Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Vaccines (Basel) ; 10(11)2022 Nov 19.
Article in English | MEDLINE | ID: mdl-36423058

ABSTRACT

Pneumonia accounts for over 20% of deaths worldwide in children aged 1 to 5 years, disproportionately affecting lower- and middle-income countries. Effective, highly multivalent pneumococcal vaccines are available to decrease disease burden, with numerous new vaccines currently under development to serve a variety of worldwide markets. However, pneumococcal conjugate vaccines are among the hardest biologics to manufacture and characterize due to their complexity and heterogeneity. Current characterization methods are often inherently singleplex, requiring separate tests for each serotype present. In addition, identity and quantity are often determined with separate methods. We developed the VaxArray pneumococcal assay for applications in identity, quantity, and stability testing of pneumococcal polysaccharide and pneumococcal conjugate vaccines. The VaxArray pneumococcal assay has a time to result of less than 30 min and is an off-the-shelf multiplexed, microarray-based immunoassay kit that can identify and simultaneously quantify 23 pneumococcal polysaccharide serotypes common to many on-market and in-development vaccines. Here, we highlight the potential of the assay for identity testing by showing high reactivity and serotype specificity to a wide variety of native polysaccharides, CRM197-conjugated polysaccharides, and drug product. The assay also has vaccine-relevant lower limits of quantification in the low-to-mid ng/mL range and can be used for accurate quantification even in adjuvanted vaccines. Excellent correlation to the anthrone assay is demonstrated, with VaxArray resulting in significantly improved precision over this antiquated chemical method.

2.
Vaccines (Basel) ; 10(10)2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36298569

ABSTRACT

The COVID-19 pandemic highlighted mRNA as a promising platform for vaccines and therapeutics. Many of the analytical tools used to characterize the critical quality attributes of mRNA are inherently singleplex and are not necessarily optimal from a labor and cost perspective. Here, we demonstrate the feasibility of a multiplexed platform (VaxArray) for efficient identity verification and concentration determination for both monovalent and multivalent mRNA formulations. A model system comprising mRNA constructs for influenza hemagglutinin and neuraminidase was used to characterize the analytical performance metrics for a VaxArray mRNA assay. The assay presented herein had a time to result of less than 2 h, required no PCR-based amplification nor extraction of mRNA from lipid nanoparticles, and exhibited high construct specificity that enabled application to the bivalent mixture. The sensitivity for influenza hemagglutinin and neuraminidase mRNA was sub-µg/mL, which is vaccine-relevant, and the average accuracy (%recovery of a check standard) and precision were 104 ± 2% and 9 ± 2%, respectively.

3.
J Immunol Methods ; 504: 113259, 2022 05.
Article in English | MEDLINE | ID: mdl-35314144

ABSTRACT

Next generation poliovirus vaccines are critical to reaching global poliovirus eradication goals. Recent efforts have focused on creating inactivated vaccines using attenuated Sabin strains that maintain patient safety benefits and immunogenicity of conventional inactivated vaccines while increasing manufacturing safety and lowering production costs, and on developing novel oral vaccines using modified Sabin strains that provide critical mucosal immunity but are further attenuated to minimize risk of reversion to neurovirulence. In addition, there is a push to improve the analytical tools for poliovirus vaccine characterization. Conventional and Sabin inactivated poliovirus vaccines typically rely on standard plate-based ELISA as in vitro D-antigen potency assays in combination with WHO international standards as calibrants. While widely utilized, the current D-antigen ELISA assays have a long time to result (up to 72 h), can suffer from lab-to-lab inconsistency due to non-standardized protocols and reagents, and are inherently singleplex. For D-antigen quantitation, we have developed the VaxArray Polio Assay Kit, a multiplexed, microarray-based immunoassay that uses poliovirus-specific human monoclonal antibodies currently under consideration as standardized reagents for characterizing inactivated Sabin and Salk vaccines. The VaxArray assay can simultaneously quantify all 3 poliovirus serotypes with a time to result of less than 3 h. Here we demonstrate that the assay has limits of quantification suitable for both bioprocess samples and final vaccines, excellent reproducibility and precision, and improved accuracy over an analogous plate-based ELISA. The assay is suitable for adjuvanted combination vaccines, as common vaccine additives and crude matrices do not interfere with quantification, and is intended as a high throughput, standardized quantitation tool to aid inactivated poliovirus vaccine manufacturers in streamlining vaccine development and manufacturing, aiding the global polio eradication effort.


Subject(s)
Poliomyelitis , Poliovirus , Antibodies, Viral , Antigens, Viral , Enzyme-Linked Immunosorbent Assay , Humans , Poliomyelitis/diagnosis , Poliomyelitis/prevention & control , Poliovirus Vaccine, Inactivated , Poliovirus Vaccine, Oral , Reproducibility of Results , Vaccines, Inactivated
4.
Vaccine X ; 9: 100113, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34622199

ABSTRACT

Measles-containing vaccines (MCV), specifically vaccines against measles and rubella (MR), are extremely effective and critical for the eradication of measles and rubella diseases. In developed countries, vaccination rates are high and vaccines are readily available, but continued high prevalence of both diseases in developing countries and surges in measles deaths in recent years have highlighted the need to expand vaccination efforts. To meet demand for additional vaccines at a globally affordable price, it is highly desirable to streamline vaccine production thereby reducing cost and speeding up time to delivery. MR vaccine characterization currently relies on the 50% cell culture infectious dose (CCID50) assay, an endpoint assay with low reproducibility that requires 10-14 days to complete. For streamlining bioprocess analysis and improving measurement precision relative to CCID50, we developed the VaxArray Measles and Rubella assay kit, which is based on a multiplexed microarray immunoassay with a 5-hour time to result. Here we demonstrate vaccine-relevant sensitivity ranging from 345 to 800 IFU/mL up to 100,000 IFU/mL (infectious units per mL) and specificity that allows simultaneous analysis in bivalent vaccine samples. The assay is sensitive to antigen stability and has minimal interference from common vaccine additives. The assay exhibits high reproducibility and repeatability, with 15% CV, much lower than the typical 0.3 log10 error (∼65%) observed for the CCID50 assay. The intact protein concentration measured by VaxArray is reasonably correlated to, but not equivalent to, CCID50 infectivity measurements for harvest samples. However, the measured protein concentration exhibits equivalency to CCID50 for more purified samples, including concentrated virus pools and monovalent bulks, making the assay a useful new tool for same-day analysis of vaccine samples for bioprocess development, optimization, and monitoring.

5.
J Virol Methods ; 291: 114111, 2021 05.
Article in English | MEDLINE | ID: mdl-33640374

ABSTRACT

Rapid, sensitive, and precise multiplexed assays for serological analysis during candidate COVID-19 vaccine development would streamline clinical trials. The VaxArray Coronavirus (CoV) SeroAssay quantifies IgG antibody binding to 9 pandemic, potentially pandemic, and endemic human CoV spike antigens in 2 h with automated results analysis. IgG antibodies in serum bind to the CoV spike protein capture antigens printed in a microarray format and are labeled with a fluorescent anti-species IgG secondary label. The assay demonstrated excellent lower limits of quantification ranging from 0.3 to 2.0 ng/mL and linear dynamic ranges of 76 to 911-fold. Average precision of 11 % CV and accuracy (% recovery) of 92.5 % over all capture antigens were achieved over 216 replicates representing 3 days and 3 microarray lots. Clinical performance on 263 human serum samples (132 SARS-CoV-2 negatives and 131 positives based on donor-matched RT-PCR and/or date of collection) produced 98.5 % PPA and 100 % NPA.


Subject(s)
Antibodies, Viral/blood , Coronavirus Infections/diagnosis , Coronavirus/isolation & purification , Microarray Analysis/methods , Serologic Tests/methods , Antigens, Viral/immunology , COVID-19/diagnosis , COVID-19/immunology , COVID-19 Nucleic Acid Testing , COVID-19 Testing/methods , Coronavirus/immunology , Coronavirus Infections/immunology , Humans , Immunoassay/methods , Immunoglobulin G/blood , Reproducibility of Results , SARS-CoV-2/isolation & purification , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus/immunology
6.
Vaccine ; 36(21): 2937-2945, 2018 05 17.
Article in English | MEDLINE | ID: mdl-29699789

ABSTRACT

Practical methods to measure the potency of influenza vaccines are needed as alternatives for the standard single radial immunodiffusion (SRID) assay. VaxArray assays for influenza hemagglutinin (HA) and neuraminidase (NA) have been developed to address this need. In this report, we evaluate the use of these assays to assess the potency of HA and NA of an A/H3N2 subunit vaccine by determining the correlation between the amounts measured by VaxArray and the immunogenicity in mice. The antibody response after one and two doses of five formulations of the vaccine ranging from 5 µg/mL to 80 µg/mL of HA, was measured by hemagglutination inhibition (HAI) and neuraminidase inhibition (NAI) assays. For hemagglutinin, vaccine potency determined by VaxArray was equivalent to potency measured SRID and these amounts were predictive of immunogenicity, with excellent correlation between potency measured by VaxArray and the HAI geometric mean titers (GMT). Likewise, the amount of NA measured by VaxArray was predictive of the NAI GMT. The VaxArray NA assay reported non-detectable levels of intact NA for a sample that had been heat degraded at 56 °C for 20 h, demonstrating that the assay measures the native, active form of NA. Similarly, the HA potency measured by VaxArray in this heat-treated sample was very low when a monoclonal antibody was used to detect the amount of antigen bound. Importantly, the force degraded sample induced low HAI titers and the NAI titers were not measurable, supporting the conclusion that the VaxArray HA and NA assays measure the immunogenic forms of these A/H3N2 antigens. This study indicates that VaxArray assays can be used to assess the potency of HA and NA components in influenza vaccines as a proxy for immunogenicity.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza Vaccines/immunology , Neuraminidase/immunology , Technology, Pharmaceutical/methods , Vaccine Potency , Viral Proteins/immunology , Animals , Antibodies, Viral/blood , Female , Hemagglutination Inhibition Tests , Influenza Vaccines/administration & dosage , Mice, Inbred BALB C , Neutralization Tests , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/immunology
7.
Vaccine ; 35(15): 1918-1925, 2017 04 04.
Article in English | MEDLINE | ID: mdl-28262335

ABSTRACT

Vaccine manufacturers require more rapid and accurate tools to characterize the potency and stability of their products. Currently, the gold standard for influenza vaccine potency is the single radial immunodiffusion (SRD) assay, which has inherent disadvantages. The primary objective of this study was to investigate the ability of the VaxArray Influenza (VXI) seasonal hemagglutinin (sHA) potency assay to accurately quantify potency and stability in finished vaccines as well as to quantify hemagglutinin protein (HA) within crude in-process samples. Monobulk intermediates and mono- and multivalent vaccines were tested using VXI. Quantification of HA in crude samples was evaluated by spiking known concentrations of HA into allantoic fluid. VXI generated SRD equivalent potency measurements with high accuracy (within ±10%) and precision (CV 10±4%) for antigen components of monobulk intermediates and multivalent split vaccines. For these vaccines and vaccine intermediates, the VXI linear dynamic range was ∼0.01-0.6µg/mL, which is 12× greater than the linear range of SRD. The measured sample limit of detection (LOD) for VXI varied from 0.005 to 0.01µg/mL for the different subtypes, which in general is ≥600× lower than the LOD for SRD. VXI was able to quantify HA in crude samples where HA only accounts for 0.02% of the total protein content. Stability indication was investigated by tracking measured potency as a function of time at elevated temperature by both SRD and VXI. After 20 h at 56°C, the ratio of VXI to SRD measured potency in a quadrivalent vaccine was 76%, 125%, 60%, and 98% for H1/California, H3/Switzerland, B/Phuket and B/Brisbane, respectively. Based on the study results, it is concluded that VXI is a rapid, multiplexed immunoassay that can be used to accurately determine flu vaccine potency and stability in finished product and in crude samples from upstream processes.


Subject(s)
Drug Stability , Hemagglutinin Glycoproteins, Influenza Virus/analysis , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza Vaccines/immunology , Technology, Pharmaceutical/methods , Vaccine Potency , Humans , Immunoassay/methods , Protein Stability , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL