Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
J Biol Chem ; 300(8): 107508, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38944116

ABSTRACT

In the Neurospora circadian system, the White Collar Complex (WCC) formed by WC-1 and WC-2 drives expression of the frequency (frq) gene whose product FRQ feedbacks to inhibit transcriptional activity of WCC. Phosphorylation of WCC has been extensively studied, but the extent and significance of other post-translational modifications (PTM) have been poorly studied. To this end, we used mass-spectrometry to study alkylation sites on WCC, resulting in discovery of nine acetylation sites. Mutagenesis analysis showed most of the acetylation events individually do not play important roles in period determination. Moreover, mutating all the lysines falling in either half of WC-1 or all the lysine residues in WC-2 to arginines did not abolish circadian rhythms. In addition, we also found nine mono-methylation sites on WC-1, but like acetylation, individual ablation of most of the mono-methylation events did not result in a significant period change. Taken together, the data here suggest that acetylation or mono-methylation on WCC is not a determinant of the pace of the circadian feedback loop. The finding is consistent with a model in which repression of WCC's circadian activity is mainly controlled by phosphorylation. Interestingly, light-induced expression of some light-responsive genes has been modulated in certain wc-1 acetylation mutants, suggesting that WC-1 acetylation events differentially regulate light responses.

2.
BMC Microbiol ; 24(1): 107, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561651

ABSTRACT

BACKGROUND: Belonging to the Actinobacteria phylum, members of the Rhodococcus genus thrive in soil, water, and even intracellularly. While most species are non-pathogenic, several cause respiratory disease in animals and, more rarely, in humans. Over 100 phages that infect Rhodococcus species have been isolated but despite their importance for Rhodococcus ecology and biotechnology applications, little is known regarding the molecular genetic interactions between phage and host during infection. To address this need, we report RNA-Seq analysis of a novel Rhodococcus erythopolis phage, WC1, analyzing both the phage and host transcriptome at various stages throughout the infection process. RESULTS: By five minutes post-infection WC1 showed upregulation of a CAS-4 family exonuclease, putative immunity repressor, an anti-restriction protein, while the host showed strong upregulation of DNA replication, SOS repair, and ribosomal protein genes. By 30 min post-infection, WC1 DNA synthesis genes were strongly upregulated while the host showed increased expression of transcriptional and translational machinery and downregulation of genes involved in carbon, energy, and lipid metabolism pathways. By 60 min WC1 strongly upregulated structural genes while the host showed a dramatic disruption of metal ion homeostasis. There was significant expression of both host and phage non-coding genes at all time points. While host gene expression declined over the course of infection, our results indicate that phage may exert more selective control, preserving the host's regulatory mechanisms to create an environment conducive for virion production. CONCLUSIONS: The Rhodococcus genus is well recognized for its ability to synthesize valuable compounds, particularly steroids, as well as its capacity to degrade a wide range of harmful environmental pollutants. A detailed understanding of these phage-host interactions and gene expression is not only essential for understanding the ecology of this important genus, but will also facilitate development of phage-mediated strategies for bioremediation as well as biocontrol in industrial processes and biomedical applications. Given the current lack of detailed global gene expression studies on any Rhodococcus species, our study addresses a pressing need to identify tools and genes, such as F6 and rpf, that can enhance the capacity of Rhodococcus species for bioremediation, biosynthesis and pathogen control.


Subject(s)
Bacteriophages , Rhodococcus , Humans , Bacteriophages/genetics , Rhodococcus/genetics , Rhodococcus/metabolism , Transcriptome , DNA Replication
3.
J Biol Chem ; 300(5): 107238, 2024 May.
Article in English | MEDLINE | ID: mdl-38552736

ABSTRACT

Light and temperature sensing are important features of many organisms. Light may provide energy but may also be used by non-photosynthetic organisms for orientation in the environment. Recent evidence suggests that plant and fungal phytochrome and plant phototropin serve dual functions as light and temperature sensors. Here we characterized the fungal LOV-domain blue-light receptor LreA of Alternaria alternata and show that it predominantly contains FAD as chromophore. Blue-light illumination induced ROS production followed by protein agglomeration in vitro. In vivo ROS may control LreA activity. LreA acts as a blue-light photoreceptor but also triggers temperature-shift-induced gene expression. Both responses required the conserved amino acid cysteine 421. We therefore propose that temperature mimics the photoresponse, which could be the ancient function of the chromoprotein. Temperature-dependent gene expression control with LreA was distinct from the response with phytochrome suggesting fine-tuned, photoreceptor-specific gene regulation.


Subject(s)
Alternaria , Blue Light , Flavin-Adenine Dinucleotide , Fungal Proteins , Photoreceptors, Microbial , Alternaria/metabolism , Flavin-Adenine Dinucleotide/metabolism , Flavin-Adenine Dinucleotide/chemistry , Fungal Proteins/metabolism , Fungal Proteins/genetics , Fungal Proteins/chemistry , Gene Expression Regulation, Fungal , Photoreceptors, Microbial/metabolism , Photoreceptors, Microbial/chemistry , Photoreceptors, Microbial/genetics , Phytochrome/metabolism , Phytochrome/chemistry , Phytochrome/genetics , Protein Domains , Reactive Oxygen Species/metabolism , Temperature
4.
Angew Chem Int Ed Engl ; 63(16): e202400888, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38419146

ABSTRACT

Alkaline water electrolysis (AWE) plays a crucial role in the realization of a hydrogen economy. The design and development of efficient and stable bifunctional catalysts for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are pivotal to achieving high-efficiency AWE. Herein, WC1-x/Mo2C nanoparticle-embedded carbon nanofiber (WC1-x/Mo2C@CNF) with abundant interfaces is successfully designed and synthesized. Benefiting from the electron transfer behavior from Mo2C to WC1-x, the electrocatalysts of WC1-x/Mo2C@CNF exhibit superior HER and OER performance. Furthermore, when employed as anode and cathode in membrane electrode assembly devices, the WC1-x/Mo2C@CNF catalyst exhibits enhanced catalytic activity and remarkable stability for 100 hours at a high current density of 200 mA cm-2 towards overall water splitting. The experimental characterizations and theoretical simulation reveal that modulation of the d-band center for WC1-x/Mo2C@CNF, achieved through the asymmetric charge distribution resulting from the built-in electric field induced by work function, enables optimization of adsorption strength for hydrogen/oxygen intermediates, thereby promoting the catalytic kinetics for overall water splitting. This work provides promising strategies for designing highly active catalysts in energy conversion fields.

5.
Front Immunol ; 14: 1265038, 2023.
Article in English | MEDLINE | ID: mdl-37942326

ABSTRACT

Bovine tuberculosis (bTB), caused by infection with Mycobacterium bovis, continues to cause significant issues for the global agriculture industry as well as for human health. An incomplete understanding of the host immune response contributes to the challenges of control and eradication of this zoonotic disease. In this study, high-throughput bulk RNA sequencing (RNA-seq) was used to characterise differential gene expression in γδ T cells - a subgroup of T cells that bridge innate and adaptive immunity and have known anti-mycobacterial response mechanisms. γδ T cell subsets are classified based on expression of a pathogen-recognition receptor known as Workshop Cluster 1 (WC1) and we hypothesised that bTB disease may alter the phenotype and function of specific γδ T cell subsets. Peripheral blood was collected from naturally M. bovis-infected (positive for single intradermal comparative tuberculin test (SICTT) and IFN-γ ELISA) and age- and sex-matched, non-infected control Holstein-Friesian cattle. γδ T subsets were isolated using fluorescence activated cell sorting (n = 10-12 per group) and high-quality RNA extracted from each purified lymphocyte subset (WC1.1+, WC1.2+, WC1- and γδ-) was used to generate transcriptomes using bulk RNA-seq (n = 6 per group, representing a total of 48 RNA-seq libraries). Relatively low numbers of differentially expressed genes (DEGs) were observed between most cell subsets; however, 189 genes were significantly differentially expressed in the M. bovis-infected compared to the control groups for the WC1.1+ γδ T cell compartment (absolute log2 FC ≥ 1.5 and FDR P adj. ≤ 0.1). The majority of these DEGs (168) were significantly increased in expression in cells from the bTB+ cattle and included genes encoding transcription factors (TBX21 and EOMES), chemokine receptors (CCR5 and CCR7), granzymes (GZMA, GZMM, and GZMH) and multiple killer cell immunoglobulin-like receptor (KIR) proteins indicating cytotoxic functions. Biological pathway overrepresentation analysis revealed enrichment of genes with multiple immune functions including cell activation, proliferation, chemotaxis, and cytotoxicity of lymphocytes. In conclusion, γδ T cells have important inflammatory and regulatory functions in cattle, and we provide evidence for preferential differential activation of the WC1.1+ specific subset in cattle naturally infected with M. bovis.


Subject(s)
Mycobacterium bovis , Tuberculosis, Bovine , Animals , Cattle , Humans , T-Lymphocyte Subsets , Receptors, Antigen, T-Cell, gamma-delta , Gene Expression
6.
J Biol Chem ; 299(7): 104850, 2023 07.
Article in English | MEDLINE | ID: mdl-37220856

ABSTRACT

In the negative feedback loop composing the Neurospora circadian clock, the core element, FREQUENCY (FRQ), binds with FRQ-interacting RNA helicase (FRH) and casein kinase 1 to form the FRQ-FRH complex (FFC) which represses its own expression by interacting with and promoting phosphorylation of its transcriptional activators White Collar-1 (WC-1) and WC-2 (together forming the White Collar complex, WCC). Physical interaction between FFC and WCC is a prerequisite for the repressive phosphorylations, and although the motif on WCC needed for this interaction is known, the reciprocal recognition motif(s) on FRQ remains poorly defined. To address this, we assessed FFC-WCC in a series of frq segmental-deletion mutants, confirming that multiple dispersed regions on FRQ are necessary for its interaction with WCC. Biochemical analysis shows that interaction between FFC and WCC but not within FFC or WCC can be disrupted by high salt, suggesting that electrostatic forces drive the association of the two complexes. As a basic sequence on WC-1 was previously identified as a key motif for WCC-FFC assembly, our mutagenetic analysis targeted negatively charged residues of FRQ, leading to identification of three Asp/Glu clusters in FRQ that are indispensable for FFC-WCC formation. Surprisingly, in several frq Asp/Glu-to-Ala mutants that vastly diminish FFC-WCC interaction, the core clock still oscillates robustly with an essentially wildtype period, indicating that the interaction between the positive and negative elements in the feedback loop is required for the operation of the circadian clock but is not a determinant of the period length.


Subject(s)
Circadian Clocks , Fungal Proteins , Neurospora crassa , Circadian Clocks/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Neurospora crassa/drug effects , Neurospora crassa/genetics , Neurospora crassa/metabolism , Transcription Factors/metabolism , Protein Domains , Gene Deletion , Sodium Chloride/pharmacology , Mutation , Gene Expression
7.
Mol Immunol ; 149: 129-142, 2022 09.
Article in English | MEDLINE | ID: mdl-35810664

ABSTRACT

Bovine γδ T cells are distinguished by expression of WC1, hybrid pattern recognition receptors and co-receptors to the T cell receptor (TCR), or their absence. WC1 molecules bind pathogens and the ability of γδ T cells to respond to pathogens largely correlates with their expression of particular WC1 genes. Following activation, the TCR and WC1 molecules co-localize and knocking down WC1 abrogates the ability of WC1-expressing γδ T cells to respond to antigen. It is known that these two major populations, WC1+ and WC1-, differ in their TCR gene expression and previous studies showed other differences using semi-quantitative RT-PCR and serial analysis of gene expression. Differences in genes expressed would influence the functional outcome when WC1+ vs. WC1- γδ T cells respond to pathogens. To identify unique aspects of their transcriptome, here we performed RNA-Seq of flow cytometrically sorted bovine WC1+ and WC1- γδ T cells and compared them to all mononuclear cells in blood. The greatest differences in gene expression were found between γδ T cells and other mononuclear cells and included those involved in lymphocyte activation and effector processes. Only minor differences occurred between ex vivo WC1+ vs. WC1- γδ T cells with those gene products being involved in cell adhesion and chemotaxis. After culturing cells from primed animals with Leptospira antigens major difference in the transcriptome was evident, with over 600 genes significantly differentially expressed including those focused on cytokine signaling. Unexpectedly, antigen-responding and non-responding populations of WC1+ γδ T cells had few differences in their transcriptomes outside of cytotoxic factors although they had more WC1-1, WC1-2 and WC1-13 transcripts. Through differential gene expression we were able to define properties of ex vivo and stimulated WC1+ cells which will be useful in understanding their functional biology.


Subject(s)
Receptors, Antigen, T-Cell, gamma-delta , T-Lymphocyte Subsets , Animals , Cattle , High-Throughput Nucleotide Sequencing , Membrane Glycoproteins , Ruminants
8.
Immunogenetics ; 74(3): 347-365, 2022 06.
Article in English | MEDLINE | ID: mdl-35138437

ABSTRACT

Workshop cluster 1 (WC1) molecules are part of the scavenger receptor cysteine-rich (SRCR) superfamily and act as hybrid co-receptors for the γδ T cell receptor and as pattern recognition receptors for binding pathogens. These members of the CD163 gene family are expressed on γδ T cells in the blood of ruminants. While the presence of WC1+ γδ T cells in the blood of goats has been demonstrated using monoclonal antibodies, there was no information available about the goat WC1 gene family. The caprine WC1 multigenic array was characterized here for number, structure and expression of genes, and similarity to WC1 genes of cattle and among goat breeds. We found sequence for 17 complete WC1 genes and evidence for up to 30 SRCR a1 or d1 domains which represent distinct signature domains for individual genes. This suggests substantially more WC1 genes than in cattle. Moreover, goats had seven different WC1 gene structures of which 4 are unique to goats. Caprine WC1 genes also had multiple transcript splice variants of their intracytoplasmic domains that eliminated tyrosines shown previously to be important for signal transduction. The most distal WC1 SRCR a1 domains were highly conserved among goat breeds, but fewer were conserved between goats and cattle. Since goats have a greater number of WC1 genes and unique WC1 gene structures relative to cattle, goat WC1 molecules may have expanded functions. This finding may impact research on next-generation vaccines designed to stimulate γδ T cells.


Subject(s)
Goats , T-Lymphocytes , Animals , Cattle/genetics , Membrane Glycoproteins/genetics , Receptors, Antigen, T-Cell, gamma-delta/genetics , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Receptors, Scavenger/metabolism , Ruminants , T-Lymphocyte Subsets/metabolism , T-Lymphocytes/metabolism
9.
Dev Comp Immunol ; 128: 104334, 2022 03.
Article in English | MEDLINE | ID: mdl-34919982

ABSTRACT

Vaccination is the most effective medical strategy for disease prevention but there is a need to improve livestock vaccine efficacy. Understanding the structure of the immune system of swine, which are considered a γδ T cell "high" species, and thus, particularly how to engage their γδ T cells for immune responses, may allow for development of vaccine optimization strategies. The propensity of γδ T cells to home to specific tissues, secrete pro-inflammatory and regulatory cytokines, exhibit memory or recall responses and even function as antigen-presenting cells for αß T cells supports the concept that they have enormous potential for priming by next generation vaccine constructs to contribute to protective immunity. γδ T cells exhibit several innate-like antigen recognition properties including the ability to recognize antigen in the absence of presentation via major histocompatibility complex (MHC) molecules enabling γδ T cells to recognize an array of peptides but also non-peptide antigens in a T cell receptor-dependent manner. γδ T cell subpopulations in ruminants and swine can be distinguished based on differential expression of the hybrid co-receptor and pattern recognition receptors (PRR) known as workshop cluster 1 (WC1). Expression of various PRR and other innate-like immune receptors diversifies the antigen recognition potential of γδ T cells. Finally, γδ T cells in livestock are potent producers of critical master regulator cytokines such as interferon (IFN)-γ and interleukin (IL)-17, whose production orchestrates downstream cytokine and chemokine production by other cells, thereby shaping the immune response as a whole. Our knowledge of the biology, receptor expression and response to infectious diseases by swine γδ T cells is reviewed here.


Subject(s)
Communicable Diseases , Cytokines , Intraepithelial Lymphocytes , Receptors, Antigen, T-Cell, gamma-delta , Swine Diseases , Animals , Communicable Diseases/immunology , Communicable Diseases/veterinary , Cytokines/immunology , Intraepithelial Lymphocytes/immunology , Receptors, Antigen, T-Cell, gamma-delta/immunology , Receptors, Pattern Recognition , Ruminants , Swine , Swine Diseases/immunology , Swine Diseases/microbiology
10.
Mol Immunol ; 142: 50-62, 2022 02.
Article in English | MEDLINE | ID: mdl-34959072

ABSTRACT

γδ T cells represent a high proportion of lymphocytes in the blood of ruminants with the majority expressing lineage-specific glycoproteins from the WC1 family. WC1 receptors are coded for by a multigenic array whose genes have variegated but stable expression among cells in the γδ T cell population. WC1 molecules function as hybrid pattern recognition receptors as well as co-receptors for the TCR and are required for responses by the cells. Because of the variegated gene expression, WC1+ γδ T cells can be divided into two main populations known as WC1.1+ and WC1.2+ based on monoclonal antibody reactivity with the expressed WC1 molecules. These subpopulations differ in their ability to respond to specific pathogens. Here, we showed these populations are established in the thymus and that WC1.1+ and WC1.2+ subpopulations have transcriptional programming that is consistent with stratification towards Tγδ1 or Tγδ17. WC1.1+ cells exhibited the Tγδ1 phenotype with greater transcription of Tbx21 and production of more IFNγ while the WC1.2+ subpopulation tended towards Tγδ17 programming producing higher levels of IL-17 and had greater transcription of Rorc. However, when activated both WC1+ subpopulations' cells transcribed Tbx21 and secreted IFNγ and IL-17 reflecting the complexity of these subpopulations defined by WC1 gene expression. The gene networks involved in development of these two subpopulations including expression of their archetypal genes wc1-3 (WC1.1+) and wc1-4 (WC1.2+) were unknown but we report that SOX-13, a γδ T cell fate-determining transcription factor, has differential occupancy on these WC1 gene loci and suggest a model for development of these subpopulations.


Subject(s)
Membrane Glycoproteins/metabolism , Receptors, Antigen, T-Cell, gamma-delta/immunology , SOXD Transcription Factors/immunology , T-Lymphocyte Subsets/immunology , Animals , Cattle , Gene Expression Regulation , Interferon-gamma/immunology , Interleukin-17/immunology , Receptors, Antigen, T-Cell, gamma-delta/genetics , Receptors, Pattern Recognition/immunology , T-Lymphocyte Subsets/cytology
11.
Infect Immun ; 90(1): e0049221, 2022 01 25.
Article in English | MEDLINE | ID: mdl-34694919

ABSTRACT

Pathogenic Leptospira species cause leptospirosis, a neglected zoonotic disease recognized as a global public health problem. It is also the cause of the most common cattle infection that results in major economic losses due to reproductive problems. γδ T cells play a role in the protective immune response in livestock species against Leptospira, while human γδ T cells also respond to Leptospira. Thus, activation of γδ T cells has emerged as a potential component in the optimization of vaccine strategies. Bovine γδ T cells proliferate and produce gamma interferon (IFN-γ) in response to vaccination with inactivated leptospires, and this response is mediated by a specific subpopulation of the WC1-bearing γδ T cells. WC1 molecules are members of the group B scavenger receptor cysteine-rich (SRCR) superfamily and are composed of multiple SRCR domains, of which particular extracellular domains act as ligands for Leptospira. Since WC1 molecules function as both pattern recognition receptors and γδ TCR coreceptors, the WC1 system has been proposed as a novel target to engage γδ T cells. Here, we demonstrate the involvement of leptospiral protein antigens in the activation of WC1+ γδ T cells and identify two leptospiral outer membrane proteins able to interact directly with them. Interestingly, we show that the protein-specific γδ T cell response is composed of WC1.1+ and WC1.2+ subsets, although a greater number of WC1.1+ γδ T cells respond. Identification of protein antigens will enhance our understanding of the role γδ T cells play in the leptospiral immune response and in recombinant vaccine development.


Subject(s)
Antigens, Bacterial/immunology , Bacterial Proteins/immunology , Leptospira/immunology , Leptospirosis/immunology , Receptors, Antigen, T-Cell, gamma-delta/immunology , T-Lymphocyte Subsets/immunology , Vaccine Development , Animals , Cattle , Cattle Diseases/immunology , Cattle Diseases/microbiology , Cattle Diseases/prevention & control , Immunization , Immunophenotyping , Leptospirosis/microbiology , Leptospirosis/prevention & control , Ligands , Protein Binding , Protein Interaction Domains and Motifs , Recombinant Proteins , T-Lymphocyte Subsets/metabolism , Vaccines, Synthetic/immunology
12.
Infect Immun, v. 90, n. 1, e00492-21, out. 2022
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3977

ABSTRACT

Pathogenic Leptospira species cause leptospirosis, a neglected zoonotic disease recognized as a global public health problem. It is also the cause of the most common cattle infection that results in major economic losses due to reproductive problems. γδ T cells play a role in the protective immune response in livestock species against Leptospira while human γδ T cells also respond to Leptospira. Thus, activation of γδ T cells has emerged as a potential component in the optimization of vaccine strategies. Bovine γδ T cells proliferate and produce IFN-γ in response to vaccination with inactivated leptospires and this response is mediated by a specific subpopulation of the WC1-bearing γδ T cells. WC1 molecules are members of the group B scavenger receptor cysteine rich (SRCR) superfamily and are composed of multiple SRCR domains, of which particular extracellular domains act as ligands for Leptospira. Since WC1 molecules function as both pattern recognition receptors and γδ TCR coreceptors, the WC1 system has been proposed as a novel target to engage γδ T cells. Here, we demonstrate the involvement of leptospiral protein antigens in the activation of WC1+ γδ T cells and identified two leptospiral outer membrane proteins able to interact directly with them. Interestingly, we show that the protein-specific γδ T cell response is composed of WC1.1+ and WC1.2+ subsets, although a greater number of WC1.1+ ???? T-cell respond. Identification of protein antigens will enhance our understanding of the role γδ T cells play in the leptospiral immune response and in recombinant vaccine development.

13.
Front Immunol ; 12: 712123, 2021.
Article in English | MEDLINE | ID: mdl-34394114

ABSTRACT

The WC1 cell surface family of molecules function as hybrid gamma delta (γδ) TCR co-receptors, augmenting cellular responses when cross-linked with the TCR, and as pattern recognition receptors, binding pathogens. It is known that following activation, key tyrosines are phosphorylated in the intracytoplasmic domains of WC1 molecules and that the cells fail to respond when WC1 is knocked down or, as shown here, when physically separated from the TCR. Based on these results we hypothesized that the colocalization of WC1 and TCR will occur following cellular activation thereby allowing signaling to ensue. We evaluated the spatio-temporal dynamics of their interaction using imaging flow cytometry and stochastic optical reconstruction microscopy. We found that in quiescent γδ T cells both WC1 and TCR existed in separate and spatially stable protein domains (protein islands) but after activation using Leptospira, our model system, that they concatenated. The association between WC1 and TCR was close enough for fluorescence resonance energy transfer. Prior to concatenating with the WC1 co-receptor, γδ T cells had clustering of TCR-CD3 complexes and exclusion of CD45. γδ T cells may individually express more than one variant of the WC1 family of molecules and we found that individual WC1 variants are clustered in separate protein islands in quiescent cells. However, the islands containing different variants merged following cell activation and before merging with the TCR islands. While WC1 was previously shown to bind Leptospira in solution, here we showed that Leptospira bound WC1 proteins on the surface of γδ T cells and that this could be blocked by anti-WC1 antibodies. In conclusion, γδ TCR, WC1 and Leptospira interact directly on the γδ T cell surface, further supporting the role of WC1 in γδ T cell pathogen recognition and cellular activation.


Subject(s)
Flow Cytometry/methods , Leptospira/immunology , Lymphocyte Activation , Membrane Glycoproteins/immunology , Microscopy, Fluorescence/methods , Protein Interaction Mapping/methods , Receptors, Antigen, T-Cell, gamma-delta/immunology , T-Lymphocyte Subsets/immunology , Animals , Bacterial Vaccines , CD3 Complex/immunology , Cattle , Cattle Diseases/prevention & control , Fluorescence Resonance Energy Transfer , Immunologic Memory , Leptospira/ultrastructure , Leptospirosis/prevention & control , Leptospirosis/veterinary , Protein Binding , Stochastic Processes , T-Lymphocyte Subsets/ultrastructure , Vaccines, Inactivated
14.
Dev Comp Immunol ; 125: 104214, 2021 12.
Article in English | MEDLINE | ID: mdl-34329647

ABSTRACT

γδ T cells constitute a major portion of lymphocytes in the blood of both ruminants and swine. Subpopulations of swine γδ T cells have been distinguished by CD2 and CD8α expression. However, it was not clear if they have distinct expression profiles of their T-cell receptor (TCR) or WC1 genes. Identifying receptor expression will contribute to understanding the functional differences between these subpopulations and their contributions to immune protection. Here, we annotated three genomic assemblies of the swine TCRγ gene locus finding four gene cassettes containing C, J and V genes, although some haplotypes carried a null TRGC gene (TRGC4). Genes in the TRGC1 cassette were homologs of bovine TRGC5 cassette while the others were not homologous to bovine genes. Here we evaluated three principal populations of γδ T cells (CD2+/SWC5-, CD2-/SWC5+, and CD2-/SWC5-). Both CD2- subpopulations transcribed WC1 co-receptor genes, albeit with different patterns of gene expression but CD2+ cells did not. All subpopulations transcribed TCR genes from all four cassettes, although there were differences in expression levels. Finally, the CD2+ and CD2- γδ T-cell populations differed in their representation in various organs and tissues, presumably at least partially reflective of different ligand specificities for their receptors.


Subject(s)
Cattle/immunology , Receptors, Antigen, T-Cell, gamma-delta/genetics , Ruminants/immunology , Swine/immunology , T-Lymphocytes/immunology , Animals , CD2 Antigens/metabolism , Genes, T-Cell Receptor/genetics , Membrane Glycoproteins/metabolism
15.
Immunogenetics ; 73(5): 419-424, 2021 10.
Article in English | MEDLINE | ID: mdl-33712898

ABSTRACT

The work reported here investigated the γδ T cell-specific cell surface receptor known as workshop cluster 1 (WC1) in the extinct Auroch and compared the gene sequences to those in modern cattle breeds. These molecules function as hybrid pattern recognition receptors (PRR), binders of microbial pathogens, and as signaling co-receptors of the T cell antigen receptor (TCR), directing the immune responses by γδ T cell subsets. Sequences in the Auroch genome included both WC1.1 and WC1.2-like a-patterned scavenger receptor cytsteine-rich (SRCR) domains as well as the more conserved b, c, d, and e-patterned SRCR domains. While there was much sequence homology with bovine WC1 genes, there are also unique Auroch genes based on the signature a1 SRCR domain sequences that are used to identify individual WC1 genes. There was also conservation of genes coding for Type I and II intracytoplasmic endodomains although no evidence for gene sequences for Type III endodomains or the extracellular 6 SRCR domains that are associated with this endodomain. This particular WC1 molecule has been proposed to represent the most ancient WC1, and thus, it is particularly interesting that it is apparently missing in the Auroch genome although it could be due to incomplete sequencing. Overall, the results suggest that while WC1 genes have been preserved from Ancient Auroch to modern cattle, they may have co-evolved perhaps as a result of differing pathogen or environmental antigen exposure.


Subject(s)
Receptors, Antigen, T-Cell, gamma-delta/genetics , Ruminants/genetics , Animals , Cattle , Extinction, Biological , Genome , Membrane Glycoproteins/genetics , Protein Domains , Receptors, Antigen, T-Cell, gamma-delta/chemistry
16.
Mol Immunol ; 134: 161-169, 2021 06.
Article in English | MEDLINE | ID: mdl-33774521

ABSTRACT

Ruminant γδ T cells were discovered in the mid-1980's shortly after a novel T cell receptor (TCR) gene from murine cells was described in 1984 and the murine TCRγ gene locus in 1985. It was possible to identify γδ T cell populations early in ruminants because they represent a large proportion of the peripheral blood mononuclear cells (PBMC). This null cell population, γδ T cells, was designated as such by its non-reactivity with monoclonal antibodies (mAb) against ovine and bovine CD4, CD8 and surface immunoglobulin (Ig). γδ T cells are non-conventional T cells known as innate-like cells capable of using both TCR as well as other types of receptor systems including pattern recognition receptors (PRR) and natural killer receptors (NKR). Bovine γδ T cells have been shown to respond to stimulation through toll-like receptors, NOD, and NKG2D as well as to cytokines alone, protein and non-protein antigens through their TCR, and to pathogen-infected host cells. The two main populations of γδ T cells are distinguished by the presence or absence of the hybrid co-receptor/PRR known as WC1 or T19. These two populations not only differ by their proportional representation in various tissues and organs but also by their migration into inflamed tissues. The WC1+ cells are found in the blood, skin and spleen while the WC1- γδ T cells predominate in the gut, mammary gland and uterus. In ruminants, γδ T cells may produce IFNγ, IL-17, IL-10 and TGFß, have cytotoxic activity and memory responses. The expression of particular WC1 family members controls the response to particular pathogens and correlates with differences in cytokine responses. The comparison of the WC1 gene families in cattle, sheep and goats is discussed relative to other multigenic arrays that differentiate γδ T cells by function in humans and mice.


Subject(s)
Receptors, Antigen, T-Cell, gamma-delta/immunology , Ruminants/immunology , T-Lymphocyte Subsets/immunology , Animals , Cattle , Humans , Membrane Glycoproteins/immunology
17.
Immunogenetics ; 73(2): 187-201, 2021 04.
Article in English | MEDLINE | ID: mdl-33479855

ABSTRACT

Goats and cattle diverged 30 million years ago but retain similarities in immune system genes. Here, the caprine T cell receptor (TCR) gene loci and transcription of its genes were examined and compared to cattle. We annotated the TCR loci using an improved genome assembly (ARS1) of a highly homozygous San Clemente goat. This assembly has already proven useful for describing other immune system genes including antibody and leucocyte receptors. Both the TCRγ (TRG) and TCRδ (TRD) loci were similarly organized in goats as in cattle and the gene sequences were highly conserved. However, the number of genes varied slightly as a result of duplications and differences occurred in mutations resulting in pseudogenes. WC1+ γδ T cells in cattle have been shown to use TCRγ genes from only one of the six available cassettes. The structure of that Cγ gene product is unique and may be necessary to interact with WC1 for signal transduction following antigen ligation. Using RT-PCR and PacBio sequencing, we observed the same restriction for goat WC1+ γδ T cells. In contrast, caprine WC1+ and WC1- γδ T cell populations had a diverse TCRδ gene usage although the propensity for particular gene usage differed between the two cell populations. Noncanonical recombination signal sequences (RSS) largely correlated with restricted expression of TCRγ and δ genes. Finally, caprine γδ T cells were found to incorporate multiple TRD diversity gene sequences in a single transcript, an unusual feature among mammals but also previously observed in cattle.


Subject(s)
Goats/genetics , Receptors, Antigen, T-Cell, gamma-delta/genetics , T-Lymphocyte Subsets/metabolism , T-Lymphocytes/metabolism , Animals , Cattle , Chromosome Mapping , Gene Expression , Genes, T-Cell Receptor delta , Genes, T-Cell Receptor gamma , Genetic Variation , Goats/immunology , Goats/metabolism , Phylogeny
18.
Int J Mol Sci ; 23(1)2021 Dec 31.
Article in English | MEDLINE | ID: mdl-35008859

ABSTRACT

Pleurotus eryngii, a highly valued edible fungus, is one of the major commercially cultivated mushrooms in China. The development of P. eryngii, especially during the stage of primordium differentiation, is easily affected by light. However, the molecular mechanism underlying the response of primordium differentiation to light remains unknown. In the present study, primordium expression profiles under blue-light stimulation, red-light stimulation, and exposure to darkness were compared using high-throughput sequencing. A total of 16,321 differentially expressed genes (DEGs) were identified from three comparisons. GO enrichment analysis showed that a large number of DEGs were related to light stimulation and amino acid biosynthesis. KEGG analyses demonstrated that the MAPK signaling pathway, oxidative phosphorylation pathway, and RNA transport were most active during primordium differentiation. Furthermore, it was predicted that the blue-light photoreceptor WC-1 and Deoxyribodipyrimidine photolyase PHR play important roles in the primordium differentiation of P. eryngii. Taken together, the results of this study provide a speculative mechanism that light induces primordium differentiation and a foundation for further research on fruiting body development in P. eryngii.


Subject(s)
Gene Expression Profiling , Genes, Fungal , Genetic Association Studies , Light , Pleurotus/cytology , Pleurotus/genetics , Gene Expression Regulation, Fungal/radiation effects , Gene Ontology , Molecular Sequence Annotation , Pleurotus/radiation effects , Protein Interaction Maps/genetics
19.
Dev Comp Immunol ; 116: 103911, 2021 03.
Article in English | MEDLINE | ID: mdl-33137393

ABSTRACT

Sheep are known to express the hybrid co-receptor/pattern recognition receptor WC1 on their γδ T cells but details of the ovine WC1 multigenic array and gene expression were unknown. Annotation of the sheep genome assembly (Oar_rambouillet_v1.0) yielded 15 complete and 42 partial WC1 genes predicted to code for six different protein structures. RT-PCR amplification of the most distal scavenger receptor cysteine rich (SRCR) domain known as a1, which serves as the gene signature, from genomic and cDNA templates verified the majority of annotated genes. As for cattle and goats, sheep a1 domain sequences included WC1.1 and WC1.2 types. A unique ovine gene, WC1-16, had multiple SRCR a-pattern domains in tandem similar to one found in goats. Intracytoplasmic domains of WC1 transcripts had splice variants that may affect signal transduction. The larger number of WC1 genes in sheep and differences in structures and splice variants relative to cattle could have implications in expression patterns and engagement of γδ T cells by pathogens or vaccine constructs.


Subject(s)
Gene Expression , Membrane Glycoproteins/genetics , Receptors, Antigen, T-Cell, gamma-delta/genetics , Sheep/genetics , T-Lymphocytes/metabolism , Alternative Splicing , Amino Acid Sequence , Animals , Cattle , Female , Genome/genetics , Goats , Membrane Glycoproteins/classification , Membrane Glycoproteins/metabolism , Phylogeny , Protein Isoforms/genetics , Protein Isoforms/metabolism , Receptors, Antigen, T-Cell, gamma-delta/classification , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Sequence Analysis, DNA/methods , Sequence Homology, Amino Acid , Sheep/metabolism
20.
Dev Comp Immunol ; 118: 103984, 2021 05.
Article in English | MEDLINE | ID: mdl-33352199

ABSTRACT

The major functions of γδ T cells in mammals overlap with those of αß T cells but differ in that γδ T cells are rapid responders and see different types of antigens. While γδ T cells have been shown to be a major population of circulating lymphocytes in artiodactyl species such as cattle, sheep, and pigs, less is known about these cells in goats, an important agricultural species. We have recently shown that WC1, a γδ T cell-specific family of hybrid pattern recognition receptors/co-receptors, is a multigenic family in goats expanded beyond what occurs in cattle. This study was conducted to address some of the limitations of previous studies in determining the proportions of γδ T cells, WC1+ γδ T cells as well as the WC1.1+ and WC1.2+ subpopulations in blood and to evaluate their responses to various pathogens. Previously, the proportion of caprine γδ T cells was determined using a monoclonal antibody (mAb) 86D that we show here does not react with all γδ T cells thereby underestimating their contribution to the lymphocyte population. Using a mAb reactive with the TCRδ constant region we found the proportion of γδ T cells in blood was not significantly less than that of either CD4 or CD8 T cells and did not decrease with age after 6 months. γδ T cells that expressed WC1 ranged from ~20 to 85% of the total γδ T cells. Less than half of those were classified as WC1.1+ or WC1.2+ by mAb staining thus indicating a third major WC1+ population. We found that naïve γδ T cells proliferated in cultures of PBMC stimulated with antigens of Leptospira or Mycobacterium avium paratuberculosis (MAP) more than they did in control medium cultures or in those stimulated with M. bovis BCG antigens and that the responding γδ T cells included both WC1+ and WC1- cells. In ex vivo PMA/ionomycin-stimulated cultures of WC1- γδ T cells but not WC1+ cells produced both IL-17 and IFNγ. In longterm cultures with Leptospira or MAP both WC1- and WC1+ cells proliferated but only WC1- γδ T cells produced IL-17. In conclusion, goats have a substantial number of WC1- and WC1+ γδ T cells in PBMC that do not decrease with animal age after 6 months; both populations respond to bacterial antigens as naïve cells but in these cultures only the WC1- γδ cells produc IL-17 and IFNγ .


Subject(s)
Goats/immunology , Interferon-gamma/metabolism , Interleukin-17/metabolism , Intraepithelial Lymphocytes/immunology , Animals , Antigens, Surface/analysis , Antigens, Surface/metabolism , Female , Goats/blood , Intraepithelial Lymphocytes/metabolism , Male , Membrane Glycoproteins/analysis , Membrane Glycoproteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL