Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.681
Filter
1.
J Thromb Haemost ; 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39357567

ABSTRACT

BACKGROUND: Despite appropriate treatment, up to 50% of patients with proximal deep vein thrombosis (DVT) will develop the post-thrombotic syndrome (PTS). Once PTS occurs, there is no specific treatment, and some patients constantly suffer from intolerable symptoms. How to prevent PTS is important. OBJECTIVES: Characterize vein wall remodeling after thrombus and investigate the effects of antiproliferative agent on post-thrombotic vein wall remodeling in murine and human subjects. METHODS: Features of post-thrombotic vein wall remodeling in murine and human subjects were characterized using imaging and histological examinations. Paclitaxel-loaded hydrogels were used to assess the effects of antiproliferative agent on the remodeling in murine model. Based on the above results, a pilot study was conducted to assess the effects of paclitaxel-coated balloon dilation in severe PTS patients suffering from intolerable symptoms. The control cohort was obtained by 1:1 propensity score matching from a prospective database. RESULTS: Structural and functional alterations in post-thrombotic vein wall were verified by imaging and histological examinations, and predominant active α-SMA+ cells and FSP-1+ cells proliferation was observed. In the murine model, the application of paclitaxel-loaded hydrogels inhibited the remodeling. In the pilot clinical study, patients receiving DCB demonstrated benefits in Villalta scores and VCSS scores compared with those not receiving DCB, and no severe adverse events reported except for thrombosis recurrence. CONCLUSION: Cell proliferation plays an important role in post-thrombotic vein wall remodeling. Inhibition of cell proliferation inhibits the remodeling in murine model, and may reduce signs and symptoms in severe PTS patients.

2.
Article in English | MEDLINE | ID: mdl-39360410

ABSTRACT

BACKGROUND: Pulmonary hypertension is a devastating vascular disorder characterized by extensive pulmonary vascular remodeling, ultimately leading to right ventricular failure and death. Activation of PDGF (platelet-derived growth factor) signaling promotes the hyperproliferation of pulmonary arterial smooth muscle cells (PASMCs), thus contributing to the pulmonary vascular remodeling. However, the molecular mechanisms that govern hyperproliferation of PASMCs induced by PDGF remain largely unknown, including the contribution of long noncoding RNAs (lncRNAs). In this study, we aimed to identify a novel lncRNA regulated by PDGF implicated in PASMC proliferation in pulmonary vascular remodeling. METHODS: RNA-sequencing analysis was conducted to identify a novel lncRNA named vessel-enriched lncRNA regulated by PDGF-BB (VELRP). Functional investigations of VELRP were performed using knockdown and overexpression strategies along with RNA sequencing. Validation of the function and potential mechanisms of VELRP were performed through Western blot, RNA immunoprecipitation, and chromatin immunoprecipitation assays. RESULTS: We identified a novel vessel-enriched lncRNA with an increased response to PDGF-BB stimulus. VELRP was identified as an evolutionarily conserved RNA molecules. Modulation of VELRP in PASMCs significantly altered cell proliferation. Mechanistically, VELRP enhances trimethylation of H3K4 by interacting with WDR5 (WD repeat-containing protein 5), leading to increased expression of CDK (cyclin-dependent kinase) 1, CDK2, and CDK4 and consequent hyperproliferation of PASMCs. The pathological relevance of VELRP upregulation in pulmonary artery was confirmed using rat pulmonary hypertension models in vivo, as well as in PASMCs from patients with idiopathic pulmonary arterial hypertension patients. Specific knockdown of VELRP in smooth muscle cells using adeno-associated virus type 9 SM22α (smooth muscle protein 22α) promoter-shRNA-mediated silencing of VELRP resulted in a significant decrease in right ventricular systolic pressure and vascular remodeling in rat pulmonary hypertension model. CONCLUSIONS: VELRP, as an lncRNA upregulated by PDGF-BB, mediates PASMC proliferation via WDR5/CDK signaling. In vivo studies demonstrate that targeted intervention of VELRP in smooth muscle cells can prevent the development of pulmonary hypertension.

3.
Placenta ; 158: 38-47, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39361986

ABSTRACT

Preeclampsia (PE) is a pregnancy complication that is often diagnosed due to elevated blood pressure and proteinuria. Though current research focuses on the identification of novel biomarkers and therapeutic targets, still, there is a lack of clinical validation for the use of biomarkers and therapeutic targets for early diagnosis and treatment of PE. Several molecules are being studied for their potential role in PE. Among them, microRNAs are studied vastly for their role in the diagnosis, prognosis, and treatment of PE. But only a few studies are focused on the therapeutic efficacy of miRNAs in PE. Thus, the relevant articles were identified and discussed in this review. These studies provide evidence that miRNAs are indeed important molecules in PE that have the role of both therapeutic targets and therapeutic molecules. However, the studies are limited to in vivo an in vitro models, hence further studies are required to validate the complete potential of miRNA therapeutics. Long non-coding RNA (lncRNA) sponges, miRNA mimics, miRNA inhibitors, exosome-associated miRNAs, and several other molecules have been studied as miRNA-based therapeutics in PE. Thus, miRNAs are postulated to be potential therapeutic targets and miRNA-based therapeutics might pave the way for novel therapeutic approaches for PE.

4.
Open Med (Wars) ; 19(1): 20241044, 2024.
Article in English | MEDLINE | ID: mdl-39381430

ABSTRACT

Abstract: Research indicates that hypoxic pulmonary hypertension (HPH) potentially stimulates the sympathetic nervous system, which may increase norepinephrine (NE) release and cause excessive Ca2+ influx into pulmonary artery smooth muscle cells (PASMCs), leading to calcium overload and abnormal PASMC proliferation, factors closely associated with pulmonary vascular remodeling (PVR). This study investigates the potential mechanisms underlying echinacoside (ECH) treatment in HPH. Method: In the in vitro experiment, NE-induced PASMCs were used to simulate HPH-induced PASMCs' calcium overload and abnormal proliferation. Postincubation with ECH, [Ca2+]cyt changes were detected using Fluo-4 AM. Flow cytometry was employed to ascertain ECH's inhibitory effect on PASMCs proliferation. For in vivo experiments, rats were exposed to a hypoxic and low-pressure oxygen environment to establish the HPH model. Post-ECH treatment, hematoxylin and eosin (HE) staining was conducted to assess PVR, and western blot analysis was used to examine protein expression in the lung tissues of the different groups. Results: ECH was observed to inhibit [Ca2+]cyt increase in NE-induced PASMCs in a concentration-dependent manner, effectively reducing abnormal cell proliferation. It also reduced the expression of Transient receptor potential channel (TRPC) 1 (TRPC1), TRPC4, TRPC6, and calmodulin in PASMCs. In vivo studies demonstrated that ECH lowered the expression of these proteins in lung tissues of HPH rats, significantly decreased mean pulmonary artery pressure, and mitigated PVR.

5.
Article in English | MEDLINE | ID: mdl-39387119

ABSTRACT

BACKGROUND: Macrophages play a significant role in the onset and progression of vascular disease in pulmonary hypertension, and cell-based immunotherapies aimed at treating vascular remodeling are lacking. To evaluate the effect of pulmonary administration of macrophages modified to have an anti-inflammatory/proresolving phenotype in attenuating early pulmonary inflammation and progression of experimentally induced pulmonary hypertension. METHODS: Mouse bone marrow-derived macrophages were polarized in vitro to a regulatory (M2reg) phenotype. M2reg profile and anti-inflammatory capacity were assessed in vitro upon lipopolysaccharide/IFNγ (interferon-γ) restimulation, before their administration to 8- to 12-week-old mice. M2reg protective effect was evaluated at early (2-4 days) and late (4 weeks) time points during hypoxia (8.5% O2) exposure. Levels of inflammatory markers were quantified in alveolar macrophages and whole lung, while pulmonary hypertension development was ascertained by right ventricular systolic pressure (RVSP) and right ventricular hypertrophy measurements. Bronchoalveolar lavage from M2reg-transplanted hypoxic mice was collected and its inflammatory potential evaluated on naive bone marrow-derived macrophages. RESULTS: M2reg macrophages expressing Tgfß, Il10, and Cd206 demonstrated a stable anti-inflammatory phenotype in vitro, by downregulating the induction of proinflammatory cytokines and surface molecules (Cd86, Il6, and Tnfα) upon a subsequent proinflammatory stimulus. A single dose of M2reg attenuated hypoxic monocytic recruitment and perivascular inflammation. Early hypoxic lung and alveolar macrophage inflammation leading to pulmonary hypertension development was significantly reduced, and, importantly, M2reg attenuated right ventricular hypertrophy, right ventricular systolic pressure, and vascular remodeling at 4 weeks post-treatment. CONCLUSIONS: Adoptive transfer of M2reg halts the recruitment of monocytes and modifies the hypoxic lung microenvironment, potentially changing the immunoreactivity of recruited macrophages and restoring normal immune functionality of the lung. These findings provide new mechanistic insights into the diverse role of macrophage phenotype on lung vascular homeostasis that can be explored as novel therapeutic targets.

6.
Biomedicines ; 12(9)2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39335465

ABSTRACT

Atherosclerosis is a chronic inflammatory condition marked by endothelial dysfunction, lipid accumulation, inflammatory cell infiltration, and extracellular matrix (ECM) remodeling within arterial walls, leading to plaque formation and potential cardiovascular events. Key players in ECM remodeling and inflammation are matrix metalloproteinases (MMPs) and CD147/EMMPRIN, a cell surface glycoprotein expressed on endothelial cells, vascular smooth muscle cells (VSMCs), and immune cells, that regulates MMP activity. Hydrogen sulfide (H2S), a gaseous signaling molecule, has emerged as a significant modulator of these processes including oxidative stress mitigation, inflammation reduction, and vascular remodeling. This systematic review investigates the mechanistic pathways through which H2S influences MMPs and CD147/EMMPRIN and assesses its impact on atherosclerosis progression. A comprehensive literature search was conducted across PubMed, Scopus, and Web of Science databases, focusing on studies examining H2S modulation of MMPs and CD147/EMMPRIN in atherosclerosis contexts. Findings indicate that H2S modulates MMP expression and activity through transcriptional regulation and post-translational modifications, including S-sulfhydration. By mitigating oxidative stress, H2S reduces MMP activation, contributing to plaque stability and vascular remodeling. H2S also downregulates CD147/EMMPRIN expression via transcriptional pathways, diminishing inflammatory responses and vascular cellular proliferation within plaques. The dual regulatory role of H2S in inhibiting MMP activity and downregulating CD147 suggests its potential as a therapeutic agent in stabilizing atherosclerotic plaques and mitigating inflammation. Further research is warranted to elucidate the precise molecular mechanisms and to explore H2S-based therapies for clinical application in atherosclerosis.

7.
Diagnostics (Basel) ; 14(18)2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39335699

ABSTRACT

(200/200) Purpose: Our aim was to evaluate structural alterations of retinal arterioles due to type 1 diabetes (T1D) and/or diabetic retinopathy (DR) under AOSLO imaging. METHODS: Each study eye underwent mydriasis and AOSLO imaging in a single-visit study. The instrument's arrangement of four offset aperture images provided two orthogonal split-detector images and enabled isotropic analysis of the arteriolar boundaries. For each arteriole, we calculated the wall-to-lumen ratio (WLR), mean wall thickness, and luminal and external diameters. RESULTS: In total, we enrolled 5 (20.8%) healthy control eyes and 19 eyes of patients with T1D. The DR distribution was: four (16.7%) no-DR, nine (37.5%%) mild or moderate nonproliferative DR (NPDR), and six (25%) severe NPDR or proliferative DR. Mean wall thickness increased significantly in eyes with T1D compared to healthy controls (p = 0.0006) and in eyes with more advanced DR (p = 0.0004). The WLR was significantly higher in eyes with T1D (p = 0.002) or more severe DR (p = 0.004). There was no significant relationship between T1D status or DR severity and any of the arteriolar diameters. CONCLUSIONS: In this preliminary study, there appeared to be increases in the WLR and mean wall thickness in eyes with T1D and more severe DR than in the controls and eyes with no/less severe DR. Future studies may further elucidate the relationship between the retinal arteriolar structure and physiologic alterations in DR.

8.
Adv Sci (Weinh) ; : e2406398, 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39340832

ABSTRACT

Reconstruction of the neurovascular unit is essential for the repair of spinal cord injury (SCI). Nonetheless, detailed documentation of specific vascular changes following SCI and targeted interventions for vascular treatment remains limited. This study demonstrates that traumatic pathological vascular remodeling occurs during the chronic phase of injury, characterized by enlarged vessel diameter, disruption of blood-spinal cord barrier, endothelial-to-mesenchymal transition (EndoMT), and heightened extracellular matrix deposition. After SCI, osteopontin (OPN), a critical factor secreted by immune cells, is indispensable for early vascular regeneration but also contributes to traumatic pathological vascular remodeling. This work further elucidates the mechanism by which OPN influences spinal cord microvascular endothelial cells, involving Akt-mediated Foxo1 phosphorylation. This process facilitates the extranuclear transport of Foxo1 and decreases Smad7 expression, leading to excessive activation of the TGF-ß signaling pathway, which ultimately results in EndoMT and fibrosis. Targeted inhibition of Foxo1 phosphorylation through an endothelium-specific aptamer-liposome small molecule delivery system significantly mitigates vascular remodeling, thereby enhancing axon regeneration and neurological function recovery following SCI. The findings offer a novel perspective for drug therapies aimed at specifically targeting pathological vasculature after SCI.

9.
Respir Res ; 25(1): 348, 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39342206

ABSTRACT

BACKGROUND: As one of the most common traffic-related pollutants, diesel exhaust (DE) confers high risk for cardiovascular and respiratory diseases. However, its impact on pulmonary vessels is still unclear. METHODS: To explore the effects of DE exposure on pulmonary vascular remodeling, our study analyzed the number and volume of small pulmonary vessels in the diesel engine testers (the DET group) from Luoyang Diesel Engine Factory and the controls (the non-DET group) from the local water company, using spirometry and carbon content in airway macrophage (CCAM) in sputum. And then we constructed a rat model of chronic DE exposure, in which 12 rats were divided into the DE group (6 rats with 16-week DE exposure) and the control group (6 rats with 16-week clean air exposure). During right heart catheterization, right ventricular systolic pressure (RVSP) was assessed by manometry. Macrophage migration inhibitory factor (MIF) in lung tissues and bronchoalveolar lavage fluid (BALF) were measured by qRT-PCR and ELISA, respectively. Histopathological analysis for cardiovascular remodeling was also performed. RESULTS: In DET cohort, the number and volume of small pulmonary vessels in CT were positively correlated with CCAM in sputum (P<0.05). Rat model revealed that chronic DE-exposed rats had elevated RVSP, along with increased wall thickness of pulmonary small vessels and right the ventricle. What's more, the MIF levels in BALF and lung tissues were higher in DE-exposed rats than the controls. CONCLUSION: Apart from airway remodeling, DE also induces pulmonary vascular remodeling, which will lead to cardiopulmonary dysfunction.


Subject(s)
Hypertension, Pulmonary , Rats, Sprague-Dawley , Vascular Remodeling , Vehicle Emissions , Vehicle Emissions/toxicity , Animals , Vascular Remodeling/physiology , Vascular Remodeling/drug effects , Rats , Male , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/physiopathology , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , Humans , Air Pollutants/toxicity , Air Pollutants/adverse effects , Adult , Occupational Exposure/adverse effects , Pulmonary Artery/drug effects , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Pulmonary Artery/physiopathology , Inhalation Exposure/adverse effects , Female
10.
Exp Cell Res ; 442(2): 114254, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39276964

ABSTRACT

Pulmonary hypertension (PH) is a progressive cardiopulmonary disorder characterized by pulmonary vascular remodeling (PVR), primarily due to the excessive proliferation of pulmonary artery smooth muscle cells (PASMCs). This study aimed to investigate the role and molecular mechanism of SOX9 in hypoxic PH in rats. The findings revealed that SOX9 was upregulated in the pulmonary arteries and PASMCs of hypoxia-exposed rats. SOX9 knockdown inhibited hypoxia-induced proliferation and migration of PASMCs, reduced PVR, and subsequently alleviated hypoxia-induced PH in rats, suggesting that SOX9 plays a critical role in PH. Further investigation demonstrated that SOX9 interacted with DPP4, preventing its ubiquitin degradation in hypoxia-exposed PASMCs. DPP4 knockdown inhibited hypoxia-induced PASMC proliferation and migration, and administration of the DPP4 inhibitor sitagliptin (5 mg/kg) significantly reduced PVR and alleviated hypoxia-induced PH in rats, indicating that SOX9 contributes to PH by stabilizing DPP4. The results also showed that hypoxia induced YAP1 expression and dephosphorylation, leading to YAP1 nuclear localization. YAP1 knockdown promoted the degradation of HIF-1α in hypoxia-exposed PASMCs and inhibited hypoxia-induced proliferation and migration of PASMCs. Additionally, HIF-1α, as a transcription factor, promoted SOX9 expression by binding to the SOX9 promoter in hypoxia-exposed PASMCs. In conclusion, hypoxia promotes the proliferation and migration of PASMCs through the regulation of the YAP1/HIF-1α/SOX9/DPP4 signaling pathway, leading to PH in rats. These findings suggest that SOX9 may serve as a potential prognostic marker and therapeutic target for PH.

11.
Atherosclerosis ; 398: 118591, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39277963

ABSTRACT

BACKGROUND AND AIMS: Endothelial dysfunction (ED) is considered to be a major driver of the increased incidence of cardiovascular disease in primary aldosteronism (PA). The functionality of the epoxyeicosatrienoic acid (EET) pathway, involving the release of beneficial endothelium-derived lipid mediators, in PA is unknown. Evidence suggests this pathway to be disturbed in various models of experimental hypertension. We therefore assessed EET production in primary human coronary artery endothelial cells exposed to aldosterone excess and measured circulating EET in patients with PA. METHODS: We used qPCR to investigate changes in the expression levels of essential genes for the synthesis and degradation of EET, calcium imaging to address the functional impact on overall endothelial function, as well as mass spectrometry to determine endothelial synthetic capacity to release EET upon stimulation. RNA-seq was performed to gain further mechanistic insights. Eicosanoid concentrations in patient's plasma were also determined by mass spectrometry. RESULTS: Aldosterone, while eliciting proinflammatory VCAM1 expression and disturbed calcium response to acetylcholine, did not negatively affect stimulated release of endothelial EET. Likewise, no differences were observed in eicosanoid concentrations in plasma from patients with PA when compared to essential hypertensive controls. However, an inhibitor of soluble epoxide hydrolase abrogated aldosterone-mediated VCAM1 induction and led to a normalized endothelial calcium response probably by restoring expression of CHRNE. CONCLUSION: EET release appears intact despite aldosterone excess. Epoxide hydrolase inhibition may revert aldosterone-induced functional changes in endothelial cells. These findings indicate a potential new therapeutic principle to address ED, which should be explored in future preclinical and clinical trials.

12.
Eur J Med Chem ; 279: 116855, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39260318

ABSTRACT

Pulmonary arterial hypertension (PAH) is a severe pulmonary vascular disorder marked by vascular remodeling, which is linked to the malignant phenotypes of pulmonary vascular cells. The prevailing therapeutic approaches for PAH tend to neglect the potential role of vascular remodeling, leading to the clinical prognosis remains poor. Previously, we first demonstrated that heat shock protein (Hsp110) was significantly activated to boost Hsp110-STAT3 interaction, which resulted in abnormal proliferation and migration of human pulmonary arterial endothelial cells (HPAECs) under hypoxia. In the present study, we initially postulated the allosteric site of Hsp110, performed a virtual screening and biological evaluation studies to discover novel Hsp110-STAT3 interaction inhibitors. Here, we identified compound 29 (AN-329/43448068) as the effective inhibitor of HPAECs proliferation and the Hsp110-STAT3 association with good druggability. In vitro, 29 significantly impeded the chaperone function of Hsp110 and the malignant phenotypes of HPAECs. In vivo, 29 remarkably attenuated pulmonary vascular remodeling and right ventricular hypertrophy in hypoxia-induced PAH rats (i.g). Altogether, our data support the conclusion that it not only provides a novel lead compound but also presents a promising approach for subsequent inhibitor development targeting Hsp110-STAT3 interaction.

13.
J Biomed Sci ; 31(1): 88, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39237902

ABSTRACT

BACKGROUND: Dysregulation of vascular homeostasis can induce cardiovascular diseases and increase global mortality rates. Although lineage tracing studies have confirmed the pivotal role of modulated vascular smooth muscle cells (VSMCs) in the progression of pathological vascular remodeling, the underlying mechanisms are still unclear. METHODS: The expression of Tudor-SN was determined in VSMCs of artery stenosis, PDGF-BB-treated VSMCs and atherosclerotic plaque. Loss- and gain-of-function approaches were used to explore the role of Tudor-SN in the modulation of VSMCs phenotype both in vivo and in vitro. RESULTS: In this study, we demonstrate that Tudor-SN expression is significantly elevated in injury-induced arteries, atherosclerotic plaques, and PDGF-BB-stimulated VSMCs. Tudor-SN deficiency attenuates, but overexpression aggravates the synthetic phenotypic switching of VSMCs and pathological vascular remodeling. Loss of Tudor-SN also reduces atherosclerotic plaque formation and increases plaque stability. Mechanistically, PTEN, the major regulator of the MAPK and PI3K-AKT signaling pathways, plays a vital role in Tudor-SN-mediated regulation on proliferation and migration of VSMCs. Tudor-SN facilitates the polyubiquitination and degradation of PTEN via NEDD4-1, thus exacerbating vascular remodeling under pathological conditions. BpV (HOpic), a specific inhibitor of PTEN, not only counteracts the protective effect of Tudor-SN deficiency on proliferation and migration of VSMCs, but also abrogates the negative effect of carotid artery injury-induced vascular remodeling in mice. CONCLUSIONS: Our findings reveal that Tudor-SN deficiency significantly ameliorated pathological vascular remodeling by reducing NEDD4-1-dependent PTEN polyubiquitination, suggesting that Tudor-SN may be a novel target for preventing vascular diseases.


Subject(s)
Nedd4 Ubiquitin Protein Ligases , PTEN Phosphohydrolase , Ubiquitination , Vascular Remodeling , Nedd4 Ubiquitin Protein Ligases/metabolism , Nedd4 Ubiquitin Protein Ligases/genetics , Animals , Mice , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Muscle, Smooth, Vascular/metabolism , Male , Myocytes, Smooth Muscle/metabolism , Mice, Inbred C57BL
14.
Int J Mol Sci ; 25(17)2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39273484

ABSTRACT

Hypercholesterolemia forms the background of several cardiovascular pathologies. LDL receptor-knockout (LDLR-KO) mice kept on a high-fat diet (HFD) develop high cholesterol levels and atherosclerosis (AS). Cannabinoid type 1 receptors (CB1Rs) induce vasodilation, although their role in cardiovascular pathologies is still controversial. We aimed to reveal the effects of CB1Rs on vascular function and remodeling in hypercholesterolemic AS-prone LDLR-KO mice. Experiments were performed on a newly established LDLR and CB1R double-knockout (KO) mouse model, in which KO and wild-type (WT) mice were kept on an HFD or a control diet (CD) for 5 months. The vascular functions of abdominal aorta rings were tested with wire myography. The vasorelaxation effects of acetylcholine (Ach, 1 nM-1 µM) were obtained after phenylephrine precontraction, which was repeated with inhibitors of nitric oxide synthase (NOS) and cyclooxygenase (COX), Nω-nitro-L-arginine (LNA), and indomethacin (INDO), respectively. Blood pressure was measured with the tail-cuff method. Immunostaining of endothelial NOS (eNOS) was carried out. An HFD significantly elevated the cholesterol levels in the LDLR-KO mice more than in the corresponding WT mice (mean values: 1039 ± 162 mg/dL vs. 91 ± 18 mg/dL), and they were not influenced by the presence of the CB1R gene. However, with the defect of the CB1R gene, damage to the Ach relaxation ability was moderated. The blood pressure was higher in the LDLR-KO mice compared to their WT counterparts (systolic/diastolic values: 110/84 ± 5.8/6.8 vs. 102/80 ± 3.3/2.5 mmHg), which was significantly elevated with an HFD (118/96 ± 1.9/2 vs. 100/77 ± 3.4/3.1 mmHg, p < 0.05) but attenuated in the CB1R-KO HFD mice. The expression of eNOS was depressed in the HFD WT mice compared to those on the CD, but it was augmented if CB1R was knocked out. This newly established double-knockout mouse model provides a tool for studying the involvement of CB1Rs in the development of hypercholesterolemia and atherosclerosis. Our results indicate that knocking out the CB1R gene significantly attenuates vascular damage in hypercholesterolemic mice.


Subject(s)
Disease Models, Animal , Hypercholesterolemia , Mice, Knockout , Receptor, Cannabinoid, CB1 , Receptors, LDL , Vasodilation , Animals , Hypercholesterolemia/metabolism , Hypercholesterolemia/genetics , Hypercholesterolemia/pathology , Mice , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB1/genetics , Receptors, LDL/genetics , Receptors, LDL/metabolism , Receptors, LDL/deficiency , Vasodilation/drug effects , Diet, High-Fat/adverse effects , Male , Nitric Oxide Synthase Type III/metabolism , Atherosclerosis/metabolism , Atherosclerosis/genetics , Atherosclerosis/pathology , Atherosclerosis/etiology , Vascular Remodeling/drug effects , Mice, Inbred C57BL , Acetylcholine/pharmacology
15.
Biochem Biophys Res Commun ; 733: 150706, 2024 Nov 12.
Article in English | MEDLINE | ID: mdl-39305571

ABSTRACT

Specialized pro-resolving mediators (SPMs) are key effectors of resolution of inflammation. This is highly relevant for cardiac and vessel remodeling, where the net inflammatory response contributes to determine disease outcome. Herein, we used a mice model of angiotensin (Ang)-II-induced hypertension to study the effect of the SPM Resolvin D2 (RvD2), on hypertension and cardiac remodeling. By using subcutaneous osmotic minipumps, mice were treated with PBS or Ang-II in combination with or without RvD2 for two weeks. Mice receiving RvD2 gained less blood pressure increase compared to Ang-II alone. Surprisingly, however, examination of intracardiac arteries revealed that RvD2 treatment in combination with Ang-II exacerbated Ang-II-induced fibrosis. Measures of vascular smooth muscle cell dedifferentiation correlated with the level of vascular remodeling, indicating that this dedifferentiation, including increased proliferation and migration, is a contributing factor. RNA sequencing of left ventricle cardiac tissue supported these findings as pathways related to cell proliferation and cell differentiation were upregulated in mice treated with Ang-II in combination with RvD2. Additionally, the RNA sequencing also showed upregulation of pathways related to SPM metabolism. In line with this, Mass spectrometry analysis of lipid mediators showed reduced cardiac levels of the arachidonic acid derived metabolite leukotriene E4 in RvD2 treated mice. Our study suggests that continuous infusion through osmotic minipumps should not be the recommended route of RvD2 administration in future studies.


Subject(s)
Angiotensin II , Blood Pressure , Docosahexaenoic Acids , Mice, Inbred C57BL , Vascular Remodeling , Animals , Docosahexaenoic Acids/pharmacology , Docosahexaenoic Acids/administration & dosage , Angiotensin II/pharmacology , Angiotensin II/administration & dosage , Male , Vascular Remodeling/drug effects , Blood Pressure/drug effects , Mice , Hypertension/drug therapy , Hypertension/metabolism , Hypertension/pathology , Hypertension/physiopathology , Hypertension/chemically induced
16.
J Am Heart Assoc ; 13(19): e035174, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39291493

ABSTRACT

BACKGROUND: G6PD (glucose-6-phosphate-dehydrogenase) is a key enzyme in the glycolytic pathway and has been implicated in the pathogenesis of cancer and pulmonary hypertension-associated vascular remodeling. Here, we investigated the role of an X-linked G6pd mutation (N126D polymorphism), which is known to increase the risk of cardiovascular disease in individuals from sub-Saharan Africa and many others with African ancestry, in the pathogenesis of pulmonary hypertension induced by a vascular endothelial cell growth factor receptor blocker used for treating cancer. METHODS AND RESULTS: CRISPR-Cas9 genome editing was used to generate the G6pd variant (N126D; G6pdN126D) in rats. A single dose of the vascular endothelial cell growth factor receptor blocker sugen-5416 (SU; 20 mg/kg in DMSO), which is currently in a Phase 2/3 clinical trial for cancer treatment, was subcutaneously injected into G6pdN126D rats and their wild-type littermates. After 8 weeks of normoxic conditions, right ventricular pressure and hypertrophy, pulmonary artery remodeling, the metabolic profile, and cytokine expression were assessed. Right ventricular pressure and pulmonary arterial wall thickness were increased in G6PDN126D+SU/normoxic rats. Simultaneously, levels of oxidized glutathione, inositol triphosphate, and intracellular Ca2+ were increased in the lungs of G6PDN126D+SU/normoxic rats, whereas nitric oxide was decreased. Also increased in G6PDN126D+SU/normoxic rats were pulmonary levels of plasminogen activator inhibitor-1, thrombin-antithrombin complex, and expression of proinflammatory cytokines CCL3 (chemokine [C-C motif] ligand), CCL5, and CCL7. CONCLUSIONS: Our results suggest G6PDN126D increases inositol triphosphate-Ca2+ signaling, inflammation, thrombosis, and hypertrophic pulmonary artery remodeling in SU-treated rats. This suggests an increased risk of vascular endothelial cell growth factor receptor blocker-induced pulmonary hypertension in those carrying this G6PD variant.


Subject(s)
Glucosephosphate Dehydrogenase , Receptors, Vascular Endothelial Growth Factor , Animals , Glucosephosphate Dehydrogenase/genetics , Glucosephosphate Dehydrogenase/metabolism , Receptors, Vascular Endothelial Growth Factor/genetics , Rats , Male , Pulmonary Artery/drug effects , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Pulmonary Artery/physiopathology , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/physiopathology , Disease Models, Animal , Vascular Remodeling/drug effects , Rats, Sprague-Dawley , Indoles/pharmacology , Hypertrophy, Right Ventricular/genetics , Hypertrophy, Right Ventricular/metabolism , Hypertrophy, Right Ventricular/physiopathology , Pyrroles
17.
Eur J Pharmacol ; 983: 176824, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39265882

ABSTRACT

Intimal hyperplasia (IH) is an innegligible issue for patients undergoing interventional therapy. The proliferation and migration of vascular smooth muscle cells (VSMCs) induced by platelet-derived growth factor-BB (PDGF-BB) are critical events in the development of IH. While the exact mechanism and effective target for IH needs further investigation. Metabolic disorders of arachidonic acid (ARA) are involved in the occurrence and progression of various diseases. In this study, we found that the expressions of soluble epoxide hydrolase (sEH) and cyclooxygenase-2 (COX-2) were significantly increased in the VSMCs during balloon injury-induced IH. Then, we employed a COX-2/sEH dual inhibitor PTUPB to increase the concentration of epoxyeicosatrienoic acids (EETs) while prevent the release of pro-inflammatory prostaglandins. Results showed that PTUPB treatment significantly reduced neointimal thickening induced by balloon injury in rats in vivo and inhibited PDGF-BB-induced proliferation and migration of VSMCs in vitro. Our results showed that PTUPB may reverse the phenotypic transition of VSMCs by inhibiting Pttg1 expression. In conclusion, we found that the dysfunction of ARA metabolism in VSMCs contributes to IH, and the COX-2/sEH dual inhibitor PTUPB attenuates IH progression by reversing the phenotypic switch in VSMC through the Sirt1/Pttg1 pathway.


Subject(s)
Cell Movement , Cell Proliferation , Cyclooxygenase 2 , Epoxide Hydrolases , Hyperplasia , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Rats, Sprague-Dawley , Animals , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/metabolism , Male , Rats , Cyclooxygenase 2/metabolism , Cell Proliferation/drug effects , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Cell Movement/drug effects , Epoxide Hydrolases/antagonists & inhibitors , Epoxide Hydrolases/metabolism , Tunica Intima/pathology , Tunica Intima/metabolism , Tunica Intima/drug effects , Becaplermin/pharmacology , Neointima/pathology , Neointima/metabolism , Neointima/drug therapy , Metabolic Diseases/metabolism , Metabolic Diseases/drug therapy , Metabolic Diseases/pathology
18.
Exp Cell Res ; : 114256, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39299482

ABSTRACT

BACKGROUND: Pulmonary hypertension (PH) is a serious cardiopulmonary disease with significant morbidity and mortality. Vascular obstruction leads to a continuous increase in pulmonary vascular resistance, vascular remodeling, and right ventricular hypertrophy and failure, which are the main pathological features of PH. Currently, the treatments for PH are very limited, so new methods are urgently needed. Msenchymal stem cells-derived exosomes have been shown to have significant therapeutic effects in PH, however, the the mechanism still very blurry. Here, we investigated the possible mechanism by which umbilical cord mesenchymal stem cell-derived exosomes (hUC-MSC-EXO) inhibited monocrotaline (MCT)-induced pulmonary vascular remodeling in a rat model of PH by regulating the NF-κB/BMP signaling pathway. Our data revealed that hUC-MSC-EXO could significantly attenuate MCT-induced PH and right ventricular hypertrophy. Moreover, the protein expression level of BMPR2, BMP-4, BMP-9 and ID1 was significantly increased, but NF-κB p65, p-NF-κB-p65 and BMP antagonists Gremlin-1 was increased in vitro and vivo. Collectively, this study revealed that the mechanism of hUC-MSC-EXO attenuates pulmonary hypertension may be related to inhibition of NF-κB signaling to further activation of BMP signaling. The present study provided a promising therapeutic strategy for PH vascular remodeling.

19.
Sci Total Environ ; 954: 176565, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39341237

ABSTRACT

The compound 6:2 chlorinated polyfluorinated ether sulfonate (F53B), an alternative to perfluorooctane sulfonate (PFOS), has been widely utilized in China. Although the connection between the exposure and toxicity of F53B is established, the role and mechanisms of the compound in promoting vascular remodeling are yet to be elucidated. Thus, the present study investigated the impact of F53B on the function of vascular smooth muscle cells (VSMCs) and vascular remodeling. The data exhibited that F53B stimulates vascular morphological alterations in vivo, and exposure to the compound caused excessive VSMCs ferroptosis and phenotype switching, as determined using phenotype and molecular assays. Moreover, Fer-1 reversed F-53B-induced VSMC dysfunction and vascular remodeling. Furthermore, F53B activated the ferroptosis-related pathway, encompassing ATR expression and LOC101929922/miR-542-3p/ACSL4 pathway. Thus, the current results elaborated on the multifaceted toxicities of F53B that induce vascular remodeling, thereby necessitating the assessment of vasotoxicity risks associated with the compound.

20.
Angiogenesis ; 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39215875

ABSTRACT

Diabetic retinopathy (DR) is a diabetic complication that results in visual impairment and relevant retinal diseases. Current therapeutic strategies on DR primarily focus on antiangiogenic therapies, which particularly target vascular endothelial growth factor and its related signaling transduction. However, these therapies still have limitations due to the intricate pathogenesis of DR. Emerging studies have shown that premature senescence of endothelial cells (ECs) in a hyperglycemic environment is involved in the disease process of DR and plays multiple roles at different stages. Moreover, these surprising discoveries have driven the development of senotherapeutics and strategies targeting senescent endothelial cells (SECs), which present challenging but promising prospects in DR treatment. In this review, we focus on the inducers and mechanisms of EC senescence in the pathogenesis of DR and summarize the current research advances in the development of senotherapeutics and strategies that target SECs for DR treatment. Herein, we highlight the role played by key factors at different stages of EC senescence, which will be critical for facilitating the development of future innovative treatment strategies that target the different stages of senescence in DR.

SELECTION OF CITATIONS
SEARCH DETAIL