ABSTRACT
Traumatic brain injury (TBI) is a neurotrauma with a complex pathophysiology caused by an external mechanical force. This global public health problem is a leading cause of death and disability in young adults. In this scenario, many models were developed to try to simulate human TBI. The weight drop model allows the investigation of the pathophysiological cascades of TBI without surgical interference. In this protocol, a new closed-head weight-drop rat model consisting of a 48.5g weight projectile that free falls from 1.10m high onto the skull of the animals was built. We classify the present TBI model performed as moderately severe due to its mortality rate. Animals from TBI and Control (Sham) groups underwent weight for 7 days and temperature assessments within 1 hour after TBI and for 7 days. Results demonstrated that the TBI group showed less body weight gain in the days after the injury. Temperature oscillations within the first-hour post-injury and on the 3rd day after injury were observed. As the results of this study demonstrated similarity to human TBI vital parameters, this new adaptation of the Weight-drop model injury can be a suitable candidate for translational studies.â¢We developed a novel closed head focal traumatic brain injury using a projectile.â¢This TBI model does not require surgical intervention.â¢The validation of this method demonstrates that the vital parameters of the injured rats exhibit similarities with those of TBI patients.
ABSTRACT
The pathophysiology of post-traumatic brain injury (TBI) behavioral and cognitive changes is not fully understood, especially in its mild presentation. We designed a weight drop TBI model in mice to investigate the role of neuroinflammation in behavioral and cognitive sequelae following mild TBI. C57BL/6 mice displayed depressive-like behavior at 72 h after mild TBI compared with controls, as indicated by a decrease in the latency to first immobility and climbing time in the forced swim test. Additionally, anxiety-like behavior and hippocampal-associated spatial learning and memory impairment were found in the elevated plus maze and in the Barnes maze, respectively. Levels of a set of inflammatory mediators and neurotrophic factors were analyzed at 6 h, 24 h, 72 h, and 30 days after injury in ipsilateral and contralateral hemispheres of the prefrontal cortex and hippocampus. Principal components analysis revealed two principal components (PC), which represented 59.1% of data variability. PC1 (cytokines and chemokines) expression varied between both hemispheres, while PC2 (neurotrophic factors) expression varied only across the investigated brain areas. Our model reproduces mild TBI-associated clinical signs and pathological features and might be a valuable tool to broaden the knowledge regarding mild TBI pathophysiology as well as to test potential therapeutic targets.
Subject(s)
Brain Concussion , Brain Injuries, Traumatic , Mice , Animals , Brain Concussion/complications , Mice, Inbred C57BL , Brain/pathology , Brain Injuries, Traumatic/complications , Nerve Growth Factors , Cognition , Maze Learning/physiology , Disease Models, AnimalABSTRACT
Traumatic brain injury (TBI) constitutes a heterogeneous cerebral insult induced by traumatic biomechanical forces. Mitochondria play a critical role in brain bioenergetics, and TBI induces several consequences related with oxidative stress and excitotoxicity clearly demonstrated in different experimental model involving TBI. Mitochondrial bioenergetics alterations can present several targets for therapeutics which could help reduce secondary brain lesions such as neuropsychiatric problems, including memory loss and motor impairment. Guanosine (GUO), an endogenous neuroprotective nucleoside, affords the long-term benefits of controlling brain neurodegeneration, mainly due to its capacity to activate the antioxidant defense system and maintenance of the redox system. However, little is known about the exact protective mechanism exerted by GUO on mitochondrial bioenergetics disruption induced by TBI. Thus, the aim of this study was to investigate the effects of GUO in brain cortical and hippocampal mitochondrial bioenergetics in the mild TBI model. Additionally, we aimed to assess whether mitochondrial damage induced by TBI may be related to behavioral alterations in rats. Our findings showed that 24 h post-TBI, GUO treatment promotes an adaptive response of mitochondrial respiratory chain increasing oxygen flux which it was able to protect against the uncoupling of oxidative phosphorylation (OXPHOS) induced by TBI, restored the respiratory electron transfer system (ETS) established with an uncoupler. Guanosine treatment also increased respiratory control ratio (RCR), an indicator of the state of mitochondrial coupling, which is related to the mitochondrial functionality. In addition, mitochondrial bioenergetics failure was closely related with locomotor, exploratory and memory impairments. The present study suggests GUO treatment post mild TBI could increase GDP endogenous levels and consequently increasing ATP levels promotes an increase of RCR increasing OXPHOS and in substantial improve mitochondrial respiration in different brain regions, which, in turn, could promote an improvement in behavioral parameters associated to the mild TBI. These findings may contribute to the development of future therapies with a target on failure energetic metabolism induced by TBI.