Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 116
Filter
1.
J Cell Mol Med ; 28(17): e70061, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39224045

ABSTRACT

Long non-coding RNAs (lncRNAs) play an important role in the progression of gastric cancer (GC), but its specific regulatory mechanism remains to be further studied. We previously identified that lncRNA B3GALT5-AS1 was upregulated in GC serum. Here, we investigated the functions and molecular mechanisms of B3GALT5-AS1 in GC tumorigenesis. qRT-PCR was used to detect B3GALT5-AS1 expression in GC. EdU, CCK-8, and colony assays were utilized to assess the proliferation ability of B3GAL5-AS1, and transwell, tube formation assay were used to assess the invasion and metastasis ability. Mechanically, FISH and nuclear plasmolysis PCR identified the subcellular localization of B3GALT5-AS1. RIP and CHIP assays were used to analyse the regulation of B3GALT5-AS1 and B3GALT5. We observed that B3GALT5-AS1 was highly expressed in GC, and silencing B3GALT5-AS1 could inhibit the proliferation, invasion, and migratory capacities of GC. Additionally, B3GALT5-AS1 was bound to WDR5 and modulated the expression of B3GALT5 via regulating the ZEB1/ß-catenin pathway. High-expressed B3AGLT5-AS1 promoted GC tumorigenesis and regulated B3GALT5 expression via recruiting WDR5. Our study is expected to provide a new idea for clinical diagnosis and treatment.


Subject(s)
Cell Movement , Cell Proliferation , Disease Progression , Galactosyltransferases , Gene Expression Regulation, Neoplastic , RNA, Long Noncoding , Stomach Neoplasms , Zinc Finger E-box-Binding Homeobox 1 , beta Catenin , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , beta Catenin/metabolism , beta Catenin/genetics , Cell Proliferation/genetics , Cell Line, Tumor , Zinc Finger E-box-Binding Homeobox 1/metabolism , Zinc Finger E-box-Binding Homeobox 1/genetics , Cell Movement/genetics , Galactosyltransferases/genetics , Galactosyltransferases/metabolism , Animals , Mice , Mice, Nude , Signal Transduction , Carcinogenesis/genetics , Carcinogenesis/pathology , Male
2.
Int J Mol Sci ; 25(16)2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39201460

ABSTRACT

The WDR5/MLL1-H3K4me3 epigenetic axis is often activated in both tumor cells and tumor-infiltrating immune cells to drive various cellular responses in the tumor microenvironment and has been extensively studied in hematopoietic cancer, but its respective functions in tumor cells and immune cells in the context of tumor growth regulation of solid tumor is still incompletely understood. We report here that WDR5 exhibits a higher expression level in human pancreatic tumor tissues compared with adjacent normal pancreas. Moreover, WDR5 expression is negatively correlated with patients' response to chemotherapy or immunotherapy in human colon cancer and melanoma. However, WDR5 expression is positively correlated with the HLA level in human cancer cells, and H3K4me3 enrichment is observed at the promoter region of the HLA-A, HLA-B, and HLA-C genes in pancreatic cancer cells. Using mouse tumor cell lines and in vivo tumor models, we determined that WDR5 deficiency or inhibition significantly represses MHC I expression in vitro and in vivo in pancreatic tumor cells. Mechanistically, we determine that WDR5 deficiency inhibits H3K4me3 deposition at the MHC I (H2K) promoter region to repress MHC I (H2K) transcription. On the other hand, WDR5 depletion leads to the effective downregulation of immune checkpoints and immunosuppressive cytokines, including TGFß and IL6, in the pancreatic tumor microenvironments. Our data determine that WDR5 not only regulates tumor cell immunogenicity to suppress tumor growth but also activates immune suppressive pathways to promote tumor immune evasion. Selective activation of the WDR5-MHC I pathway and/or selective inhibition of the WDR5-immune checkpoint and WDR5-cytokine pathways should be considered in WDR5-based epigenetic cancer immunotherapy.


Subject(s)
Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Histones , Intracellular Signaling Peptides and Proteins , Pancreatic Neoplasms , Humans , Animals , Histones/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Cell Line, Tumor , Promoter Regions, Genetic , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics
3.
Proc Natl Acad Sci U S A ; 121(35): e2408889121, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39167600

ABSTRACT

WD40 Repeat Domain 5 (WDR5) is a highly conserved nuclear protein that recruits MYC oncoprotein transcription factors to chromatin to stimulate ribosomal protein gene expression. WDR5 is tethered to chromatin via an arginine-binding cavity known as the "WIN" site. Multiple pharmacological inhibitors of the WDR5-interaction site of WDR5 (WINi) have been described, including those with picomolar affinity and oral bioavailability in mice. Thus far, however, WINi have only been shown to be effective against a number of rare cancer types retaining wild-type p53. To explore the full potential of WINi for cancer therapy, we systematically profiled WINi across a panel of cancer cells, alone and in combination with other agents. We report that WINi are unexpectedly active against cells derived from both solid and blood-borne cancers, including those with mutant p53. Among hematologic malignancies, we find that WINi are effective as a single agent against leukemia and diffuse large B cell lymphoma xenograft models, and can be combined with the approved drug venetoclax to suppress disseminated acute myeloid leukemia in vivo. These studies reveal actionable strategies for the application of WINi to treat blood-borne cancers and forecast expanded utility of WINi against other cancer types.


Subject(s)
Hematologic Neoplasms , Xenograft Model Antitumor Assays , Humans , Animals , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/genetics , Hematologic Neoplasms/metabolism , Mice , Cell Line, Tumor , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
4.
J Virol ; : e0102024, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39194235

ABSTRACT

Some negative-sense RNA viruses, including measles virus (MeV), share the characteristic that during their infection cycle, cytoplasmic inclusion bodies (IBs) are formed where components of the viral replication machinery are concentrated. As a foci of viral replication, how IBs act to enhance the efficiency of infection by affecting virus-host interactions remains an important topic of investigation. We previously established that upon MeV infection, the epigenetic host protein, WD repeat-containing protein 5 (WDR5), translocates to cytoplasmic viral IBs and facilitates MeV replication. We now show that WDR5 is recruited to IBs by forming a complex with IB-associated MeV phosphoprotein via a conserved binding motif located on the surface of WDR5. Furthermore, we provide evidence that WDR5 promotes viral replication by suppressing a major innate immune response pathway, the double-stranded RNA-mediated activation of protein kinase R and integrated stress response. IMPORTANCE: MeV is a pathogen that remains a global concern, with an estimated 9 million measles cases and 128,000 measles deaths in 2022 according to the World Health Organization. A large population of the world still has inadequate access to the effective vaccine against the exceptionally transmissible MeV. Measles disease is characterized by a high morbidity in children and in immunocompromised individuals. An important area of research for negative-sense RNA viruses, including MeV, is the characterization of the complex interactome between virus and host occurring at cytoplasmic IBs where viral replication occurs. Despite the progress made in understanding IB structures, little is known regarding the virus-host interactions within IBs and the role of these interactions in promoting viral replication and antagonizing host innate immunity. Herein we provide evidence suggesting a model by which MeV IBs utilize the host protein WDR5 to suppress the protein kinase R-integrated stress response pathway.

5.
J Orthop Surg Res ; 19(1): 483, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39152465

ABSTRACT

BACKGROUND: Effective bone formation relies on osteoblast differentiation, a process subject to intricate post-translational regulation. Ubiquitin-specific proteases (USPs) repress protein degradation mediated by the ubiquitin-proteasome pathway. Several USPs have been documented to regulate osteoblast differentiation, but whether other USPs are involved in this process remains elusive. METHODS: In this study, we conducted a comparative analysis of 48 USPs in differentiated and undifferentiated hFOB1.19 osteoblasts, identifying significantly upregulated USPs. Subsequently, we generated USP knockdown hFOB1.19 cells and evaluated their osteogenic differentiation using Alizarin red staining. We also assessed cell viability, cell cycle progression, and apoptosis through MTT, 7-aminoactinomycin D staining, and Annexin V/PI staining assays, respectively. Quantitative PCR and Western blotting were employed to measure the expression levels of osteogenic differentiation markers. Additionally, we investigated the interaction between the USP and its target protein using co-immunoprecipitation (co-IP). Furthermore, we depleted the USP in hFOB1.19 cells to examine its effect on the ubiquitination and stability of the target protein using immunoprecipitation (IP) and Western blotting. Finally, we overexpressed the target protein in USP-deficient hFOB1.19 cells and evaluated its impact on their osteogenic differentiation using Alizarin red staining. RESULTS: USP36 is the most markedly upregulated USP in differentiated hFOB1.19 osteoblasts. Knockdown of USP36 leads to reduced viability, cell cycle arrest, heightened apoptosis, and impaired osteogenic differentiation in hFOB1.19 cells. USP36 interacts with WD repeat-containing protein 5 (WDR5), and the knockdown of USP36 causes an increased level of WDR5 ubiquitination and accelerated degradation of WDR5. Excessive WDR5 improved the impaired osteogenic differentiation of USP36-deficient hFOB1.19 cells. CONCLUSIONS: These observations suggested that USP36 may function as a key regulator of osteoblast differentiation, and its regulatory mechanism may be related to the stabilization of WDR5.


Subject(s)
Cell Differentiation , Cell Proliferation , Cell Survival , Osteoblasts , Osteogenesis , Osteoblasts/metabolism , Osteoblasts/cytology , Cell Differentiation/physiology , Cell Differentiation/genetics , Humans , Cell Survival/physiology , Cell Survival/genetics , Cell Proliferation/physiology , Cell Proliferation/genetics , Osteogenesis/physiology , Osteogenesis/genetics , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism , Cell Line , Apoptosis/genetics , Apoptosis/physiology , Ubiquitination , Gene Knockdown Techniques
6.
Cells ; 13(14)2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39056772

ABSTRACT

The chromatin-associated protein WDR5 has been widely studied due to its role in histone modification and its potential as a pharmacological target for the treatment of cancer. In humans, the protein with highest sequence homology to WDR5 is encoded by the retrogene WDR5B, which remains unexplored. Here, we used CRISPR-Cas9 genome editing to generate WDR5B knockout and WDR5B-FLAG knock-in cell lines for further characterization. In contrast to WDR5, WDR5B exhibits low expression in pluripotent cells and is upregulated upon neural differentiation. Loss or shRNA depletion of WDR5B impairs cell growth and increases the fraction of non-viable cells in proliferating retinal pigment epithelial (RPE) cultures. CUT&RUN chromatin profiling in RPE and neural progenitors indicates minimal WDR5B enrichment at established WDR5 binding sites. These results suggest that WDR5 and WDR5B exhibit several divergent biological properties despite sharing a high degree of sequence homology.


Subject(s)
Cell Proliferation , Retinal Pigment Epithelium , Animals , Humans , Cell Differentiation , Cell Line , CRISPR-Cas Systems/genetics , Epithelial Cells/metabolism , Gene Editing , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/cytology
7.
J Biol Chem ; 300(7): 107468, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38876301

ABSTRACT

The nucleosome remodeling and deacetylase (NuRD) complex plays a pivotal role in chromatin regulation and transcriptional repression. In mice, methyl-CpG binding domain 3 isoform C (MBD3C) interacts specifically with the histone H3 binding protein WD repeat-containing protein 5 (WDR5) and forms the WDR5-MBD3C/Norde complex. Despite the functional significance of this interaction on embryonic stem cell gene regulation, the molecular mechanism underlying MBD3C recognition by WDR5 remains elusive. Here, we determined the crystal structure of WDR5 in complex with the peptide (residues 40-51) derived from the MBD3C protein at a resolution of 1.9 Å. Structural analysis revealed that MBD3C utilizes a unique binding mode to interact with WDR5, wherein MBD3C Arg43 and Phe47 are involved in recognizing the WDR5-interacting (WIN) site and Tyr191-related B site on the small surface of WDR5, respectively. Notably, the binding induces a ∼91° rotation of WDR5 Tyr191, generating the hydrophobic B site. Furthermore, mutation experiments combined with isothermal titration calorimetry (ITC) assays confirmed the importance of both Arg43 and Phe47 in mediating WDR5 binding affinity. By determining structures of various peptides bound to WDR5, we demonstrated that the WDR5 WIN site and B site can be concurrently recognized by WIN motif peptides containing ''Arg-Cies/Ser-Arg-Val-Phe'' consensus sequence. Overall, this study reveals the structural basis for the formation of the WDR5-MBD3C subcomplex and provides new insights into the recognition mode of WDR5 for the WIN motif. Moreover, these findings shed light on structural-based designs of WDR5-targeted anti-cancer small molecule inhibitors or peptide-mimic drugs.


Subject(s)
Protein Binding , Mice , Animals , Crystallography, X-Ray , Amino Acid Motifs , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Humans , Binding Sites
8.
Cancer Lett ; 593: 216952, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38750719

ABSTRACT

Poly (ADP-ribose) polymerase-1 (PARP1) is a nuclear protein that attaches negatively charged poly (ADP-ribose) (PAR) to itself and other target proteins. While its function in DNA damage repair is well established, its role in target chromatin recognition and regulation of gene expression remains to be better understood. This study showed that PARP1 interacts with SET1/MLL complexes by binding directly to WDR5. Notably, although PARP1 does not modulate WDR5 PARylation or the global level of H3K4 methylation, it exerts locus-specific effects on WDR5 binding and H3K4 methylation. Interestingly, PARP1 and WDR5 show extensive co-localization on chromatin, with WDR5 facilitating the recognition and expression of target genes regulated by PARP1. Furthermore, we demonstrated that inhibition of the WDR5 Win site impedes the interaction between PARP1 and WDR5, thereby inhibiting PARP1 from binding to target genes. Finally, the combined inhibition of the WDR5 Win site and PARP shows a profound inhibitory effect on the proliferation of cancer cells. These findings illuminate intricate mechanisms underlying chromatin recognition, gene transcription, and tumorigenesis, shedding light on previously unrecognized roles of PARP1 and WDR5 in these processes.


Subject(s)
Gene Expression Regulation, Neoplastic , Histone-Lysine N-Methyltransferase , Intracellular Signaling Peptides and Proteins , Poly (ADP-Ribose) Polymerase-1 , Protein Binding , Humans , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Chromatin/metabolism , Chromatin/genetics , Cell Proliferation , HEK293 Cells , Myeloid-Lymphoid Leukemia Protein/metabolism , Myeloid-Lymphoid Leukemia Protein/genetics , Histones/metabolism , Histones/genetics , Carcinogenesis/genetics , Cell Line, Tumor , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology
9.
BMC Genomics ; 25(1): 360, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605297

ABSTRACT

BACKGROUND: During mitosis the cell depends on proper attachment and segregation of replicated chromosomes to generate two identical progeny. In cancers defined by overexpression or dysregulation of the MYC oncogene this process becomes impaired, leading to genomic instability and tumor evolution. Recently it was discovered that the chromatin regulator WDR5-a critical MYC cofactor-regulates expression of genes needed in mitosis through a direct interaction with the master kinase PDPK1. However, whether PDPK1 and WDR5 contribute to similar mitotic gene regulation in MYC-overexpressing cancers remains unclear. Therefore, to characterize the influence of WDR5 and PDPK1 on mitotic gene expression in cells with high MYC levels, we performed a comparative transcriptomic analysis in neuroblastoma cell lines defined by MYCN-amplification, which results in high cellular levels of the N-MYC protein. RESULTS: Using RNA-seq analysis, we identify the genes regulated by N-MYC and PDPK1 in multiple engineered CHP-134 neuroblastoma cell lines and compare them to previously published gene expression data collected in CHP-134 cells following inhibition of WDR5. We find that as expected N-MYC regulates a multitude of genes, including those related to mitosis, but that PDPK1 regulates specific sets of genes involved in development, signaling, and mitosis. Analysis of N-MYC- and PDPK1-regulated genes reveals a small group of commonly controlled genes associated with spindle pole formation and chromosome segregation, which overlap with genes that are also regulated by WDR5. We also find that N-MYC physically interacts with PDPK1 through the WDR5-PDPK1 interaction suggesting regulation of mitotic gene expression may be achieved through a N-MYC-WDR5-PDPK1 nexus. CONCLUSIONS: Overall, we identify a small group of genes highly enriched within functional gene categories related to mitotic processes that are commonly regulated by N-MYC, WDR5, and PDPK1 and suggest that a tripartite interaction between the three regulators may be responsible for setting the level of mitotic gene regulation in N-MYC amplified cell lines. This study provides a foundation for future studies to determine the exact mechanism by which N-MYC, WDR5, and PDPK1 converge on cell cycle related processes.


Subject(s)
Genes, myc , Neuroblastoma , Humans , 3-Phosphoinositide-Dependent Protein Kinases/genetics , 3-Phosphoinositide-Dependent Protein Kinases/metabolism , Cell Line, Tumor , Chromosome Segregation , Gene Expression Regulation, Neoplastic , Intracellular Signaling Peptides and Proteins/genetics , Neuroblastoma/metabolism
10.
Elife ; 122024 Apr 29.
Article in English | MEDLINE | ID: mdl-38682900

ABSTRACT

The chromatin-associated protein WD Repeat Domain 5 (WDR5) is a promising target for cancer drug discovery, with most efforts blocking an arginine-binding cavity on the protein called the 'WIN' site that tethers WDR5 to chromatin. WIN site inhibitors (WINi) are active against multiple cancer cell types in vitro, the most notable of which are those derived from MLL-rearranged (MLLr) leukemias. Peptidomimetic WINi were originally proposed to inhibit MLLr cells via dysregulation of genes connected to hematopoietic stem cell expansion. Our discovery and interrogation of small-molecule WINi, however, revealed that they act in MLLr cell lines to suppress ribosome protein gene (RPG) transcription, induce nucleolar stress, and activate p53. Because there is no precedent for an anticancer strategy that specifically targets RPG expression, we took an integrated multi-omics approach to further interrogate the mechanism of action of WINi in human MLLr cancer cells. We show that WINi induce depletion of the stock of ribosomes, accompanied by a broad yet modest translational choke and changes in alternative mRNA splicing that inactivate the p53 antagonist MDM4. We also show that WINi are synergistic with agents including venetoclax and BET-bromodomain inhibitors. Together, these studies reinforce the concept that WINi are a novel type of ribosome-directed anticancer therapy and provide a resource to support their clinical implementation in MLLr leukemias and other malignancies.


Subject(s)
Intracellular Signaling Peptides and Proteins , Myeloid-Lymphoid Leukemia Protein , Nuclear Proteins , Ribosomes , Tumor Suppressor Protein p53 , Humans , Antineoplastic Agents/pharmacology , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Line, Tumor , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Myeloid-Lymphoid Leukemia Protein/metabolism , Myeloid-Lymphoid Leukemia Protein/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Ribosomes/drug effects , Ribosomes/metabolism , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Peptidomimetics/pharmacology
11.
J Cheminform ; 16(1): 33, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38515171

ABSTRACT

We present a user-friendly molecular generative pipeline called Pocket Crafter, specifically designed to facilitate hit finding activity in the drug discovery process. This workflow utilized a three-dimensional (3D) generative modeling method Pocket2Mol, for the de novo design of molecules in spatial perspective for the targeted protein structures, followed by filters for chemical-physical properties and drug-likeness, structure-activity relationship analysis, and clustering to generate top virtual hit scaffolds. In our WDR5 case study, we acquired a focused set of 2029 compounds after a targeted searching within Novartis archived library based on the virtual scaffolds. Subsequently, we experimentally profiled these compounds, resulting in a novel chemical scaffold series that demonstrated activity in biochemical and biophysical assays. Pocket Crafter successfully prototyped an effective end-to-end 3D generative chemistry-based workflow for the exploration of new chemical scaffolds, which represents a promising approach in early drug discovery for hit identification.

12.
Mol Cell ; 84(8): 1475-1495.e18, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38521065

ABSTRACT

Transcription and splicing of pre-messenger RNA are closely coordinated, but how this functional coupling is disrupted in human diseases remains unexplored. Using isogenic cell lines, patient samples, and a mutant mouse model, we investigated how cancer-associated mutations in SF3B1 alter transcription. We found that these mutations reduce the elongation rate of RNA polymerase II (RNAPII) along gene bodies and its density at promoters. The elongation defect results from disrupted pre-spliceosome assembly due to impaired protein-protein interactions of mutant SF3B1. The decreased promoter-proximal RNAPII density reduces both chromatin accessibility and H3K4me3 marks at promoters. Through an unbiased screen, we identified epigenetic factors in the Sin3/HDAC/H3K4me pathway, which, when modulated, reverse both transcription and chromatin changes. Our findings reveal how splicing factor mutant states behave functionally as epigenetic disorders through impaired transcription-related changes to the chromatin landscape. We also present a rationale for targeting the Sin3/HDAC complex as a therapeutic strategy.


Subject(s)
Chromatin , Neoplasms , Animals , Humans , Mice , Chromatin/genetics , Mutation , Phosphoproteins/genetics , Phosphoproteins/metabolism , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , RNA Splicing/genetics , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism
13.
J Biomol Struct Dyn ; : 1-15, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38356140

ABSTRACT

Cancer is an aberrant differentiation of normal cells, characterized by uncontrolled growth and the potential to acquire invasive and aggressive properties that ultimately lead to metastasis. In the realm of scientific exploration, a multitude of pathways has been investigated and targeted by researchers, among which one specific pathway is recognized as WDR5-MYC. Continuous investigations and research show that WDR5-MYC is a therapeutic target protein. Hence, the discovery of naturally occurring compounds with anticancer properties has been suggested as a rapid and efficient alternative for the development of anticancerous therapeutics. A virtual screening approach was used to identify the most potent compounds from the NP-lib database at the MTiOpenScreen webserver against WDR5-MYC. This process yielded a total of 304 identified compounds. Subsequently, after screening, four potent compounds, namely Estrone (ZINC000003869899), Ethyl-1,2-benzanthracene (ZINC000003157052), Strychnine (ZINC000000119434) and 7H-DIBENZO [C, G] CARBAZOLE (ZINC000001562130), along with a cocrystallized 5-[4-(trifluoromethyl) phenyl]-1H-tetrazole inhibitor (QBP) as a reference ligand, were considered for stringent molecular docking. Thus, each compound exhibited significant docking energy between -8.2 and -7.7 kcal/mol and molecular contacts with essential residue Asn225, Lys250, Ser267 and Lys272 in the active pocket of WDR5-MYC against the QBP inhibitor (the native ligand QBP serves as a reference in the comparative analysis of docked complexes). The results support the potent compounds for drug-likeness and strong binding affinity with WDR5-MYC protein. Further, the stability of the selected compounds was predicted by molecular dynamics simulation (100 ns) contributed by intermolecular hydrogen bonds and hydrophobic interactions. This demonstrates the potential of the selected compounds to be used against breast cancer treatment.Communicated by Ramaswamy H. Sarma.

14.
J Clin Med ; 13(1)2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38202281

ABSTRACT

WDR5 is a conserved nuclear protein that scaffolds the assembly of epigenetic regulatory complexes and moonlights in functions ranging from recruiting MYC oncoproteins to chromatin to facilitating the integrity of mitosis. It is also a high-value target for anti-cancer therapies, with small molecule WDR5 inhibitors and degraders undergoing extensive preclinical assessment. WDR5 inhibitors were originally conceived as epigenetic modulators, proposed to inhibit cancer cells by reversing oncogenic patterns of histone H3 lysine 4 methylation-a notion that persists to this day. This premise, however, does not withstand contemporary inspection and establishes expectations for the mechanisms and utility of WDR5 inhibitors that can likely never be met. Here, we highlight salient misconceptions regarding WDR5 inhibitors as epigenetic modulators and provide a unified model for their action as a ribosome-directed anti-cancer therapy that helps focus understanding of when and how the tumor-inhibiting properties of these agents can best be understood and exploited.

15.
J Transl Med ; 21(1): 659, 2023 09 23.
Article in English | MEDLINE | ID: mdl-37741985

ABSTRACT

BACKGROUND: Oncogene MYCN is closely related with malignant progression and poor prognosis of neuroblastoma (NB). Recently, long non-coding RNAs (lncRNAs) have been recognized as crucial regulators in various cancers. However, whether lncRNAs contribute to the overexpression of MYCN in NB is unclear. METHODS: Microarray analysis were applied to analyze the differentially expressed lncRNAs between MYCN-amplified and MYCN-non-amplified NB cell lines. Bioinformatic analyses were utilized to identify lncRNAs nearby MYCN locus. qRT-PCR was used to detect the expression level of lncRNA AC142119.1 in NB cell lines and tissues. Gain- and loss-of-function assays were conducted to investigate the biological effect of AC142119.1 in NB. Fluorescence in situ hybridization, RNA pull-down, RNA immunoprecipitation, mass spectrometry, RNA electrophoretic mobility shift, chromatin immunoprecipitation and chromatin isolation by RNA purification assays were performed to validate the interaction between AC142119.1 and WDR5 protein as well as MYCN promoter. RESULTS: AC142119.1 was significantly elevated in NB tissues with MYCN amplification, advanced INSS stage and high risk, and associated with poor survival of NB patients. Moreover, enforced expression of AC142119.1 reinforced the proliferation of NB cells in vitro and in vivo. Additionally, AC142119.1 specifically recruited WDR5 protein to interact with MYCN promoter, further initiating the transcription of MYCN and accelerating NB progression. CONCLUSIONS: We identified a novel lncRNA AC142119.1, which promoted the progression of NB through epigenetically initiating the transcription of MYCN via interacting with both WDR5 protein and the promoter of MYCN, indicating that AC142119.1 might be a potential diagnostic biomarker and therapeutic target for NB.


Subject(s)
Neuroblastoma , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , N-Myc Proto-Oncogene Protein/genetics , N-Myc Proto-Oncogene Protein/metabolism , In Situ Hybridization, Fluorescence , Cell Line , Neuroblastoma/genetics , Neuroblastoma/metabolism , Neuroblastoma/pathology , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Intracellular Signaling Peptides and Proteins/metabolism
16.
Cell Rep ; 42(9): 113145, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37725512

ABSTRACT

The conserved WD40-repeat protein WDR5 interacts with multiple proteins both inside and outside the nucleus. However, it is currently unclear whether and how the distribution of WDR5 between complexes is regulated. Here, we show that an unannotated microprotein EMBOW (endogenous microprotein binder of WDR5) dually encoded in the human SCRIB gene interacts with WDR5 and regulates its binding to multiple interaction partners, including KMT2A and KIF2A. EMBOW is cell cycle regulated, with two expression maxima at late G1 phase and G2/M phase. Loss of EMBOW decreases WDR5 interaction with KIF2A, aberrantly shortens mitotic spindle length, prolongs G2/M phase, and delays cell proliferation. In contrast, loss of EMBOW increases WDR5 interaction with KMT2A, leading to WDR5 binding to off-target genes, erroneously increasing H3K4me3 levels, and activating transcription of these genes. Together, these results implicate EMBOW as a regulator of WDR5 that regulates its interactions and prevents its off-target binding in multiple contexts.


Subject(s)
Chromatin , Intracellular Signaling Peptides and Proteins , Humans , Intracellular Signaling Peptides and Proteins/genetics , Cell Proliferation , Spindle Apparatus , Kinesins/genetics , Micropeptides
17.
Cancers (Basel) ; 15(15)2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37568727

ABSTRACT

WD40-repeat (WDR) domain proteins play a crucial role in mediating protein-protein interactions that sustain oncogenesis in human cancers. One prominent example is the interaction between the transcription factor MYC and its chromatin co-factor, WD40-repeat domain protein 5 (WDR5), which is essential for oncogenic processes. The MYC family of proteins is frequently overexpressed in various cancers and has been validated as a promising target for anticancer therapies. The recruitment of MYC to chromatin is facilitated by WDR5, highlighting the significance of their interaction. Consequently, inhibiting the MYC-WDR5 interaction has been shown to induce the regression of malignant tumors, offering an alternative approach to targeting MYC in the development of anticancer drugs. WDR5 has two protein interaction sites, the "WDR5-binding motif" (WBM) site for MYC interaction and the histone methyltransferases SET1 recognition motif "WDR5-interacting" (WIN) site forming MLL complex. Significant efforts have been dedicated to the discovery of inhibitors that target the WDR5 protein. More recently, the successful application of targeted protein degradation technology has enabled the removal of WDR5. This breakthrough has opened up new avenues for inhibiting the interaction between WDR5 and the binding partners. In this review, we address the recent progress made in targeting WDR5 to inhibit MDR5-MYC and MDR5-MLL1 interactions, including its targeted protein degradation and their potential impact on anticancer drug discovery.

18.
Cell Chem Biol ; 30(7): 753-765.e8, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37354907

ABSTRACT

The multi-step degradation process of PROteolysis TArgeting Chimeras (PROTACs) poses a challenge for their rational development, as the rate-limiting steps that determine PROTACs efficiency remain largely unknown. Moreover, the slow throughput of currently used endpoint assays does not allow the comprehensive analysis of larger series of PROTACs. Here, we developed cell-based assays using the NanoLuciferase and HaloTag that allow measuring PROTAC-induced degradation and ternary complex formation kinetics and stability in cells. Using PROTACs developed for the degradation of WD40 repeat domain protein 5 (WDR5), the characterization of the mode of action of these PROTACs in the early degradation cascade revealed a key role of ternary complex formation and stability. Comparing a series of ternary complex crystal structures highlighted the importance of an efficient E3-target interface for ternary complex stability. The developed assays outline a strategy for the rational optimization of PROTACs using a series of live cell assays monitoring key steps of the early PROTAC-induced degradation pathway.


Subject(s)
Proteins , Ubiquitin-Protein Ligases , Proteolysis , Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism
19.
Elife ; 122023 04 13.
Article in English | MEDLINE | ID: mdl-37052079

ABSTRACT

Quiescent stem cells are activated in response to a mechanical or chemical injury to their tissue niche. Activated cells rapidly generate a heterogeneous progenitor population that regenerates the damaged tissues. While the transcriptional cadence that generates heterogeneity is known, the metabolic pathways influencing the transcriptional machinery to establish a heterogeneous progenitor population remains unclear. Here, we describe a novel pathway downstream of mitochondrial glutamine metabolism that confers stem cell heterogeneity and establishes differentiation competence by countering post-mitotic self-renewal machinery. We discovered that mitochondrial glutamine metabolism induces CBP/EP300-dependent acetylation of stem cell-specific kinase, PAS domain-containing kinase (PASK), resulting in its release from cytoplasmic granules and subsequent nuclear migration. In the nucleus, PASK catalytically outcompetes mitotic WDR5-anaphase-promoting complex/cyclosome (APC/C) interaction resulting in the loss of post-mitotic Pax7 expression and exit from self-renewal. In concordance with these findings, genetic or pharmacological inhibition of PASK or glutamine metabolism upregulated Pax7 expression, reduced stem cell heterogeneity, and blocked myogenesis in vitro and muscle regeneration in mice. These results explain a mechanism whereby stem cells co-opt the proliferative functions of glutamine metabolism to generate transcriptional heterogeneity and establish differentiation competence by countering the mitotic self-renewal network via nuclear PASK.


Subject(s)
Glutamine , Stem Cells , Animals , Mice , Cell Differentiation/physiology , Cells, Cultured , Energy Metabolism , Stem Cells/physiology
20.
Exp Hematol Oncol ; 12(1): 39, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-37061728

ABSTRACT

WDR5 is a highly conserved protein that performs multiple scaffolding functions in the context of chromatin. However, efforts to understand the function of WDR5 in normal tissues physiologically are quite limited so far. In our study, we explored the function of Wdr5 in erythropoiesis and hematopoiesis by using a hematopoietic-specific Wdr5 knockout mouse model. We found that loss of Wdr5 mediated by Vav-iCre leads to embryonic lethality with defective erythropoiesis. In addition, Wdr5-deficiency completely impairs the hematopoietic stem and progenitor cells function and might alter the immunophenotype of these stem cells and progenitors by decreasing c-Kit expression. Collectively, we identified the pivotal role of Wdr5 in fetal hematopoiesis and erythropoiesis as the de novo findings.

SELECTION OF CITATIONS
SEARCH DETAIL