample analysis. Besides, CDBHCF nanocomposite was utilized for photocatalytic abolition of Tetracycline (TC) in water samples. Initially, the impact of various operational parameters on the degradation efficiency, including catalyst dosage and initial pH were thoroughly examined. Under optimized conditions, the fabricated CDBHCF nanocomposite demonstrated excellent results for photocatalytic degradation of TC (92 % degradation in 120 min) under visible light illumination. Thus, the proposed strategy delivered an innovative insight for dual purpose of CDBHCF nanocomposite: as a fluorescent probe for real time monitoring and as a photocatalyst for removal of pollutants via simple photocatalytic degradation.

4.
Talanta ; 280: 126673, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39121619

ABSTRACT

A direct UV-Visible absorbance spectrophotometric method was developed for the simultaneous determination of uranium and nitric acid concentration in the PUREX process samples. The simulated system consisted of uranium and nitric acid in concentration range corresponding to reprocessing of spent nuclear fuel discharged from nuclear reactor was prepared. The absorbance of these samples was measured in the range of 400-470 nm at a scan speed of 100 nm/s and resultant spectra were recorded. The changes in wavelength maxima of U(VI) absorption spectrum at different nitric acid concentration was utilized to determine the concentration of uranium and nitric acid in the sample by orthogonal signal correction assisted principal component regression. After the principle component regression the RMSEP for test data (Uranium: 3-21 g/L and acidity: 2-12 M) were 0.7 g/L and 0.4 M respectively. This method is superior to conventional method being followed for routine analysis of plant control samples in view of minimizing the generation of radioactive analytical waste consisting other corrosive reagents and reducing radiation exposure to operators during analysis. This method is amenable for online monitoring also.

5.
Int J Biol Macromol ; 278(Pt 3): 134883, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39168203

ABSTRACT

Uranium is a key element in the nuclear industry, whose accidental release causes health and environmental problems. In this paper, a protein-directed fluorescent sensor with aggregation-induced emission characteristics (gold nanoclusters@ovalbumin, AuNCs@OVA) was synthesized for the detection of UO22+ with high sensitivity and selectivity. The sensor exhibited good fluorescence stability, and its fluorescence intensity could be selectively enhanced by UO22+. Based on FT-IR and XPS analyses, the increase in fluorescence intensity of AuNCs@OVA after the addition of UO22+ was attributed to aggregation induced by the complexation between UO22+ and the amino, carboxyl, hydroxyl, and phosphate groups of ovalbumin. The detection limit was determined to be 34.4 nM, and the sensor showed excellent ion selectivity for UO22+. In combination with a smartphone program, the sensor could realize the real-time detection of UO22+ in a quantitative and portable way.


Subject(s)
Gold , Metal Nanoparticles , Uranium , Gold/chemistry , Metal Nanoparticles/chemistry , Uranium/analysis , Limit of Detection , Spectrometry, Fluorescence/methods , Ovalbumin/chemistry , Ovalbumin/analysis , Fluorescent Dyes/chemistry , Ions/analysis , Uranium Compounds/analysis
6.
Acta Crystallogr E Crystallogr Commun ; 80(Pt 8): 852-856, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39108784

ABSTRACT

In the title complex, [U(C10H7N3O3)O2(CH3OH)] n , the UVI cation has a typical penta-gonal-bipyramidal environment with the equatorial plane defined by one N and two O atoms of one doubly deprotonated 2-[5-(2-hy-droxy-phen-yl)-1H-1,2,4-triazol-3-yl]acetic acid ligand, a carboxyl-ate O atom of the symmetry-related ligand and the O atom of the methanol mol-ecule [U-N/Oeq 2.256 (4)-2.504 (5) Å]. The axial positions are occupied by two oxide O atoms. The equatorial atoms are almost coplanar, with the largest deviation from the mean plane being 0.121 Šfor one of the O atoms. The benzene and triazole rings of the tetra-dentate chelating-bridging ligand are twisted by approximately 21.6 (2)° with respect to each other. The carboxyl-ate group of the ligand bridges two uranyl cations, forming a neutral zigzag chain reinforced by a strong O-H⋯O hydrogen bond. In the crystal, adjacent chains are linked into two-dimensional sheets parallel to the ac plane by C/N-H⋯N/O hydrogen bonding and π-π inter-actions. Further weak C-H⋯O contacts consolidate the three-dimensional supra-molecular architecture. In the solid state, the compound shows a broad medium intensity LMCT transition centred around 463 nm, which is responsible for its red colour.

7.
Mikrochim Acta ; 191(8): 503, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39096341

ABSTRACT

An upconversion fluorescence sensing platform was developed with upconversion nanoparticles (UCNPs) as energy donors and gold nanoparticles (AuNPs) as energy acceptors, based on the FRET principle. They were used for quantitative detection of uranyl ions (UO22+) by amplifying the signal of the hybrid chain reaction (HCR). When UO22+ are introduced, the FRET between AuNPs and UCNPs can be modulated through a HCR in the presence of high concentrations of sodium chloride. This platform provides exceptional sensitivity, with a detection limit as low as 68 pM for UO22+ recognition. We have successfully validated the reliability of this method by analyzing authentic water samples, achieving satisfactory recoveries (89.00%-112.50%) that are comparable to those of ICP-MS. These results indicate that the developed sensing platform has the capability to identify trace UO22+ in complex environmental samples.

8.
J Colloid Interface Sci ; 678(Pt A): 63-76, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39180849

ABSTRACT

Doping modification is a useful way to promote the catalytic activity of carbon nitride (CN). However, most doped CNs have lower structural symmetry and several edge defects, which hinder the transfer of charge carriers. This work reports a P-doped crystalline carbon nitride (crystalline PCN) for the efficient photoreduction of uranyl. The thermal polymerization and salt post-treatment convert the amorphous PCN into crystalline PCN. Compared to the pristine CN, the crystalline PCN has over 1620 % higher activity for uranyl (U(VI)) reduction, reaching a 97.8 % reduction rate in 60 min. Furthermore, the 2-PCN shows excellent stability and a U(VI) removal efficiency >85.7 % in the pH range of 5-8. Characterization analysis reveal that both the P doping and crystalline modulation do not obviously change their morphology, light absorption property and energy band structure, but markedly promote the delocalization of electrons around the doped P atoms, thereby severely inhibit direct electron-hole recombination. Thus, the more efficient separation of charge carriers generates more reactive specials to participate in the photocatalytic uranyl reduction reaction. This study demonstrates a dual-modification strategy for the rational synthesis of highly active metal-free CN-based photocatalysts for uranyl reduction.

9.
Anal Sci ; 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39180664

ABSTRACT

The ability to sensitively and quantitatively detect uranyl in complex samples plays a vital role in environmental monitoring. In this work, an MOF-coated gold (Au) nanohybrid was synthesized for uranyl detection by surface-enhanced Raman scattering (SERS) technology. The MOF shell not only prevents the Au nanoparticles from rapid aggregation, but also effectively enhances the Raman signal of uranyl. A detection limit of as low as 0.5 µM could be achieved in solution, which could be comparable to the previously reported ones from SERS-based approaches. Moreover, the prepared SERS-active substrate was also applied to uranyl detection in real samples.

10.
Anal Chim Acta ; 1316: 342826, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-38969424

ABSTRACT

BACKGROUND: In the fields of environmental monitoring and nuclear emergency, in order to obtain the relevant information of uranyl-induced environmental pollution and nuclear accident, it is necessary to establish a rapid quantitative analytical technique for uranyl ions. As a new promising technique, surface-enhanced Raman scattering (SERS) is hopeful to achieve this goal. However, uranyl ions are easily desorbed from SERS substrates under acidic conditions, and the structures of SERS substrates will be destroyed in the strong acidic aqueous solutions. Besides, the quantitative detection ability of SERS for uranyl ions needs to be promoted. Hence, it is necessary to develop new SERS substrates for accurate quantitative detection of trace uranyl in environmental water samples, especially in acidic solutions. RESULTS: In this work, we prepared silver ions/sodium alginate supramolecular hydrogel membrane (Ag+/SA SMH membrane), and the Ag+ ions from the membrane were transformed into Ag/Ag2O complex nanoparticles under laser irradiation. The Raman signal of uranyl was strongly enhanced under the synergistic interaction of electromagnetic enhancement derived from the Ag nanoparticles and charge transfer enhancement between uranyl and Ag2O. Utilizing the peak of SA (550 cm-1) as an internal standard, a quantitative detection with a LOD of 6.7 × 10-9 mol L-1 was achieved due to a good linear relation of uranyl concentrations from 1.0 × 10-8 mol L-1 to 2 × 10-6 mol L-1. Furthermore, foreign metal ions hardly affected the SERS detection of uranyl, and the substrate could determine trace uranyl in natural water samples. Particularly, the acidity had no obvious effect on SERS signals of uranyl ions. Therefore, in addition to the detection of uranyl ions in natural water samples, the proposed strategy could also detect uranyl ions in strong acidic solutions. SIGNIFICANCE AND NOVELTY: A simple one-step method was used to prepare an Ag+/SA SMH membrane for rapid quantitative detection of uranyl ions for the first time. The proposed substrate successfully detected uranyl ions under acidic conditions by immobilizing uranyl ion in hydrogel structure. In comparison with the previous studies, a more accurate quantitative analysis for uranyl ions was achieved by using an internal standard, and the proposed strategy could determine trace uranyl in either natural water samples or strong acidic solutions.

11.
Int J Pharm ; 662: 124502, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39059519

ABSTRACT

The combined chemotoxicity and radiotoxicity associated with uranium, utilized in nuclear industry and military applications, poses significant threats to human health. Among uranium pollutants, uranyl is particularly concerning due to its high absorptivity and potent nephrotoxicity in its + 6 valence state. Here, we have serendipitously found Na2SeO3 facilitates the conversion of U(VI) to U(IV) precipitates. A novel approach involving nano-chitosan loaded internally with melatonin and externally modified with selenite (NPs Cs-Se/MEL) was introduced. This modification not only enhances the conversion of U(VI) to U(IV) but also preserves the spherical nanostructure and specific surface area, leading to increased adsorption of U(VI) compared to unmodified samples. Selenite modification improves lysosomal delivery in HEK-293 T cells and kidney distribution of the nanoparticles. Furthermore, NPs Cs-Se/MEL demonstrated a heightened uranium concentration in urine and exhibited remarkable efficiency in uranium removal, resulting in a reduction of uranium deposition in serum, kidneys, and femurs by up to 52.02 %, 46.79 %, and 71.04 %, respectively. Importantly, NPs Cs-Se/MEL can be excreted directly from the kidneys into urine when carrying uranium. The results presented a novel mechanism for uranium adsorption, making selenium-containing nano-materials attractive for uranium sequestration and detoxification.


Subject(s)
Chitosan , Melatonin , Nanoparticles , Selenious Acid , Uranium , Humans , Uranium/chemistry , HEK293 Cells , Melatonin/administration & dosage , Melatonin/chemistry , Melatonin/pharmacokinetics , Chitosan/chemistry , Nanoparticles/chemistry , Selenious Acid/chemistry , Animals , Kidney/metabolism , Kidney/drug effects , Adsorption , Male , Tissue Distribution
12.
J Mol Model ; 30(7): 216, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888814

ABSTRACT

CONTEXT: The efficient extraction of uranyl from spent nuclear fuel wastewater for subsequent reprocessing and reuse is an essential effort toward minimization of long-lived radioactive waste. N-substituted amides and Schiff base ligands are propitious candidates, where extraction occurs via complexation with the uranyl moiety. In this study, we extensively probed chemical bonding in various uranyl complexes, utilizing the local vibrational modes theory alongside QTAIM and NBO analyses. We focused on (i) the assessment of the equatorial O-U and N-U bonding, including the question of chelation, and (ii) how the strength of the axial U = O bonds of the uranyl moiety changes upon complexation. Our results reveal that the strength of the equatorial uranium-ligand interactions correlates with their covalent character and with charge donation from O and N lone pairs into the vacant uranium orbitals. We also found an inverse relationship between the covalent character of the equatorial ligand bonds and the strength of the axial uranium-oxygen bond. In summary, our study provides valuable data for a strategic modulation of N-substituted amide and Schiff base ligands towards the maximization of uranyl extraction. METHOD: Quantum chemistry calculations were performed under the PBE0 level of theory, paired with the relativistic NESCau Hamiltonian, currently implemented in Cologne2020 (interfaced with Gaussian16). Wave functions were expanded in the cc-pwCVTZ-X2C basis set for uranium and Dunning's cc-pVTZ for the remaining atoms. For the bonding properties, we utilized the package LModeA in the local modes analyses, AIMALL in the QTAIM calculations, and NBO 7.0 for the NBO analyses.

13.
Talanta ; 277: 126407, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38878512

ABSTRACT

Uranium is an essential nuclear material in civilian and military areas; however, its extensive application raises concerns about the potential safety issues in the fields of environmental protection and nuclear industry. In this study, we developed an Ag/Ag2O-COF (covalent-organic framework) composite SERS substrate to detect uranyl ions (UO22+) in environmental aqueous solutions. Herein, the strong SERS effect of uranyl adsorbed in Ag/Ag2O composite and the high adsorption efficiency of COF TpPa-1 were combined to realize the trace detection of uranyl ions. This method displayed a linear range of 10-8 mol L-1 to 10-6 mol L-1 with the detection limit of 8.9 × 10-10 mol L-1 for uranyl ions. Furthermore, common metal cations and oxo-ions hardly affected the SERS detection of uranyl, which is helpful for the trace analysis of uranyl in natural water samples. Although the proposed strategy is deployed for uranyl detection, the reusable and high-efficiency system may be expanded to trace detection of other substance with Raman activity.

14.
Chemistry ; 30(40): e202401033, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38775406

ABSTRACT

Pentavalent uranium compounds are key components of uranium's redox chemistry and play important roles in environmental transport. Despite this, well-characterized U(V) compounds are scarce primarily because of their instability with respect to disproportionation to U(IV) and U(VI). In this work, we provide an alternate route to incorporation of U(V) into a crystalline lattice where different oxidation states of uranium can be stabilized through the incorporation of secondary cations with different sizes and charges. We show that iriginite-based crystalline layers allow for systematically replacing U(VI) with U(V) through aliovalent substitution of 2+ alkaline-earth or 3+ rare-earth cations as dopant ions under high-temperature conditions, specifically Ca(UVIO2)W4O14 and Ln(UVO2)W4O14 (Ln=Nd, Sm, Eu, Gd, Yb). Evidence for the existence of U(V) and U(VI) is supported by single-crystal X-ray diffraction, high energy resolution X-ray absorption near edge structure, X-ray photoelectron spectroscopy, and optical absorption spectroscopy. In contrast with other reported U(V) materials, the U(V) single crystals obtained using this route are relatively large (several centimeters) and easily reproducible, and thus provide a substantial improvement in the facile synthesis and stabilization of U(V).

15.
Appl Spectrosc ; 78(8): 815-824, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38693875

ABSTRACT

Raman spectroscopy is an emerging technique for rapid and nondestructive analysis of nuclear materials for forensic and nonproliferation applications as it is a powerful tool for distinguishing multiple chemical forms of materials with similar stoichiometries. Recent developments in spectroscopic software have enabled rapid data collection with high-speed Raman spectroscopic mapping capabilities. However, some uranium-rich materials are susceptible to degradation in humid air and/or laser-induced phase transformations. To mitigate environmental or measurement-related sample degradation of potential samples of interest, we have taken a systematic approach to define optimized data collection parameters for high-throughput measurements of uranyl fluoride (UO2F2), which is an important intermediate material in the nuclear fuel cycle. First, we systematically describe the influence of optical magnification (5× to 100×), laser power, and exposure time on obtained signal for identical particles of UO2F2 and find that at low laser power and exposure times, comparable signal is obtained regardless of optical magnification. Second, we ensure sample integrity during data collection, and third, collect spectroscopic maps that employ optimized parameters to reduce the time required to obtain spatially resolved spectroscopic information. Reductions of 90% and 99% in measurement times are discussed as they relate to differences in resolving spectroscopic features of particles in identical mapping areas. During this work, we found that additional data processing options were needed and thus developed a customized Python script for importing, processing, analyzing, and visualizing Raman spectroscopic map data.

16.
Environ Sci Technol ; 58(21): 9456-9465, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38745405

ABSTRACT

The elimination of uranium from radioactive wastewater is crucial for the safe management and operation of environmental remediation. Here, we present a layered vanadate with high acid/base stability, [Me2NH2]V3O7, as an excellent ion exchanger capturing uranyl from highly complex aqueous solutions. The material possesses an indirect band gap, ferromagnetic characteristic and a flower-like morphology comprising parallel nanosheets. The layered structure of [Me2NH2]V3O7 is predominantly upheld by the H-bond interaction between anionic framework [V3O7]nn- and intercalated [Me2NH2]+. The [Me2NH2]+ within [Me2NH2]V3O7 can be readily exchanged with UO22+. [Me2NH2]V3O7 exhibits high exchange capacity (qm = 176.19 mg/g), fast kinetics (within 15 min), high removal efficiencies (>99%), and good selectivity against an excess of interfering ions. It also displays activity for UO22+ ion exchange over a wide pH range (2.00-7.12). More importantly, [Me2NH2]V3O7 has the capability to effectively remove low-concentration uranium, yielding a residual U concentration of 13 ppb, which falls below the EPA-defined acceptable limit of 30 ppb in typical drinking water. [Me2NH2]V3O7 can also efficiently separate UO22+ from Cs+ or Sr2+ achieving the highest separation factors (SFU/Cs of 589 and SFU/Sr of 227) to date. The BOMD and DFT calculations reveal that the driving force of ion exchange is dominated by the interaction between UO22+ and [V3O7]nn-, whereas the ion exchange rate is influenced by the mobility of UO22+ and [Me2NH2]+. Our experimental findings indicate that [Me2NH2]V3O7 can be considered as a promising uranium scavenger for environmental remediation. Additionally, the simulation results provide valuable mechanistic interpretations for ion exchange and serve as a reference for designing novel ion exchangers.


Subject(s)
Uranium , Vanadates , Uranium/chemistry , Vanadates/chemistry , Ion Exchange , Water Pollutants, Radioactive/chemistry , Kinetics
17.
ACS Appl Mater Interfaces ; 16(21): 27804-27812, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38756089

ABSTRACT

Monitoring and purification of uranium contamination are of great importance for the rational utilization of uranium resources and maintaining the environment. In this work, an olefin-linked covalent organic framework (GC-TFPB) and its amidoxime-modified product (GC-TFPB-AO) are synthesized with 3-cyano-4,6-dimethyl-2-hydroxypyridine (GC) and 1,3,5-tris(4-formylphenyl) benzene (TFPB) by Knoevenagel condensation. GC-TFPB-AO results in specificity for rapid fluorescent/smartphone uranyl ion (UO22+) detection based on the synergistic effect of multifunctional groups (amidoxime, pyridine, and hydroxyl groups). GC-TFPB-AO features a rapid and highly sensitive detection and adsorption of UO22+ with a detection limit of 21.25 nM. In addition, it has a good recovery (100-111%) for fluorescence detection in real samples, demonstrating an excellent potential of predesigned olefin-linked fluorescent COFs in nuclear contaminated wastewater detection and removal.

18.
Methods Mol Biol ; 2793: 163-174, 2024.
Article in English | MEDLINE | ID: mdl-38526730

ABSTRACT

Electron microscopy (EM) techniques play a vital role in virology research including phage discovery and their identification. The use of different staining protocols based on the concept of negative staining is one of the most important steps in the EM processing. This chapter will summarize the widely used EM protocols in phage research, their advantages, and limitations. Phage-based therapy, especially recently developed nanoparticle-phage conjugates, are expected to find clinical significance in the antimicrobial resistance (AMR) epidemic. EM techniques are important to characterize these conjugates and we will also discuss the methods here.


Subject(s)
Bacteriophages , Epidemics , Microscopy, Electron , Negative Staining , Staining and Labeling
19.
Angew Chem Int Ed Engl ; 63(21): e202400379, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38530229

ABSTRACT

U(VI) peroxide phases (studtite and meta-studtite) are found throughout the nuclear fuel cycle and exist as corrosion products in high radiation fields. Peroxides are part of a family of reactive oxygen species (ROS) that include hydroperoxyl and superoxide species and are produced during alpha radiolysis of water. While U(VI) peroxides have been thoroughly investigated, the incorporation and stability of ROS species within studtite have not been validated. In the current study, electron paramagnetic resonance (EPR) spectroscopy was used to identify the presence of free radicals within a series of U(VI) peroxide samples containing depleted, highly enriched, and natural uranium. Density functional theory calculations indicated that the predicted EPR signals matched well with a superoxide (O2 -⋅) species incorporated into the studtite structure, confirming the presence of ROS in the material. Further analysis of samples that were synthesized between 1945 and 2023 indicated that there is a correlation between the radical signal and the product of specific activity multiplied by age of the sample.

20.
Chemistry ; 30(27): e202301687, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38466912

ABSTRACT

Spectator ions have known and emerging roles in aqueous metal-cation chemistry, respectively directing solubility, speciation, and reactivity. Here, we isolate and structurally characterize the last two metastable members of the alkali uranyl triperoxide series, the Rb+ and Cs+ salts (Cs-U1 and Rb-U1). We document their rapid solution polymerization via small-angle X-ray scattering, which is compared to the more stable Li+, Na+ and K+ analogues. To understand the role of the alkalis, we also quantify alkali-hydroxide promoted peroxide deprotonation and decomposition, which generally exhibits increasing reactivity with increasing alkali size. Cs-U1, the most unstable of the uranyl triperoxide monomers, undergoes ambient direct air capture of CO2 in the solid-state, converting to Cs4[UVIO2(CO3)3], evidenced by single-crystal X-ray diffraction, transmission electron microscopy, and Raman spectroscopy. We have attempted to benchmark the evolution of Cs-U1 to uranyl tricarbonate, which involves a transient, unstable hygroscopic solid that contains predominantly pentavalent uranium, quantified by X-ray photoelectron spectroscopy. Powder X-ray diffraction suggests this intermediate state contains a hydrous derivative of CsUVO3, where the parent phase has been computationally predicted, but not yet synthesized.

SELECTION OF CITATIONS
SEARCH DETAIL