Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 307
Filter
1.
Bull Exp Biol Med ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39093469

ABSTRACT

We studied changes of pulmonary microhemodynamics when modeling pulmonary artery thromboembolism on perfused isolated rabbit lungs after pretreatment with ranolazine and ivabradine. The increase in pulmonary artery pressure, pulmonary vascular resistance, and pre- and postcapillary resistance was less pronounced than in control animals, but was close to that in case of pulmonary thromboembolism after pretreatment with voltage-gated Na+ channel blockers lidocaine and ropivacaine. The increase of capillary filtration coefficient inversely correlated with values of capillary hydrostatic pressure. Thus, ranolazine and ivabradine exhibit the properties of voltage-gated Na+ channel blockers mainly in smooth muscles of pulmonary arterial vessels and promote the decrease in endothelial permeability.

2.
Int J Biol Macromol ; : 134219, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39097041

ABSTRACT

Cholesterol is a major component of plasma membranes and plays a significant role in actively regulating the functioning of several membrane proteins in humans. In this study, we focus on the role of cholesterol depletion on the voltage-gated sodium channel Nav1.7, which is primarily expressed in the peripheral sensory neurons and linked to various chronic inherited pain syndromes. Coarse-grained molecular dynamics simulations revealed key dynamic changes of Nav1.7 upon membrane cholesterol depletion: A loss of rigidity in the structural motifs linked to activation and fast-inactivation is observed, suggesting an easier transition of the channel between different gating states. In-vitro whole-cell patch clamp experiments on HEK293t cells expressing Nav1.7 validated these predictions at the functional level: Hyperpolarizing shifts in the voltage-dependence of activation and fast-inactivation were observed along with an acceleration of the time to peak and onset kinetics of fast inactivation. These results underline the critical role of membrane composition, and of cholesterol in particular, in influencing Nav1.7 gating characteristics. Furthermore, our results also point to cholesterol-driven changes of the geometry of drug-binding regions, hinting to a key role of the membrane environment in the regulation of drug effects.

3.
Circ Genom Precis Med ; : e004569, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953211

ABSTRACT

BACKGROUND: Brugada syndrome is an inheritable arrhythmia condition that is associated with rare, loss-of-function variants in SCN5A. Interpreting the pathogenicity of SCN5A missense variants is challenging, and ≈79% of SCN5A missense variants in ClinVar are currently classified as variants of uncertain significance. Automated patch clamp technology enables high-throughput functional studies of ion channel variants and can provide evidence for variant reclassification. METHODS: An in vitro SCN5A-Brugada syndrome automated patch clamp assay was generated and independently studied at Vanderbilt University Medical Center and Victor Chang Cardiac Research Institute. The assay was calibrated according to ClinGen Sequence Variant Interpretation recommendations using high-confidence variant controls (n=49). Normal and abnormal ranges of function were established based on the distribution of benign variant assay results. Odds of pathogenicity values were derived from the experimental results according to ClinGen Sequence Variant Interpretation recommendations. The calibrated assay was then used to study SCN5A variants of uncertain significance observed in 4 families with Brugada syndrome and other arrhythmia phenotypes associated with SCN5A loss-of-function. RESULTS: Variant channel parameters generated independently at the 2 research sites showed strong correlations, including peak INa density (R2=0.86). The assay accurately distinguished benign controls (24/25 concordant variants) from pathogenic controls (23/24 concordant variants). Odds of pathogenicity values yielded 0.042 for normal function and 24.0 for abnormal function, corresponding to strong evidence for both American College of Medical Genetics and Genomics/Association for Molecular Pathology benign and pathogenic functional criteria (BS3 and PS3, respectively). Application of the assay to 4 clinical SCN5A variants of uncertain significance revealed loss-of-function for 3/4 variants, enabling reclassification to likely pathogenic. CONCLUSIONS: This validated high-throughput assay provides clinical-grade functional evidence to aid the classification of current and future SCN5A-Brugada syndrome variants of uncertain significance.

4.
Front Pharmacol ; 15: 1354737, 2024.
Article in English | MEDLINE | ID: mdl-38989141

ABSTRACT

Eugenol (EUG) is a bioactive monoterpenoid used as an analgesic, preservative, and flavoring agent. Our new data show EUG as a voltage-gated Na+ channel (VGSC) inhibitor, comparable but not identical to lidocaine (LID). EUG inhibits both total and only TTX-R voltage-activated Na+ currents (INa) recorded from VGSCs naturally expressed on dorsal root ganglion sensory neurons in rats. Inhibition is quick, fully reversible, and dose-dependent. Our biophysical and pharmacological analyses showed that EUG and LID inhibit VGSCs with different mechanisms. EUG inhibits VGSCs with a dose-response relationship characterized by a Hill coefficient of 2, while this parameter for the inhibition by LID is 1. Furthermore, in a different way from LID, EUG modified the voltage dependence of both the VGSC activation and inactivation processes and the recovery from fast inactivated states and the entry to slow inactivated states. In addition, we suggest that EUG, but not LID, interacts with VGSC pre-open-closed states, according to our data.

5.
Drug Deliv Transl Res ; 14(8): 2112-2145, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38861139

ABSTRACT

Pain, a complex and debilitating condition affecting millions globally, is a significant concern, especially in the context of post-operative recovery. This comprehensive review explores the complexity of pain and its global impact, emphasizing the modulation of voltage-gated sodium channels (VGSC or NaV channels) as a promising avenue for pain management with the aim of reducing reliance on opioids. The article delves into the role of specific NaV isoforms, particularly NaV 1.7, NaV 1.8, and NaV 1.9, in pain process and discusses the development of sodium channel blockers to target these isoforms precisely. Traditional local anesthetics and selective NaV isoform inhibitors, despite showing varying efficacy in pain management, face challenges in systemic distribution and potential side effects. The review highlights the potential of nanomedicine in improving the delivery of local anesthetics, toxins and selective NaV isoform inhibitors for a targeted and sustained release at the site of pain. This innovative strategy seeks to improve drug bioavailability, minimize systemic exposure, and optimize therapeutic outcomes, holding significant promise for secure pain management and enhancing the quality of life for individuals recovering from surgical procedures or suffering from chronic pain.


Subject(s)
Nanomedicine , Pain Management , Voltage-Gated Sodium Channel Blockers , Humans , Voltage-Gated Sodium Channel Blockers/administration & dosage , Voltage-Gated Sodium Channel Blockers/pharmacokinetics , Voltage-Gated Sodium Channel Blockers/therapeutic use , Pain Management/methods , Animals , Voltage-Gated Sodium Channels/metabolism , Anesthetics, Local/administration & dosage , Anesthetics, Local/therapeutic use , Anesthetics, Local/pharmacokinetics , Pain/drug therapy
6.
Toxins (Basel) ; 16(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38922152

ABSTRACT

Studies on the interaction sites of peptide toxins and ion channels typically involve site-directed mutations in toxins. However, natural mutant toxins exist among them, offering insights into how the evolutionary process has conserved crucial sequences for activities and molecular target selection. In this study, we present a comparative investigation using electrophysiological approaches and computational analysis between two alpha toxins from evolutionarily close scorpion species of the genus Tityus, namely, Tst3 and Ts3 from T. stigmurus and T. serrulatus, respectively. These toxins exhibit three natural substitutions near the C-terminal region, which is directly involved in the interaction between alpha toxins and Nav channels. Additionally, we characterized the activity of the Tst3 toxin on Nav1.1-Nav1.7 channels. The three natural changes between the toxins did not alter sensitivity to Nav1.4, maintaining similar intensities regarding their ability to alter opening probabilities, delay fast inactivation, and induce persistent currents. Computational analysis demonstrated a preference for the down conformation of VSD4 and a shift in the conformational equilibrium towards this state. This illustrates that the sequence of these toxins retained the necessary information, even with alterations in the interaction site region. Through electrophysiological and computational analyses, screening of the Tst3 toxin on sodium isoform revealed its classification as a classic α-NaTx with a broad spectrum of activity. It effectively delays fast inactivation across all tested isoforms. Structural analysis of molecular energetics at the interface of the VSD4-Tst3 complex further confirmed this effect.


Subject(s)
Scorpion Venoms , Scorpions , Scorpion Venoms/chemistry , Scorpion Venoms/genetics , Animals , Brazil , Humans , Xenopus laevis , Ion Channel Gating/drug effects , Amino Acid Sequence , Animals, Poisonous
7.
J Mol Cell Cardiol ; 194: 32-45, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38942073

ABSTRACT

Cardiac arrhythmia treatment is a clinical challenge necessitating safer and more effective therapies. Recent studies have highlighted the role of the perinexus, an intercalated disc nanodomain enriched in voltage-gated sodium channels including both Nav1.5 and ß1 subunits, adjacent to gap junctions. These findings offer insights into action potential conduction in the heart. A 19-amino acid SCN1B (ß1/ß1B) mimetic peptide, ßadp1, disrupts VGSC beta subunit-mediated adhesion in cardiac perinexii, inducing arrhythmogenic changes. We aimed to explore ßadp1's mechanism and develop novel SCN1B mimetic peptides affecting ß1-mediated adhesion. Using patch clamp assays in neonatal rat cardiomyocytes and electric cell substrate impedance sensing (ECIS) in ß1-expressing cells, we observed ßadp1 maintained inhibitory effects for up to 5 h. A shorter peptide (LQLEED) based on the carboxyl-terminus of ßadp1 mimicked this inhibitory effect, while dimeric peptides containing repeated LQLEED sequences paradoxically promoted intercellular adhesion over longer time courses. Moreover, we found a link between these peptides and ß1-regulated intramembrane proteolysis (RIP) - a signaling pathway effecting gene transcription including that of VGSC subunits. ßadp1 increased RIP continuously over 48 h, while dimeric agonists acutely boosted RIP for up to 6 h. In the presence of DAPT, an RIP inhibitor, ßadp1's effects on ECIS-measured intercellular adhesion was reduced, suggesting a relationship between RIP and the peptide's inhibitory action. In conclusion, novel SCN1B (ß1/ß1B) mimetic peptides are reported with the potential to modulate intercellular VGSC ß1-mediated adhesion, potentially through ß1 RIP. These findings suggest a path towards the development of anti-arrhythmic drugs targeting the perinexus.

8.
Pharmacol Rev ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38914468

ABSTRACT

Voltage-gated sodium (NaV) channels are intimately involved in the generation and transmission of action potentials, and dysfunction of these channels may contribute to nervous system diseases such as epilepsy, neuropathic pain, psychosis, autism and cardiac arrhythmia. Many venom peptides selectively act on NaV channels. These include conotoxins, which are neurotoxins secreted by cone snails for prey capture or self-defense, but which are also valuable pharmacological tools for the identification and/or treatment of human diseases. Typically, conotoxins contain two or three disulfide bonds and these internal cross-braces contribute to conotoxins having compact, well-defined structures and high stability. Of the conotoxins containing three disulfide bonds some selectively target mammalian NaV channels and can block, stimulate, or modulate these channels. Such conotoxins have great potential to serve as pharmacological tools for studying the functions and characteristics of NaV channels or as drug leads for neurological diseases related to NaV channels. Accordingly, discovering or designing conotoxins targeting NaV channels with high potency and selectivity is important. The amino acid sequences, disulfide bond connectivity, and three-dimensional structures are key factors that affect the biological activity of conotoxins, and targeted synthetic modifications of conotoxins can greatly improve their activity and selectivity. This review examines NaV channel-targeted conotoxins, focusing on their structures, activities and designed modifications, with a view towards expanding their applications. Significance Statement NaV channels are crucial in various neurological diseases. Some conotoxins selectively target NaV channels, causing either blockade or activation, thus enabling their use as pharmacological tools for studying the channels' characteristics and functions. Conotoxins also have promising potential to be developed as drug leads. The disulfide bonds in these peptides are important for stabilizing their structures, thus leading to enhanced specificity and potency. Together, conotoxins targeting NaV channels have both immediate research value and promising future application prospects.

9.
Proc Natl Acad Sci U S A ; 121(22): e2401591121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38787877

ABSTRACT

The sodium (Na+) leak channel (NALCN) is a member of the four-domain voltage-gated cation channel family that includes the prototypical voltage-gated sodium and calcium channels (NaVs and CaVs, respectively). Unlike NaVs and CaVs, which have four lateral fenestrations that serve as routes for lipophilic compounds to enter the central cavity to modulate channel function, NALCN has bulky residues (W311, L588, M1145, and Y1436) that block these openings. Structural data suggest that occluded fenestrations underlie the pharmacological resistance of NALCN, but functional evidence is lacking. To test this hypothesis, we unplugged the fenestrations of NALCN by substituting the four aforementioned residues with alanine (AAAA) and compared the effects of NaV, CaV, and NALCN blockers on both wild-type (WT) and AAAA channels. Most compounds behaved in a similar manner on both channels, but phenytoin and 2-aminoethoxydiphenyl borate (2-APB) elicited additional, distinct responses on AAAA channels. Further experiments using single alanine mutants revealed that phenytoin and 2-APB enter the inner cavity through distinct fenestrations, implying structural specificity to their modes of access. Using a combination of computational and functional approaches, we identified amino acid residues critical for 2-APB activity, supporting the existence of drug binding site(s) within the pore region. Intrigued by the activity of 2-APB and its analogues, we tested compounds containing the diphenylmethane/amine moiety on WT channels. We identified clinically used drugs that exhibited diverse activity, thus expanding the pharmacological toolbox for NALCN. While the low potencies of active compounds reiterate the pharmacological resistance of NALCN, our findings lay the foundation for rational drug design to develop NALCN modulators with refined properties.


Subject(s)
Phenytoin , Binding Sites , Humans , Phenytoin/metabolism , Phenytoin/pharmacology , Boron Compounds/chemistry , Boron Compounds/pharmacology , Boron Compounds/metabolism , Ion Channels/metabolism , Ion Channels/genetics , HEK293 Cells , Animals , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/chemistry , Membrane Proteins
10.
J Physiol ; 602(14): 3505-3518, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38743485

ABSTRACT

NaV1.7 plays a crucial role in inducing and conducting action potentials in pain-transducing sensory nociceptor fibres, suggesting that NaV1.7 blockers could be effective non-opioid analgesics. While SCN9A is expressed in both sensory and autonomic neurons, its functional role in the autonomic system remains less established. Our single neuron rt-PCR analysis revealed that 82% of sympathetic neurons isolated from guinea-pig stellate ganglia expressed NaV1.7 mRNA, with NaV1.3 being the only other tetrodotoxin-sensitive channel expressed in approximately 50% of neurons. We investigated the role of NaV1.7 in conducting action potentials in postganglionic sympathetic nerves and in the sympathetic adrenergic contractions of blood vessels using selective NaV1.7 inhibitors. Two highly selective NaV1.7 blockers, GNE8493 and PF 05089771, significantly inhibited postganglionic compound action potentials by approximately 70% (P < 0.01), with residual activity being blocked by the NaV1.3 inhibitor, ICA 121431. Electrical field stimulation (EFS) induced rapid contractions in guinea-pig isolated aorta, pulmonary arteries, and human isolated pulmonary arteries via stimulation of intrinsic nerves, which were inhibited by prazosin or the NaV1 blocker tetrodotoxin. Our results demonstrated that blocking NaV1.7 with GNE8493, PF 05089771, or ST2262 abolished or strongly inhibited sympathetic adrenergic responses in guinea-pigs and human vascular smooth muscle. These findings support the hypothesis that pharmacologically inhibiting NaV1.7 could potentially reduce sympathetic and parasympathetic function in specific vascular beds and airways. KEY POINTS: 82% of sympathetic neurons isolated from the stellate ganglion predominantly express NaV1.7 mRNA. NaV1.7 blockers inhibit action potential conduction in postganglionic sympathetic nerves. NaV1.7 blockade substantially inhibits sympathetic nerve-mediated adrenergic contractions in human and guinea-pig blood vessels. Pharmacologically blocking NaV1.7 profoundly affects sympathetic and parasympathetic responses in addition to sensory fibres, prompting exploration into the broader physiological consequences of NaV1.7 mutations on autonomic nerve activity.


Subject(s)
NAV1.7 Voltage-Gated Sodium Channel , Animals , Guinea Pigs , NAV1.7 Voltage-Gated Sodium Channel/genetics , NAV1.7 Voltage-Gated Sodium Channel/physiology , NAV1.7 Voltage-Gated Sodium Channel/metabolism , Humans , Male , Action Potentials/drug effects , Action Potentials/physiology , Sympathetic Fibers, Postganglionic/physiology , Sympathetic Fibers, Postganglionic/drug effects , Female , Arteries/physiology , Arteries/drug effects , Arteries/innervation , Sodium Channel Blockers/pharmacology , Stellate Ganglion/physiology , Sympathetic Nervous System/physiology , Sympathetic Nervous System/drug effects
11.
Mol Ecol ; 33(9): e17358, 2024 May.
Article in English | MEDLINE | ID: mdl-38625740

ABSTRACT

How do chemically defended animals resist their own toxins? This intriguing question on the concept of autotoxicity is at the heart of how species interactions evolve. In this issue of Molecular Ecology (Molecular Ecology, 2024, 33), Bodawatta and colleagues report on how Papua New Guinean birds coopted deadly neurotoxins to create lethal mantles that protect against predators and parasites. Combining chemical screening of the plumage of a diverse collection of passerine birds with genome sequencing, the researchers unlocked a deeper understanding of how some birds sequester deadly batrachotoxin (BTX) from their food without poisoning themselves. They identified that birds impervious to BTX bear amino acid substitutions in the toxin-binding site of the voltage-gated sodium channel Nav1.4, whose function is essential for proper contraction and relaxation of vertebrate muscles. Comparative genetic and molecular docking analyses show that several of the substitutions associated with insensitivity to BTX may have become prevalent among toxic birds through positive selection. Intriguingly, poison dart frogs that also co-opted BTX in their lethal mantles were found to harbour similar toxin insensitivity substitutions in their Nav1.4 channels. Taken together, this sets up a powerful model system for studying the mechanisms behind convergent molecular evolution and how it may drive biological diversity.


Subject(s)
Animals, Poisonous , Batrachotoxins , Songbirds , Animals , Batrachotoxins/genetics , Neurotoxins/toxicity , Neurotoxins/genetics , Passeriformes/genetics , Anura/genetics , NAV1.4 Voltage-Gated Sodium Channel/genetics , Amino Acid Substitution , Poison Frogs
12.
J Nat Med ; 78(3): 753-767, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38668831

ABSTRACT

Rhododendri Mollis Flos (R. mole Flos), the dried flowers of Rhododendron mole G. Don, have the ability to relieve pain, dispel wind and dampness, and dissolve blood stasis, but they are highly poisonous. The significance of this study is to explore the analgesic application potential of R. mole Flos and its representative component. According to the selected processing methods recorded in ancient literature, the analgesic activities of wine- and vinegar-processed R. mole Flos, as well as the raw product, were evaluated in a writhing test with acetic acid and a formalin-induced pain test. Subsequently, the HPLC-TOP-MS technique was utilized to investigate the changes in active components before and after processing once the variations in activities were confirmed. Based on the results, rhodojaponin VI (RJ-Vl) was chosen for further study. After processing, especially in vinegar, R. mole Flos did not only maintain the anti-nociception but also showed reduced toxicity, and the chemical composition corresponding to these effects also changed significantly. Further investigation of its representative components revealed that RJ-VI has considerable anti-nociceptive activity, particularly in inflammatory pain (0.3 mg/kg) and peripheral neuropathic pain (0.6 mg/kg). Its toxicity was about three times lower than that of rhodojaponin III, which is another representative component of R. mole Flos. Additionally, RJ-VI mildly inhibits several subtypes of voltage-gated sodium channels (IC50 > 200 µM) that are associated with pain or cardiotoxicity. In conclusion, the chemical substances and biological effects of R. mole Flos changed significantly before and after processing, and the representative component RJ-VI has the potential to be developed into an effective analgesic.


Subject(s)
Analgesics , Flowers , Plant Extracts , Rhododendron , Analgesics/pharmacology , Analgesics/chemistry , Analgesics/isolation & purification , Animals , Flowers/chemistry , Rhododendron/chemistry , Mice , Plant Extracts/chemistry , Plant Extracts/pharmacology , Male , Pain/drug therapy , Chromatography, High Pressure Liquid
13.
ACS Chem Neurosci ; 15(6): 1063-1073, 2024 03 20.
Article in English | MEDLINE | ID: mdl-38449097

ABSTRACT

Chronic pain is a growing global health problem affecting at least 10% of the world's population. However, current chronic pain treatments are inadequate. Voltage-gated sodium channels (Navs) play a pivotal role in regulating neuronal excitability and pain signal transmission and thus are main targets for nonopioid painkiller development, especially those preferentially expressed in dorsal root ganglial (DRG) neurons, such as Nav1.6, Nav1.7, and Nav1.8. In this study, we screened in virtual hits from dihydrobenzofuran and 3-hydroxyoxindole hybrid molecules against Navs via a veratridine (VTD)-based calcium imaging method. The results showed that one of the molecules, 3g, could inhibit VTD-induced neuronal activity significantly. Voltage clamp recordings demonstrated that 3g inhibited the total Na+ currents of DRG neurons in a concentration-dependent manner. Biophysical analysis revealed that 3g slowed the activation, meanwhile enhancing the inactivation of the Navs. Additionally, 3g use-dependently blocked Na+ currents. By combining with selective Nav inhibitors and a heterozygous expression system, we demonstrated that 3g preferentially inhibited the TTX-S Na+ currents, specifically the Nav1.7 current, other than the TTX-R Na+ currents. Molecular docking experiments implicated that 3g binds to a known allosteric site at the voltage-sensing domain IV(VSDIV) of Nav1.7. Finally, intrathecal injection of 3g significantly relieved mechanical pain behavior in the spared nerve injury (SNI) rat model, suggesting that 3g is a promising candidate for treating chronic pain.


Subject(s)
Chronic Pain , Indoles , Neuralgia , Rats , Animals , Molecular Docking Simulation , NAV1.8 Voltage-Gated Sodium Channel , Neuralgia/drug therapy , Neuralgia/metabolism , Ganglia, Spinal/metabolism
14.
J Neurochem ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38544375

ABSTRACT

De novo variants in the NaV1.2 voltage-gated sodium channel gene SCN2A are among the major causes of developmental and epileptic encephalopathies (DEE). Based on their biophysical impact on channel conductance and gating, SCN2A DEE variants can be classified into gain-of-function (GoF) or loss-of-function (LoF). Clinical and functional data have linked early seizure onset DEE to the GoF SCN2A variants, whereas late seizure onset DEE is associated with the loss of SCN2A function. This study aims to assess the impact of GoF and LoF SCN2A variants on cultured neuronal network activity and explore their modulation by selected antiseizure medications (ASM). To this end, primary cortical cultures were generated from two knock-in mouse lines carrying variants corresponding to human GoF SCN2A p.R1882Q and LoF p.R853Q DEE variant. In vitro neuronal network activity and responses to ASM were analyzed using multielectrode array (MEA) between 2 and 4 weeks in culture. The SCN2A p.R1882Q neuronal cultures showed significantly greater mean firing and burst firing. Their network synchronicity was also higher. In contrast, the SCN2A p.R853Q cultures showed lower mean firing rate, and burst firing events were less frequent. The network synchronicity was also lower. Phenytoin and levetiracetam reduced the excitability of GoF cultures, while retigabine showed differential and potentially beneficial effects on cultures with both GoF and LoF variants. We conclude that in vitro neuronal networks harboring SCN2A GoF or LoF DEE variants present with distinctive phenotypes and responses to ASM.

15.
Channels (Austin) ; 18(1): 2325032, 2024 12.
Article in English | MEDLINE | ID: mdl-38445990

ABSTRACT

Ion channels play key roles in human physiology and are important targets in drug discovery. The atomic-scale structures of ion channels provide invaluable insights into a fundamental understanding of the molecular mechanisms of channel gating and modulation. Recent breakthroughs in deep learning-based computational methods, such as AlphaFold, RoseTTAFold, and ESMFold have transformed research in protein structure prediction and design. We review the application of AlphaFold, RoseTTAFold, and ESMFold to structural modeling of ion channels using representative voltage-gated ion channels, including human voltage-gated sodium (NaV) channel - NaV1.8, human voltage-gated calcium (CaV) channel - CaV1.1, and human voltage-gated potassium (KV) channel - KV1.3. We compared AlphaFold, RoseTTAFold, and ESMFold structural models of NaV1.8, CaV1.1, and KV1.3 with corresponding cryo-EM structures to assess details of their similarities and differences. Our findings shed light on the strengths and limitations of the current state-of-the-art deep learning-based computational methods for modeling ion channel structures, offering valuable insights to guide their future applications for ion channel research.


Subject(s)
Calcium , Ion Channels , Humans , Potassium
16.
Toxins (Basel) ; 16(3)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38535783

ABSTRACT

Ciguatoxins (CTXs) are neurotoxins responsible for ciguatera poisoning (CP), which affects more than 50,000 people worldwide annually. The development of analytical methods to prevent CP is a pressing global issue, and the N2a assay is one of the most promising methods for detecting CTXs. CTXs are highly toxic, and an action level of 0.01 µg CTX1B equivalent (eq)/kg in fish has been proposed. It is desirable to further increase the detection sensitivity of CTXs in the N2a assay to detect such low concentrations reliably. The opening of voltage-gated sodium channels (NaV channels) and blocking of voltage-gated potassium channels (KV channels) are thought to be involved in the toxicity of CTXs. Therefore, in this study, we developed an assay that could detect CTXs with higher sensitivity than conventional N2a assays, using KV channel inhibitors as sensitizing reagents for N2a cells. The addition of the KV channel inhibitors 4-aminopyridine and tetraethylammonium chloride to N2a cells, in addition to the traditional sensitizing reagents ouabain and veratridine, increased the sensitivity of N2a cells to CTXs by up to approximately 4-fold. This is also the first study to demonstrate the influence of KV channels on the toxicity of CTXs in a cell-based assay.


Subject(s)
Ciguatera Poisoning , Ciguatoxins , Neuroblastoma , Potassium Channels, Voltage-Gated , Humans , Animals , Aminopyridines
17.
Toxins (Basel) ; 16(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38535792

ABSTRACT

Five peptides were isolated from the venom of the Mexican scorpion Centruroides bonito by chromatographic procedures (molecular weight sieving, ion exchange columns, and HPLC) and were denoted Cbo1 to Cbo5. The first four peptides contain 66 amino acid residues and the last one contains 65 amino acids, stabilized by four disulfide bonds, with a molecular weight spanning from about 7.5 to 7.8 kDa. Four of them are toxic to mice, and their function on human Na+ channels expressed in HEK and CHO cells was verified. One of them (Cbo5) did not show any physiological effects. The ones toxic to mice showed that they are modifiers of the gating mechanism of the channels and belong to the beta type scorpion toxin (ß-ScTx), affecting mainly the Nav1.6 channels. A phylogenetic tree analysis of their sequences confirmed the high degree of amino acid similarities with other known bona fide ß-ScTx. The envenomation caused by this venom in mice is treated by using commercially horse antivenom available in Mexico. The potential neutralization of the toxic components was evaluated by means of surface plasmon resonance using four antibody fragments (10FG2, HV, LR, and 11F) which have been developed by our group. These antitoxins are antibody fragments of single-chain antibody type, expressed in E. coli and capable of recognizing Cbo1 to Cbo4 toxins to various degrees.


Subject(s)
Animals, Poisonous , Perciformes , Venoms , Humans , Cricetinae , Animals , Horses , Mice , Scorpions , Cricetulus , Escherichia coli , Phylogeny , Antivenins , Amino Acids , Immunoglobulin Fragments , Peptides
18.
Anaesthesiologie ; 73(3): 204-220, 2024 03.
Article in German | MEDLINE | ID: mdl-38349536

ABSTRACT

The development of local anesthetics revolutionized the performance of painful interventions. Local anesthetics have an effect on voltage-gated sodium channels in nerve fibers and modulate the conduction of impulses. With respect to the chemical structure, local anesthetics can be divided into amide and ester types. The structural differences of local anesthetics have an influence on the duration of action, the degradation pathways and specific side effects. Severe adverse events include cardiotoxicity and neurotoxicity. In addition to basic measures, such as the monitoring and securing of vital parameters, lipid infusion represents a treatment option in cases of intoxication. The recent developments of local anesthetics are particularly concerned with the reduction of toxicity and prolonging the duration of action.


Subject(s)
Amides , Anesthetics, Local , Humans , Anesthetics, Local/adverse effects , Amides/pharmacology , Pain , Nerve Fibers
19.
Int J Mol Sci ; 25(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38339022

ABSTRACT

Mutations of the SCN1A gene, which encodes the voltage-dependent Na+ channel's α subunit, are associated with diverse epileptic syndromes ranging in severity, even intra-family, from febrile seizures to epileptic encephalopathy. The underlying cause of this variability is unknown, suggesting the involvement of additional factors. The aim of our study was to describe the properties of mutated channels and investigate genetic causes for clinical syndromes' variability in the family of five SCN1A gene p.Arg1596Cys mutation carriers. The analysis of additional genetic factors influencing SCN1A-associated phenotypes was conducted through exome sequencing (WES). To assess the impact of mutations, we used patch clamp analysis of mutated channels expressed in HEK cells and in vivo neural excitability studies (NESs). In cells expressing the mutant channel, sodium currents were reduced. NESs indicated increased excitability of peripheral motor neurons in mutation carriers. WES showed the absence of non-SCA1 pathogenic variants that could be causative of disease in the family. Variants of uncertain significance in three genes, as potential modifiers of the most severe phenotype, were identified. The p.Arg1596Cys substitution inhibits channel function, affecting steady-state inactivation kinetics. Its clinical manifestations involve not only epileptic symptoms but also increased excitability of peripheral motor fibers. The role of Nav1.1 in excitatory neurons cannot be ruled out as a significant factor of the clinical phenotype.


Subject(s)
Epilepsy, Generalized , Epilepsy , NAV1.1 Voltage-Gated Sodium Channel , Seizures, Febrile , Humans , Epilepsy/pathology , Epilepsy, Generalized/genetics , Mutation , Phenotype , NAV1.1 Voltage-Gated Sodium Channel/genetics , NAV1.1 Voltage-Gated Sodium Channel/metabolism
20.
Article in English | MEDLINE | ID: mdl-38385495

ABSTRACT

Triple-negative Breast Cancer (TNBC), the most aggressive breast cancer subtype, is characterized by the non-appearance of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). Clinically, TNBC is marked by its low survival rate, poor therapeutic outcomes, high aggressiveness, and lack of targeted therapies. Over the past few decades, many clinical trials have been ongoing for targeted therapies in TNBC. Although some classes, such as Poly (ADP Ribose) Polymerase (PARP) inhibitors and immunotherapies, have shown positive therapeutic outcomes, however, clinical effects are not much satisfiable. Moreover, the development of drug resistance is the major pattern observed in many targeted monotherapies. The heterogeneity of TNBC might be the cause for limited clinical benefits. Hence,, there is a need for the potential identification of new therapeutic targets to address the above limitations. In this context, some novel targets that can address the above-mentioned concerns are emerging in the era of TNBC therapy, which include Hypoxia Inducible Factor (HIF-1α), Matrix Metalloproteinase 9 (MMP-9), Tumour Necrosis Factor-α (TNF-α), ß-Adrenergic Receptor (ß-AR), Voltage Gated Sodium Channels (VGSCs), and Cell Cycle Regulators. Currently, we summarize the ongoing clinical trials and discuss the novel therapeutic targets in the management of TNBC.

SELECTION OF CITATIONS
SEARCH DETAIL