Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124823, 2024 Dec 05.
Article in English | MEDLINE | ID: mdl-39033609

ABSTRACT

In the present work, we study different physicochemical properties related to LADME processes of volasertib, a Polo-like kinase 1 inhibitor in advanced clinical trials. Firstly, the protonation equilibria, the extent of ionization at the physiological pH and pKa values of this drug are studied combining spectroscopic techniques and computational calculations. Secondly, the binding process of volasertib to the human serum albumin (HSA) protein is analyzed by fluorescence spectroscopy. We report a high binding constant to HSA (Ka = 4.10 × 106 M-1) and their pharmacokinetic implications are discussed accordingly. The negative enthalpy and entropy (ΔH0 = -54.49 kJ/mol; ΔS0 = -58.90 J K-1 mol-1) determined for the binding process suggests the implication of hydrogen bonds and van der Waals interactions in the formation of the HSA-volasertib complex. Additionally, volasertib is encapsulated in an alginate/montmorillonite bionanocomposite as a proof of concept for an oral delivery nanocarrier. The physical properties of that nanocomposite as well as volasertib delivery kinetics are analyzed.


Subject(s)
Alginates , Bentonite , Nanocomposites , Spectrometry, Fluorescence , Humans , Alginates/chemistry , Bentonite/chemistry , Hydrogen Bonding , Hydrogen-Ion Concentration , Nanocomposites/chemistry , Protein Binding , Pteridines/chemistry , Serum Albumin, Human/chemistry , Serum Albumin, Human/metabolism , Thermodynamics
2.
Biomedicines ; 12(3)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38540116

ABSTRACT

Polo-like-kinase-1 (PLK-1) is a serine/threonine kinase that regulates the cell cycle and acts as an oncogene in multiple cancers, including oral squamous cell carcinoma (OSCC). The loss of PLK-1 can inhibit growth and induce apoptosis, making it an attractive therapeutic target in OSCC. We evaluated the efficacy of PLK-1 inhibitors as novel, targeted therapeutics in OSCC. PLK-1 inhibition using BI6727 (volasertib) was found to affect cell death at low nanomolar concentrations in most tested OSCC cell lines, but not in normal oral keratinocytes. In cell lines resistant to volasertib alone, pre-treatment with radiotherapy followed by volasertib reduced cell viability and induced apoptosis. The combinatorial efficacy of volasertib and radiotherapy was replicated in xenograft mouse models. These findings highlight the potential of adding PLK-1 inhibitors to adjuvant therapy regimens in OSCC.

3.
Naunyn Schmiedebergs Arch Pharmacol ; 397(7): 4883-4894, 2024 07.
Article in English | MEDLINE | ID: mdl-38165424

ABSTRACT

A common approach to cancer therapy is the combination of a natural product with chemotherapy to overcome sustained cell proliferation and chemotherapy resistance obstacles. Diosgenin (DG) is a phytosteroidal saponin that is naturally present in a vast number of plants and has been shown to exert anti-cancer activities against several tumor cells. Herein, we assessed the chemo-modulatory effects of DG on volasertib (Vola) as a polo-like kinase 1 (PLK1) inhibitor and doxorubicin (DOX) in hepatocellular carcinoma (HCC) cell lines. DOX and Vola were applied to two human HCC cell lines (HepG2 and Huh-7) alone or in combination with DG. The cell viability was determined, and gene expressions of PLK1, PCNA, P53, caspase-3, and PARP1 were evaluated by RT-qPCR. Moreover, apoptosis induction was determined by measuring active caspase-3 level using ELISA method. DG enhanced the anticancer effects of Vola and DOX. Moreover, DG enhanced Vola- and DOX-induced cell death by downregulating the expressions of PLK1 and PCNA, elevating the expressions of P53 and active caspase-3. DG showed promising chemo-modulatory effects to Vola and DOX against HCC that may be attributed partly to the downregulation of PLK1 and PCNA, upregulation of tumor suppressor protein P53, and apoptosis induction. Thus, DG combination with chemotherapy may be a promising treatment approach for HCC.


Subject(s)
Apoptosis , Carcinoma, Hepatocellular , Diosgenin , Doxorubicin , Liver Neoplasms , Polo-Like Kinase 1 , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis/drug effects , Carcinoma, Hepatocellular/drug therapy , Caspase 3/metabolism , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Diosgenin/pharmacology , Diosgenin/analogs & derivatives , Doxorubicin/pharmacology , Drug Synergism , Hep G2 Cells , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Pteridines/pharmacology , Tumor Suppressor Protein p53/metabolism
4.
Pathol Res Pract ; 248: 154678, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37454493

ABSTRACT

Polo-like kinase 1 (PLK1) is an essential mitotic checkpoint protein that plays a key role in cell cycle division. Overexpression of PLK1 has been associated with poor prognosis in various cancers. Cholangiocarcinoma (CCA) is a lethal bile duct cancer and the current treatments in inoperable patients have not been satisfactory. In order to develop novel targeted therapies, we investigated the efficacy of BI6727 (volasertib) and GSK461364A, polo-like kinase 1 (PLK1) inhibitors in KKU-100 and KKU-213A CCA cell lines. PLK1 expression was significantly up-regulated in CCA cases compared with normal tissues based on the results derived from GEPIA. Western blot results exhibited PLK1 protein expression in both CCA cell lines. Molecular dynamics simulations and free energy calculations based on MM/GBSA method revealed that BI6727-PLK1 and GSK461364A-PLK1 complexes were stable in an aqueous environment, and their complexation was mainly driven by Van der Waals interaction. BI6727 and GSK461364A clearly suppressed CCA cell proliferation and induced G2/M arrest, accompanied with upregulation of cyclin B1 and phosphorylated Histone H3 at Ser10 (pS10H3), specific markers of mitosis. Furthermore, both compounds triggered mitotic catastrophe followed by cell apoptosis via activation of PARP and Caspase 3, as well as downregulation of Mcl-1 anti-apoptotic protein in both CCA cell lines. In conclusion, pharmacologic PLK1 inhibition by BI6727 and GSK461364A blocked survival of CCA cells by several mechanisms. Our study provides evidence that BI6727 and GSK461364A could be alternative drugs and have potential implications at the clinical level for CCA therapy.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Humans , Apoptosis , Cell Line, Tumor , G2 Phase Cell Cycle Checkpoints , Cell Cycle Proteins/metabolism , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/pathology , Cell Proliferation , Bile Ducts, Intrahepatic/pathology , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/pathology , Polo-Like Kinase 1
5.
Cancers (Basel) ; 15(9)2023 May 02.
Article in English | MEDLINE | ID: mdl-37174055

ABSTRACT

Tyrosine kinase inhibitors (TKI) targeting the epidermal growth factor receptor (EGFR) have significantly prolonged survival in EGFR-mutant non-small cell lung cancer patients. However, the development of resistance mechanisms prohibits the curative potential of EGFR TKIs. Combination therapies emerge as a valuable approach to preventing or delaying disease progression. Here, we investigated the combined inhibition of polo-like kinase 1 (PLK1) and EGFR in TKI-sensitive EGFR-mutant NSCLC cells. The pharmacological inhibition of PLK1 destabilized EGFR levels and sensitized NSCLC cells to Osimertinib through induction of apoptosis. In addition, we found that c-Cbl, a ubiquitin ligase of EGFR, is a direct phosphorylation target of PLK1 and PLK1 impacts the stability of c-Cbl in a kinase-dependent manner. In conclusion, we describe a novel interaction between mutant EGFR and PLK1 that may be exploited in the clinic. Co-targeting PLK1 and EGFR may improve and prolong the clinical response to EGFR TKI in patients with an EGFR-mutated NSCLC.

6.
Biomol Ther (Seoul) ; 31(3): 319-329, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36382510

ABSTRACT

Resistance to hypomethylating agents (HMAs) in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) is a concerning problem. Polo-like kinase 1 (PLK1) is a key cell cycle modulator and is known to be associated with an activation of the PI3K pathway, which is related to the stabilization of DNA methyltransferase 1 (DNMT1), a target of HMAs. We investigated the effects of volasertib on HMA-resistant cell lines (MOLM/AZA-1 and MOLM/DEC-5) derived from MOLM-13, and bone marrow (BM) samples obtained from patients with MDS (BM blasts >5%) or AML evolved from MDS (MDS/AML). Volasertib effectively inhibited the proliferation of HMA-resistant cells with suppression of DNMTs and PI3K/AKT/mTOR and ERK pathways. Volasertib also showed significant inhibitory effects against primary BM cells from patients with MDS or MDS/AML, and the effects of volasertib inversely correlated with DNMT3B expression. The DNMT3B-overexpressed AML cells showed primary resistance to volasertib treatment. Our data suggest that volasertib has a potential role in overcoming HMA resistance in patients with MDS and MDS/AML by suppressing the expression of DNMT3 enzymes and PI3K/AKT/mTOR and ERK pathways. We also found that DNMT3B overexpression might be associated with resistance to volasertib.

7.
Front Oncol ; 12: 960720, 2022.
Article in English | MEDLINE | ID: mdl-36505864

ABSTRACT

Background: Management of advanced chordomas remains delicate considering their insensitivity to chemotherapy. Homozygous deletion of the regulatory gene CDKN2A has been described as the most frequent genetic alteration in chordomas and may be considered as a potential theranostic marker. Here, we evaluated the tumor efficacy of the CDK4/6 inhibitor palbociclib, as well as the PLK1 inhibitor volasertib, in three chordoma patient-derived xenograft (PDX) models to validate and identify novel therapeutic approaches. Methods: From our chordoma xenograft panel, we selected three models, two of them harboring a homozygous deletion of CDKN2A/2B genes, and the last one a PBRM1 pathogenic variant (as control). For each model, we tested the palbociclib and volasertib drugs with pharmacodynamic studies together with RT-PCR and RNAseq analyses. Results: For palbociclib, we observed a significant tumor response for one of two models harboring the deletion of CDKN2A/2B (p = 0.02), and no significant tumor response in the PBRM1-mutated PDX; for volasertib, we did not observe any response in the three tested models. RT-PCR and RNAseq analyses showed a correlation between cell cycle markers and responses to palbociclib; finally, RNAseq analyses showed a natural enrichment of the oxidative phosphorylation genes (OxPhos) in the palbociclib-resistant PDX (p = 0.02). Conclusion: CDK4/6 inhibition appears as a promising strategy to manage advanced chordomas harboring a loss of CDKN2A/2B. However, further preclinical studies are strongly requested to confirm it and to understand acquired or de novo resistance to palbociclib, in the peculiar view of a targeting of the oxidative phosphorylation genes.

8.
J Photochem Photobiol B ; 232: 112477, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35644070

ABSTRACT

In the present work, the interactions of the novel kinase inhibitors BI-2536, Volasetib (BI-6727) and Ro-3280 with the pharmacological target PLK1 have been studied by fluorescence spectroscopy and molecular dynamics calculations. High Stern-Volmer constants were found in fluorescence experiments suggesting the formation of stable protein-ligand complexes. In addition, it was observed that the binding constant between BI-2536 and PLK1 increases about 100-fold in presence of the phosphopeptide Cdc25C-p that docks to the polo box domain of the protein and releases the kinase domain. All the determined binding constants are higher for the kinase inhibitors than for their competitor for the active center (ATP) being BI-2536 and Volasertib the inhibitors that showed more affinity for PLK1. Calculated binding free energies confirmed the higher affinity of PLK1 for BI-2536 and Volasertib than for ATP. The higher affinity of the inhibitors to PLK1 compared to ATP was mainly attributed to stronger van der Waals interactions. Results may help with the challenge of designing and developing new kinase inhibitors more effective in clinical cancer therapy.


Subject(s)
Cell Cycle Proteins , Protein Serine-Threonine Kinases , Adenosine Triphosphate , Cell Cycle Proteins/metabolism , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins/metabolism , Pteridines
9.
BMC Cancer ; 22(1): 569, 2022 May 21.
Article in English | MEDLINE | ID: mdl-35597904

ABSTRACT

BACKGROUND: This report summarizes three phase I studies evaluating volasertib, a polo-like kinase inhibitor, plus azacitidine in adults with myelodysplastic syndromes (MDS), chronic myelomonocytic leukemia, or acute myeloid leukemia. METHODS: Patients received intravenous volasertib in 28-day cycles (dose-escalation schedules). In Part 1 of 1230.33 (Study 1; NCT01957644), patients received 250-350 mg volasertib on day (D)1 and D15; in Part 2, patients received different schedules [A, D1: 170 mg/m2; B, D7: 170 mg/m2; C, D1 and D7: 110 mg/m2]. In 1230.35 (Study 2; NCT02201329), patients received 200-300 mg volasertib on D1 and D15. In 1230.43 (Study 3; NCT02721875), patients received 110 mg/m2 volasertib on D1 and D8. All patients in Studies 1 and 2, and approximately half of the patients in Study 3, were scheduled to receive subcutaneous azacitidine 75 mg/m2 on D1-7. RESULTS: Overall, 22 patients were treated (17 with MDS; 12 previously untreated). Across Studies 1 and 2 (n = 21), the most common drug-related adverse events were hematological (thrombocytopenia [n = 11]; neutropenia [n = 8]). All dose-limiting toxicities were grade 4 thrombocytopenia. The only treated patient in Study 3 experienced 18 adverse events following volasertib monotherapy. Studies 1 and 2 showed preliminary activity (objective response rates: 25 and 40%). CONCLUSIONS: The safety of volasertib with azacitidine in patients with MDS was consistent with other volasertib studies. All studies were terminated prematurely following the discontinuation of volasertib for non-clinical reasons by Boehringer Ingelheim; however, safety information on volasertib plus azacitidine are of interest for future studies in other diseases.


Subject(s)
Leukemia, Myeloid, Acute , Leukemia, Myelomonocytic, Chronic , Myelodysplastic Syndromes , Thrombocytopenia , Adult , Azacitidine/therapeutic use , Clinical Trials, Phase I as Topic , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myelomonocytic, Chronic/chemically induced , Leukemia, Myelomonocytic, Chronic/drug therapy , Myelodysplastic Syndromes/chemically induced , Myelodysplastic Syndromes/drug therapy , Pteridines , Thrombocytopenia/chemically induced
10.
Cancers (Basel) ; 13(20)2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34680264

ABSTRACT

New strategies that improve median survivals of only ~15-20 months for glioblastoma (GBM) with the current standard of care (SOC) which is concurrent temozolomide (TMZ) and radiation (XRT) treatment are urgently needed. Inhibition of polo-like kinase 1 (PLK1), a multifunctional cell cycle regulator, overexpressed in GBM has shown therapeutic promise but has never been tested in the context of SOC. Therefore, we examined the mechanistic and therapeutic impact of PLK1 specific inhibitor (volasertib) alone and in combination with TMZ and/or XRT on GBM cells. We quantified the effects of volasertib alone and in combination with TMZ and/or XRT on GBM cell cytotoxicity/apoptosis, mitochondrial membrane potential (MtMP), reactive oxygen species (ROS), cell cycle, stemness, DNA damage, DNA repair genes, cellular signaling and in-vivo tumor growth. Volasertib alone and in combination with TMZ and/or XRT promoted apoptotic cell death, altered MtMP, increased ROS and G2/M cell cycle arrest. Combined volasertib and TMZ treatment reduced side population (SP) indicating activity against GBM stem-like cells. Volasertib combinatorial treatment also significantly increased DNA damage and reduced cell survival by inhibition of DNA repair gene expression and modulation of ERK/MAPK, AMPK and glucocorticoid receptor signaling. Finally, as observed in-vitro, combined volasertib and TMZ treatment resulted in synergistic inhibition of tumor growth in-vivo. Together these results identify new mechanisms of action for volasertib that provide a strong rationale for further investigation of PLK1 inhibition as an adjunct to current GBM SOC therapy.

11.
J Pathol ; 255(4): 374-386, 2021 12.
Article in English | MEDLINE | ID: mdl-34370292

ABSTRACT

Calcyphosine (CAPS) was initially identified from the canine thyroid. It also exists in many types of tumor, but its expression and function in glioma remain unknown. Here we explored the clinical significance and the functional mechanisms of CAPS in glioma. We found that CAPS was highly expressed in glioma and high expression of CAPS was correlated with poor survival, in glioma patients and public databases. Cox regression analysis showed that CAPS was an independent prognostic factor for glioma patients. Knockdown of CAPS suppressed the proliferation, whereas overexpression of CAPS promoted the proliferation of glioma both in vitro and in vivo. CAPS regulated the G2/M phase transition of the cell cycle, but had no obvious effect on apoptosis. CAPS affected PLK1 phosphorylation through interaction with MYPT1. CAPS knockdown decreased p-MYPT1 at S507 and p-PLK1 at S210. Expression of MYPT1 S507 phosphomimic rescued PLK1 phosphorylation and the phenotype caused by CAPS knockdown. The PLK1 inhibitor volasertib enhanced the therapeutic effect of temozolomide in glioma. Our data suggest that CAPS promotes the proliferation of glioma by regulating the cell cycle and the PLK1 inhibitor volasertib might be a chemosensitizer of glioma. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Brain Neoplasms/pathology , Calcium-Binding Proteins/metabolism , Glioma/pathology , Adult , Aged , Animals , Apoptosis/drug effects , Apoptosis/physiology , Brain Neoplasms/metabolism , Cell Cycle/drug effects , Cell Cycle/physiology , Cell Proliferation/drug effects , Cell Proliferation/physiology , Female , Glioma/metabolism , Humans , Male , Mice , Middle Aged , Pteridines/pharmacology , Xenograft Model Antitumor Assays
12.
13.
FASEB J ; 35(7): e21741, 2021 07.
Article in English | MEDLINE | ID: mdl-34143546

ABSTRACT

Polo-like kinase 1 (PLK1) is an important cell cycle kinase and an attractive target for anticancer treatments. An ATP-competitive small molecular PLK1 inhibitor, volasertib, has reached phase III in clinical trials in patients with refractory acute myeloid leukemia as a combination treatment with cytarabine. However, severe side effects limited its use. The origin of the side effects is unclear and might be due to insufficient specificity of the drug. Thus, identifying potential off-targets to volasertib is important for future clinical trials and for the development of more specific drugs. In this study, we used thermal proteome profiling (TPP) to identify proteome-wide targets of volasertib. Apart from PLK1 and proteins regulated by PLK1, we identified about 200 potential volasertib off-targets. Comparison of this result with the mass-spectrometry analysis of volasertib-treated cells showed that phosphatidylinositol phosphate and prostaglandin metabolism pathways are affected by volasertib. We confirmed that PIP4K2A and ZADH2-marker proteins for these pathways-are, indeed, stabilized by volasertib. PIP4K2A, however, was not affected by another PLK1 inhibitor onvansertib, suggesting that PIP4K2A is a true off-target of volasertib. Inhibition of these proteins is known to impact both the immune response and fatty acid metabolism and could explain some of the side effects seen in volasertib-treated patients.


Subject(s)
Antigens, Surface/metabolism , Cell Cycle Proteins/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Pteridines/pharmacology , Cytarabine/pharmacology , Fatty Acids/metabolism , HL-60 Cells , Humans , Immunity/drug effects , Jurkat Cells , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Piperazines/pharmacology , Proteome/metabolism , Pyrazoles/pharmacology , Quinazolines/pharmacology , Polo-Like Kinase 1
14.
Int J Hematol ; 113(1): 92-99, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32951163

ABSTRACT

Polo-like kinase 1 (PLK1) regulates mitotic checkpoints and cell division. PLK1 overexpression is reported in numerous cancers, including acute myeloid leukemia (AML), and is associated with poor prognosis. Volasertib is a selective, potent cell-cycle kinase inhibitor that targets PLK to induce mitotic arrest and apoptosis. This phase 1 trial investigated the maximum tolerated dose (MTD), safety, pharmacokinetics, and anti-leukemic activity of volasertib in combination with decitabine in AML patients aged ≥ 65 years. Thirteen patients were treated with escalating volasertib doses (3 + 3 design; 300 mg, 350 mg, and 400 mg) plus standard-dose decitabine. Dose-limiting toxicity was reported in one patient in cycle 1; the MTD of volasertib in combination with decitabine was determined as 400 mg. The most common treatment-emergent adverse events were febrile neutropenia, pneumonia, and decreased appetite. Objective response rate was 23%. The combination was well tolerated, and the adverse event profile was in line with previous findings.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cell Cycle Proteins , Decitabine/administration & dosage , Gene Expression , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Protein Serine-Threonine Kinases , Proto-Oncogene Proteins , Pteridines/administration & dosage , Aged , Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/physiology , Decitabine/adverse effects , Decitabine/pharmacokinetics , Dose-Response Relationship, Drug , Febrile Neutropenia/chemically induced , Feeding and Eating Disorders/chemically induced , Female , Humans , Leukemia, Myeloid, Acute/pathology , Male , Molecular Targeted Therapy , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/physiology , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/physiology , Pteridines/adverse effects , Pteridines/pharmacokinetics , Treatment Outcome , Polo-Like Kinase 1
15.
Cancer Sci ; 112(2): 803-814, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33306266

ABSTRACT

Polo-like kinases (PLKs) are potent regulators of cell proliferation and cell survival. Polo-like kinases are potential targets in the treatment of anaplastic thyroid cancer (ATC), a rare but deadly disease. The therapeutic effects of volasertib, a PLK inhibitor, was evaluated for the treatment of ATC either alone or in combination with sorafenib. Volasertib decreased cell viability in three ATC cell lines (8505C, 8305C, and KAT18) in a dose-dependent manner. Volasertib caused ATC cells to accumulate in G2 /M phase, activated caspase-3 activity, and induced apoptosis. Combination therapy using volasertib and sorafenib in ATC cells showed mostly synergistic effects. In vivo studies revealed that combination therapy of volasertib and sorafenib was effective in the treatment of 8505C xenografts. Single-agent volasertib treatment was sufficient to retard 8305C tumor growth. No substantial morbidity was observed in animals that received either single-agent or combination treatment. These preclinical findings suggest that volasertib could be an effective drug in treating ATC.


Subject(s)
Antineoplastic Agents/pharmacology , Pteridines/pharmacology , Thyroid Carcinoma, Anaplastic/pathology , Thyroid Neoplasms/pathology , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Humans , Mice , Protein Serine-Threonine Kinases/antagonists & inhibitors , Xenograft Model Antitumor Assays
16.
Clin Ther ; 42(11): 2214-2224, 2020 11.
Article in English | MEDLINE | ID: mdl-33139055

ABSTRACT

PURPOSE: This drug-drug interaction study determined whether the metabolism and distribution of the Polo-like kinase 1 inhibitor, volasertib, is affected by co-administration of the P-glycoprotein and cytochrome P-450 3A4 inhibitor, itraconazole. METHODS: This was an uncontrolled, open-label, fixed-sequence trial of two 21-day treatment cycles in patients with various solid tumors. In cycle 1 (test), eligible patients were administered volasertib (day 1) plus itraconazole (days -3 to 15). In cycle 2 (reference), patients received volasertib monotherapy. The primary end point was the influence of co-administration of itraconazole on the pharmacokinetic profile (AUC0-tz; Cmax) of volasertib and its main metabolite, CD 10899, compared with that of volasertib monotherapy. Other end points included tolerability and preliminary therapeutic efficacy. FINDINGS: Concurrent administration of itraconazole resulted in a slight reduction in the AUC0-tz (geometric mean ratio, 93.6%; 90% CI, 82.1%-106.8%) and a 20% reduction in Cmax (geometric mean ratio, 79.4%; 90% CI, 64.9%-97.1%) of volasertib compared with monotherapy. Of note, concurrent administration of itraconazole + volasertib had no effect on the AUC0-∞ of volasertib. More patients reported at least one drug-related adverse event in cycle 1 than in cycle 2 (75% vs 71%). The most commonly reported drug-related adverse events (cycles 1 and 2) were thrombocytopenia (68% and 33%, respectively), leukopenia (50% and 46%), and anemia (36% and 33%). No objective responses were observed. Stable disease was observed in 25 of 28 patients (89%). IMPLICATIONS: While there was no clear evidence of a pharmacokinetic interaction between volasertib and itraconazole, co-administration reduced the tolerability of volasertib. Clinicaltrials.gov identifier: NCT01772563.


Subject(s)
Antineoplastic Agents/administration & dosage , Neoplasms/drug therapy , Adult , Aged , Antineoplastic Agents/therapeutic use , Cell Cycle Proteins/antagonists & inhibitors , Drug Interactions , Female , Humans , Itraconazole/administration & dosage , Itraconazole/pharmacology , Male , Middle Aged , Protein Kinase Inhibitors/therapeutic use , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Pteridines/administration & dosage , Polo-Like Kinase 1
17.
Cancer Lett ; 491: 50-59, 2020 10 28.
Article in English | MEDLINE | ID: mdl-32735909

ABSTRACT

The inhibition of bromo- and extraterminal domains (BET) has shown an anti-proliferative effect in triple negative breast cancer (TNBC). In this article we explore mechanisms of resistance to BET inhibitors (BETi) in TNBC, with the aim of identifying novel ways to overcome such resistance. Two cellular models of acquired resistance to the BET inhibitor JQ1 were generated using a pulsed treatment strategy. MTT, colony formation, and cytometry assays revealed that BETi-resistant cells were particularly sensitive to PLK1 inhibition. Targeting of the latter reduced cell proliferation, especially in resistant cultures. Quantitative PCR analysis of a panel of mitotic kinases uncovered an increased expression of AURKA, TTK, and PLK1, confirmed by Western blot. Only pharmacological inhibition of PLK1 showed anti-proliferative activity on resistant cells, provoking G2/M arrest, increasing expression levels of cyclin B, pH3 and phosphorylation of Bcl-2 proteins, changes that were accompanied by induction of caspase-dependent apoptosis. JQ1-resistant cells orthotopically xenografted into the mammary fat pad of mice led to tumours that retained JQ1-resistance. Administration of the PLK1 inhibitor volasertib resulted in tumour regression. These findings open avenues to explore the future use of PLK1 inhibitors in the clinical setting of BETi-resistant patients.


Subject(s)
Azepines/pharmacology , Cell Cycle Proteins/antagonists & inhibitors , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Triazoles/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Animals , Cell Line, Tumor , Drug Resistance, Neoplasm , Female , G2 Phase Cell Cycle Checkpoints/drug effects , Humans , Mice , Mice, Inbred BALB C , Pteridines/pharmacology , Triple Negative Breast Neoplasms/pathology , Xenograft Model Antitumor Assays , Polo-Like Kinase 1
19.
Mol Ther Oncolytics ; 18: 215-225, 2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32728610

ABSTRACT

Therapeutic targeting of advanced or metastatic non-small-cell lung cancer (NSCLC) represents a major goal of clinical treatment. Polo-like kinase 1 (PLK1) is an essential mitotic kinase in cell cycle progression and is associated with oncogenesis in a large spectrum of cancer types, including NSCLC. Volasertib (BI 6727) is a potent, selective, PLK1 inhibitor that is currently under phase 2 clinical trials with modest antitumor activity against solid tumors. As the combination of volasertib with pemetrexed does not improve efficacy for NSCLC treatment, it is crucial to identify compounds that could enhance efficacy with volasertib. Immunomodulatory drugs (IMiDs) bind to E3 ligase CRBN and repurposes it to ubiquitinate other proteins as neo-substrates, representing an effective treatment for hematologic malignancies. In this study, by screening IMiDs, we found that a novel CRBN modulator, CC-885, can synergistically inhibit NSCLC with volasertib both in vitro and in vivo. This synergistic effect overcomes volasertib resistance caused by PLK1 mutations and is compromised in CRBN-or p97-depleted cells. Mechanistically, CC-885 selectively promotes CRBN- and p97-dependent PLK1 ubiquitination and degradation, thereby enhancing the sensitivity of NSCLC to volasertib. In conclusion, our findings reveal that PLK1 is a neo-substrate of CUL4-CRBN induced by CC-885 and represent a combinational approach for treating NSCLC.

20.
Tumour Biol ; 42(4): 1010428320914475, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32252611

ABSTRACT

Hepatocellular carcinoma is a major cause of cancer mortality worldwide. The outcome of hepatocellular carcinoma depends mainly on its early diagnosis. To date, the performance of traditional biomarkers is unsatisfactory. Polo-like kinase 1 is a serine/threonine kinase that plays essential roles in cell cycle progression and deoxyribonucleic acid damage. Moreover, polo-like kinase 1 knockdown decreases the survival of hepatocellular carcinoma cells; therefore, polo-like kinase 1 is an attractive target for anticancer treatments. Nobiletin, a natural polymethoxy flavonoid, exhibits a potential antiproliferative effect against a wide variety of cancers. This study targets to identify a reliable diagnostic biomarker for hepatocellular carcinoma and provide a potential therapeutic target for its treatment. Polo-like kinase 1 levels were analyzed in 44 hepatocellular carcinoma patients, 33 non-hepatocellular carcinoma liver cirrhosis patients and 15 healthy controls using the enzyme-linked immunosorbent assay method. Receiver operating characteristics curve analysis was used to establish a predictive model for polo-like kinase 1 relative to α-fetoprotein in hepatocellular carcinoma diagnosis. Furthermore, in the in vitro study, gene expressions were assessed by quantitative polymerase chain reaction in two human hepatocellular carcinoma cell lines after treatment with doxorubicin and polo-like kinase 1 inhibitor volasertib (Vola) either alone or in combination with nobiletin. Cell viability was also determined using the crystal violet assay.: Serum polo-like kinase 1 levels in hepatocellular carcinoma patients were significantly higher than liver cirrhosis and control groups (p < 0.0001). Polo-like kinase 1 showed a reasonable sensitivity, specificity, positive predictive value, and negative predictive value in hepatocellular carcinoma diagnosis. Moreover, nobiletin improved inhibition of cell growth induced by Vola and doxorubicin. Regarding reverse transcription polymerase chain reaction results, nobiletin suppressed expressions of polo-like kinase 1 and proliferating cell nuclear antigen and elevated expressions of P53, poly (ADPribose) polymerase 1, and caspase-3. Nobiletin/doxorubicin and nobiletin/Vola showed a significant increase in caspase-3 activity indicating cell apoptosis. Polo-like kinase 1 may be a potential biomarker for hepatocellular carcinoma diagnosis and follow-up during treatment with chemotherapies. In addition, nobiletin synergistically potentiates the doxorubicin and Vola-mediated anticancer effect that may be attributed partly to suppression of polo-like kinase 1 and proliferating cell nuclear antigen expression and enhancement of chemotherapy-induced apoptosis.


Subject(s)
Biomarkers, Tumor/metabolism , Carcinoma, Hepatocellular/pathology , Cell Cycle Proteins/metabolism , Liver Neoplasms/pathology , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis/drug effects , Biomarkers, Tumor/genetics , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Caspase 3/metabolism , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/genetics , Cell Line, Tumor , Doxorubicin/pharmacology , Flavones/pharmacology , Hep G2 Cells , Humans , Liver Cirrhosis/pathology , Liver Neoplasms/diagnosis , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Proliferating Cell Nuclear Antigen/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/genetics , Pteridines/pharmacology , Polo-Like Kinase 1
SELECTION OF CITATIONS
SEARCH DETAIL