Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 14.907
Filter
1.
Cell Signal ; 121: 111287, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969191

ABSTRACT

The progression of osteoarthritis (OA) includes the initial inflammation, subsequent degradation of the extracellular matrix (ECM), and chondrocyte apoptosis. Down syndrome candidate region 1 (DSCR1) is a stress-responsive gene and expresses in varied types of cells, including chondrocytes. Bioinformatics analysis of GSE103416 and GSE104739 datasets showed higher DSCR1 expression in the inflamed cartilage tissues and chondrocytes of OA. DSCR1 had two major isoforms, isoform 1 (DSCR1-1) and isoform 4 (DSCR1-4). We found that DSCR1-1 had a faster (in vitro) and higher expression (in vivo) response to OA compared to DSCR1-4. IL-1ß-induced apoptosis, inflammation, and ECM degradation in chondrocytes were attenuated by DSCR1-1 overexpression. DSCR1-1 triggered the phosphorylation of cAMP response element-binding 1 (CREB1) at 133 serine sites by decreasing calcineurin activity. Moreover, activated CREB1 moved into the cell nucleus and combined in the promoter regions of aldehyde dehydrogenase 2 (ALDH2), thus enhancing its gene transcription. ALDH2 could recover Wnt/ß-catenin signaling transduction by enhancing phosphorylation of ß-catenin at 33/37 serine sites and inhibiting the migration of ß-catenin protein from the cellular matrix to the nucleus. In vivo, adenoviruses (1 × 108 PFU) overexpressing DSCR1-1 were injected into the articular cavity of C57BL/6 mice with medial meniscus surgery-induced OA, and it showed that DSCR1-1 overexpression ameliorated cartilage injury. Collectively, our study demonstrates that DSCR1-1 may be a potential therapeutic target of OA.

2.
Fitoterapia ; 177: 106116, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38977254

ABSTRACT

Androgenetic alopecia (AGA) is the leading cause of hair loss in adults. Its pathogenesis remains unclear, but studies have shown that the androgen-mediated 5α-reductase-AR receptor pathway and the Wnt/ß-catenin signaling pathway play significant roles. Camellia oleifera is an oil plant, and its fruits have been documented in folklore as having a hair cleansing effect and preventing hair loss. In this study, we used UPLC-Q-TOF-MS/MS to identify the structure of the substances contained in the polyphenols of Camellia oleifera seed shell. These polyphenols are mainly used for shampooing and anti-hair loss purposes. Next, we used molecular docking technology to dock 41 polyphenols and steroidal 5 alpha reductase 2 (SRD5A2). We found that the docking scores and docking sites of 1,3,6-tri-O-galloylglucose (TGG) and finasteride were similar. We constructed a mouse model of DHT-induced AGA to evaluate the effects of Camellia oleifera seed shell polyphenols (CSSP) and TGG in vivo. Treatment with CSSP and TGG alleviated alopecia symptoms and reduced DHT levels. Additionally, CSSP and TGG were able to reduce androgen levels by inhibiting the SRD5A2-AR receptor signaling pathway. Furthermore, by regulating the secretion of growth factors and activating the Wnt/ß-catenin signaling pathway, CSSP and TGG were able to extend the duration of hair growth. In conclusion, our study showed that CSSP and TGG can improve AGA in C57BL/6 J mice and reduce the effect of androgen on hair follicle through the two signaling pathways mentioned above. This provides new insights into the material basis and mechanism of the treatment of AGA by CSSP.

3.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(6): 1048-1058, 2024 Jun 20.
Article in Chinese | MEDLINE | ID: mdl-38977334

ABSTRACT

OBJECTIVE: To explore the mechanism by which soybean isoflavone (SI) reduces calcium overload induced by cerebral ischemia-reperfusion (I/R). METHODS: Forty-eight SD rats were randomized into 4 groups to receive sham operation, cerebral middle artery occlusion for 2 h followed by 24 h of reperfusion (I/R model group), or injection of adeno-associated virus carrying Frizzled-2 siRNA or empty viral vector into the lateral cerebral ventricle after modeling.Western blotting was used to examine Frizzled-2 knockdown efficiency and changes in protein expressions in the Wnt/Ca2+ signaling pathway.Calcium levels and pathological changes in the ischemic penumbra (IP) were measured using calcium chromogenic assay and HE staining, respectively.Another 72 SD randomly allocated for sham operation, I/R modeling, or soy isoflavones pretreatment before modeling were examined for regional cerebral blood flow using a Doppler flowmeter, and the cerebral infarct volume was assessed using TTC staining.Pathologies in the IP area were evaluated using HE and Nissl staining, and ROS level, Ca2+ level, cell apoptosis, and intracellular calcium concentration were analyzed using immunofluorescence assay or flow cytometry; the protein expressions of Wnt5a, Frizzled-2, and P-CaMK Ⅱ in the IP were detected with Western blotting and immunohistochemistry. RESULTS: In rats with cerebral I/R, Frizzled-2 knockdown significantly lowered calcium concentration (P < 0.001) and the expression levels of Wnt5a, Frizzled-2, and P-CaMK Ⅱ in the IP area.In soy isoflavones-pretreated rats, calcium concentration, ROS and MDA levels, cell apoptosis rate, cerebral infarct volume, and expression levels of Wnt/Ca2+ signaling pathway-related proteins were all significantly lower while SOD level was higher than those in rats in I/R model group. CONCLUSION: Soy isoflavones can mitigate calcium overload in rats with cerebral I/R by inhibiting the Wnt/Ca2+ signaling pathway.


Subject(s)
Brain Ischemia , Calcium , Glycine max , Isoflavones , Rats, Sprague-Dawley , Reperfusion Injury , Wnt Signaling Pathway , Animals , Isoflavones/pharmacology , Isoflavones/therapeutic use , Rats , Reperfusion Injury/metabolism , Reperfusion Injury/prevention & control , Wnt Signaling Pathway/drug effects , Brain Ischemia/metabolism , Calcium/metabolism , Glycine max/chemistry , Apoptosis/drug effects , Male , Wnt-5a Protein/metabolism , RNA, Small Interfering/genetics
4.
Med Mol Morphol ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38987402

ABSTRACT

Primary cultured odontoblasts rapidly lose their tissue-specific phenotype. To identify transcription factors (TF) that are important for the maintenance of the odontoblast phenotype, primary cultures of C57BL/6 J mouse dental mesenchymal cells (DMC) were isolated, and expression of TF and odontoblast marker genes in cells immediately after isolation and 2 days after culture were comprehensively evaluated and compared using RNA-sequencing (RNA-seq). The expression of odontoblast markers in mouse dental mesenchymal cells decreased rapidly after isolation. In addition, the expression of Hedgehog-related, Notch-related, and immediate- early gene (IEG)-related transcription factors significantly decreased. Forced expression of these genes in lentiviral vectors, together with fibroblast growth factor 4 (FGF4), fibroblast growth factor 9 (FGF9), and the Wnt pathway activator CHIR99021, significantly induced the expression of odontogenic marker genes. These results indicate, for the first time, that Notch signaling and early genes may be important for maintaining odontoblast cultures. Furthermore, simultaneous stimulation of FGF, Wnt, Hedgehog, Notch pathways, and IEG transcription factors cooperatively promoted the maintenance of the odontoblast phenotype. These results suggest that the Hedgehog and Notch signaling pathways may play an important role in maintaining odontoblast phenotypes, in addition to FGF and Wnt signaling.

5.
Autoimmunity ; 57(1): 2364686, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38946534

ABSTRACT

BACKGROUND: Chondrocyte viability, apoptosis, and migration are closely related to cartilage injury in osteoarthritis (OA) joints. Exosomes are identified as potential therapeutic agents for OA. OBJECTIVE: This study aimed to investigate the role of exosomes derived from osteocytes in OA, particularly focusing on their effects on cartilage repair and molecular mechanisms. METHODS: An injury cell model was established by treating chondrocytes with IL-1ß. Cartilage repair was evaluated using cell counting kit-8, flow cytometry, scratch test, and Western Blot. Molecular mechanisms were analyzed using quantitative real-time PCR, bioinformatic analysis, and Western Blot. An OA mouse model was established to explore the role of exosomal DLX2 in vivo. RESULTS: Osteocyte-released exosomes promoted cell viability and migration, and inhibited apoptosis and extracellular matrix (ECM) deposition. Moreover, exosomes upregulated DLX2 expression, and knockdown of DLX2 activated the Wnt pathway. Additionally, exosomes attenuated OA in mice by transmitting DLX2. CONCLUSION: Osteocyte-derived exosomal DLX2 alleviated IL-1ß-induced cartilage repair and inactivated the Wnt pathway, thereby alleviating OA progression. The findings suggested that osteocyte-derived exosomes may hold promise as a treatment for OA.


Subject(s)
Chondrocytes , Exosomes , Homeodomain Proteins , Osteoarthritis , Osteocytes , Transcription Factors , Wnt Signaling Pathway , Exosomes/metabolism , Animals , Osteoarthritis/metabolism , Osteoarthritis/pathology , Mice , Transcription Factors/metabolism , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Osteocytes/metabolism , Chondrocytes/metabolism , Disease Models, Animal , Humans , Interleukin-1beta/metabolism , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Apoptosis , Cartilage/metabolism , Cartilage/pathology , Male , Cell Movement , Cell Survival
6.
J Cell Commun Signal ; 18(2): e12038, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38946717

ABSTRACT

The morbidity and death rates of calcified aortic valves|calcific aortic valve (CAV) disease (CAVD) remain high for its limited therapeutic choices. Here, we investigated the function, therapeutic potential, and putative mechanisms of Enoyl coenzyme A hydratase 1 (ECH1) in CAVD by various in vitro and in vivo experiments. Single-cell sequencing revealed that ECH1 was predominantly expressed in valve interstitial cells and was significantly reduced in CAVs. Overexpression of ECH1 reduced aortic valve calcification in ApoE-/- mice treated with high cholesterol diet, while ECH1 silencing had the reverse effect. We also identified Wnt5a, a noncanonical Wnt ligand, was also altered when ECH1 expression was modulated. Mechanistically, we found that ECH1 exerted anti-calcific actions through suppressing Wnt signaling, since CHIR99021, a Wnt agonist, may significantly lessen the protective impact of ECH1 overexpression on the development of valve calcification. ChIP and luciferase assays all showed that ECH1 overexpression prevented Runx2 binding to its downstream gene promoters (osteopontin and osteocalcin), while CHIR99021 neutralized this protective effect. Collectively, our findings reveal a previously unrecognized mechanism of ECH1-Wnt5a/Ca2+ regulation in CAVD, implying that targeting ECH1 may be a potential therapeutic strategy to prevent CAVD development.

7.
Heliyon ; 10(11): e32243, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38947477

ABSTRACT

The Wnt signaling pathway is one of the most ancient and pivotal signaling cascades, governing diverse processes in development and cancer regulation. Within the realm of cancer treatment, genistein emerges as a promising candidate due to its multifaceted modulation of various signaling pathways, including the Wnt pathway. Despite promising preclinical studies, the precise mechanisms underlying genistein's therapeutic effects via Wnt modulation remain elusive. In this study, we unveil novel insights into the therapeutic mechanisms of genistein by elucidating its inhibitory effects on Wnt signaling through macropinocytosis. Additionally, we demonstrate its capability to curtail cell growth, proliferation, and lysosomal activity in the SW480 colon adenocarcinoma cell model. Furthermore, our investigation extends to the embryonic context, where genistein influences gene regulatory networks governed by endogenous Wnt pathways. Our findings shed light on the intricate interplay between genistein, Wnt signaling, membrane trafficking, and gene regulation, paving the way for further exploration of genistein's therapeutic potential in cancer treatment strategies.

8.
Stem Cell Res Ther ; 15(1): 189, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956646

ABSTRACT

BACKGROUND: Recent studies have proved the role of autophagy in mesenchymal stem cell (MSCs) function and regenerative properties. How and by which mechanism autophagy modulation can affect the juxtacrine interaction of MSCs should be addressed. Here, the role of autophagy was investigated in the formation of tunneling nanotubes (TNTs) and homotypic mitochondrial donation. METHODS: MSCs were incubated with 15 µM Metformin (Met) and/or 3 µM 3-methyladenine (3-MA) for 48 h. The formation of TNTs was assessed using bright-field and SEM images. The mitochondria density and ΔΨ values were monitored using flow cytometry analysis. Using RT-PCR and protein array, the close interaction and shared mediators between autophagy, apoptosis, and Wnt signaling pathways were also monitored. The total fatty acid profile was assessed using gas chromatography. RESULT: Data indicated the increase of TNT length and number, along with other cell projections after the induction of autophagy while these features were blunted in 3-MA-treated MSCs (p < 0.05). Western blotting revealed the significant reduction of Rab8 and p-FAK in 3-MA-treated MSCs (p < 0.05), indicating the inhibition of TNT assembly and vesicle transport. Likewise, the stimulation of autophagy increased autophagic flux and mitochondrial membrane integrity compared to 3-MA-treated MSCs. Despite these findings, protein levels of mitochondrial membrane Miro1 and 2 were unchanged after autophagy inhibition/stimulation (p > 0.05). We found that the inhibition/stimulation of autophagy can affect the protein, and transcription levels of several mediators related to Wnt and apoptosis signaling pathways involved in different cell bioactivities. Data confirmed the profound increase of mono and polyunsaturated/saturated fatty acid ratio in MSCs exposed to autophagy stimulator. CONCLUSIONS: In summary, autophagy modulation could affect TNT formation which is required for homotypic mitochondrial donation. Thus, the modulation of autophagy creates a promising perspective to increase the efficiency of cell-based therapies.


Subject(s)
Autophagy , Mesenchymal Stem Cells , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Mitochondria/metabolism , Adenine/pharmacology , Adenine/analogs & derivatives , Humans , Nanotubes/chemistry , Apoptosis/drug effects , Animals , Metformin/pharmacology , Cells, Cultured , Wnt Signaling Pathway/drug effects , Cell Membrane Structures
9.
Front Oncol ; 14: 1336106, 2024.
Article in English | MEDLINE | ID: mdl-38962268

ABSTRACT

Objective: The escape from T cell-mediated immune surveillance is an important cause of death for patients with acute myeloid leukemia (AML). This study aims to identify clonal heterogeneity in leukemia progenitor cells and explore molecular or signaling pathways associated with AML immune escape. Methods: Single-cell RNA sequencing (scRNA-seq) was performed to identified AML-related cellular subsets, and intercellular communication was analyzed to investigate molecular mechanisms associated with AML immune escape. Bulk RNA sequencing (RNA-seq) was performed to screen differentially expressed genes (DEGs) related to hematopoietic stem cell progenitors (HSC-Prog) in AML, and critical ore signaling pathways and hub genes were found by Gene Set Enrichment Analysis (GSEA), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. The mRNA level of the hub gene was verified using quantitative real-time PCR (qRT-PCR) and the protein level of human leukocyte antigen A (HLA-A) using enzyme-linked immuno sorbent assay (ELISA). Results: scRNA-seq analysis revealed a large heterogeneity of HSC-Prog across samples, and the intercellular communication analysis indicated a strong association between HSC-Prog and CD8+-T cells, and HSC-Prog also had an association with HLA-A. Transcriptome analysis identified 1748 DEGs, enrichment analysis results showed that non-classical wnt signaling pathway was associated with AML, and 4 pathway-related genes (RHOA, RYK, CSNK1D, NLK) were obtained. After qRT-PCR and ELISA validation, hub genes and HLA-A were found to be down-regulated in AML and up-regulated after activation of the non-classical Wnt signaling pathway. Conclusion: In this study, clonal heterogeneity of HSC-Prog cells in AML was identified, non-classical wnt signaling pathways associated with AML were identified, and it was verified that HLA-A could be upregulated by activation of non-classical wnt signaling, thereby increasing antigen presentation.

10.
Thorac Cancer ; 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38973201

ABSTRACT

BACKGROUND: Clinically, most patients with lung cancer (LC) die from tumor spread and metastasis. Specific metastasis-related molecules can provide reference for clinical prediction of efficacy, evaluation of prognosis, and search for the best treatment plan. Troponin T1 (TNNT1) is highly expressed in various cancer tissues, which affects malignant behavior of tumor cells and is related to patients' survival and prognosis. However, the role and molecular mechanism of TNNT1 in LC invasion and metastasis have not yet been investigated. METHODS: Gene expression profiling interactive analysis (GEPIA) online analysis was used to analyze TNNT1 expression in LC tissues. Quantitative real-time-polymerase chain reaction (qRT-PCR) or western blot were performed to measure TNNT1 or epithelial-to-mesenchymal transition (EMT)-related and Wnt/ß-catenin pathway-related protein expression in LC cells. After TNNT1 knockdown, cell scratch healing and transwell assays were introduced to assess cell migration and invasion, respectively. RESULTS: TNNT1 expression in LC tissues and cells was increased. TNNT1 knockdown notably impaired LC cell migration, invasion and EMT. TNNT1 knockdown inhibited Wnt/ß-catenin pathway of LC cells. Lithium chloride (LiCl) addition partially restored the inhibition of TNNT1 knockdown on migration, invasion, EMT and Wnt/ß-catenin of LC cells. CONCLUSION: TNNT1 knockdown attenuated LC migration, invasion and EMT, possibly through Wnt/ß-catenin signaling.

11.
J Transl Med ; 22(1): 617, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961399

ABSTRACT

INTRODUCTION: Intrauterine adhesions (IUA) manifest as endometrial fibrosis, often causing infertility or recurrent miscarriage; however, their pathogenesis remains unclear. OBJECTIVES: This study assessed the role of Dickkopf WNT signaling pathway inhibitor 1 (DKK1) and autophagy in endometrial fibrosis, using clinical samples as well as in vitro and in vivo experiments. METHODS: Immunohistochemistry, immunofluorescence and western blot were used to determine the localization and expression of DKK1 in endometrium; DKK1 silencing and DKK1 overexpression were used to detect the biological effects of DKK1 silencing or expression in endometrial cells; DKK1 gene knockout mice were used to observe the phenotypes caused by DKK1 gene knockout. RESULTS: In patients with IUA, DKK1 and autophagy markers were down-regulated; also, α-SMA and macrophage localization were increased in the endometrium. DKK1 conditional knockout (CKO) mice showed a fibrotic phenotype with decreased autophagy and increased localization of α-SMA and macrophages in the endometrium. In vitro studies showed that DKK1 knockout (KO) suppressed the autophagic flux of endometrial stromal cells. In contrast, ectopic expression of DKK1 showed the opposite phenotype. Mechanistically, we discovered that DKK1 regulates autophagic flux through Wnt/ß-catenin and PI3K/AKT/mTOR pathways. Further studies showed that DKK1 KO promoted the secretion of interleukin (IL)-8 in exosomes, thereby promoting macrophage proliferation and metastasis. Also, in DKK1 CKO mice, treatment with autophagy activator rapamycin partially restored the endometrial fibrosis phenotype. CONCLUSION: Our findings indicated that DKK1 was a potential diagnostic marker or therapeutic target for IUA.


Subject(s)
Autophagy , Endometrium , Exosomes , Fibrosis , Intercellular Signaling Peptides and Proteins , Macrophages , Mice, Knockout , Myofibroblasts , Animals , Female , Intercellular Signaling Peptides and Proteins/metabolism , Endometrium/metabolism , Endometrium/pathology , Macrophages/metabolism , Macrophages/pathology , Humans , Exosomes/metabolism , Myofibroblasts/metabolism , Myofibroblasts/pathology , Mice , Mice, Inbred C57BL , Adult
12.
Exp Eye Res ; 245: 109988, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964496

ABSTRACT

Autism spectrum disorder (ASD) is a group of neurodevelopment disorders characterized by deficits in social interaction and communication, and repetitive or stereotyped behavior. Autistic children are more likely to have vision problems, and ASD is unusually common among blind people. However, the mechanisms behind the vision disorders in autism are unclear. Stabilizing WNT-targeted scaffold protein Axin2 by XAV939 during embryonic development causes overproduction of cortical neurons and leads to autistic-like behaviors in mice. In this study, we investigated the relationship between vision abnormality and autism using an XAV939-induced mouse model of autism. We found that the mice receiving XAV939 had decreased amplitude of bright light-adaptive ERG. The amplitudes and latency of flash visual evoked potential recorded from XAV939-treated mice were lower and longer, respectively than in the control mice, suggesting that XAV939 inhibits visual signal processing and conductance. Anatomically, the diameters of RGC axons were reduced when Axin2 was stabilized during the development, and the optic fibers had defective myelin sheaths and reduced oligodendrocytes. The results suggest that the WNT signaling pathway is crucial for optic nerve development. This study provides experimental evidence that conditions interfering with brain development may also lead to visual problems, which in turn might exaggerate the autistic features in humans.

13.
Oncol Lett ; 28(2): 392, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38966585

ABSTRACT

The AT-rich interacting domain-containing protein 1A (ARID1A) is a tumor suppressor gene that has been implicated in several cancers, including colorectal cancer (CRC). The present study used a proteomic approach to elucidate the molecular mechanisms of ARID1A in CRC carcinogenesis. Stable ARID1A-overexpressing SW48 colon cancer cells were established using lentivirus transduction and the successful overexpression of ARID1A was confirmed by western blotting. Label-free quantitative proteomic analysis using liquid chromatography-tandem mass spectrometry identified 705 differentially altered proteins in the ARID1A-overexpressing cells, with 310 proteins significantly increased and 395 significantly decreased compared with empty vector control cells. Gene Ontology enrichment analysis highlighted the involvement of the altered proteins mainly in the Wnt signaling pathway. Western blotting supported these findings, as a decreased protein expression of Wnt target genes, including c-Myc, transcription factor T cell factor-1/7 and cyclin D1, were observed in ARID1A-overexpressing cells. Among the altered proteins involved in the Wnt signaling pathway, the interaction network analysis revealed that ARID1A exhibited a direct interaction with E3 ubiquitin-protein ligase zinc and ring finger 3 (ZNRF3), a negative regulator of the Wnt signaling pathway. Further analyses using the The Cancer Genome Atlas colon adenocarcinoma public dataset revealed that ZNRF3 expression significantly impacted the overall survival of patients with CRC and was positively correlated with ARID1A expression. Finally, an increased level of ZNRF3 in ARID1A-overexpressing cells was confirmed by western blotting. In conclusion, the findings of the present study suggest that ARID1A negatively regulates the Wnt signaling pathway through ZNRF3, which may contribute to CRC carcinogenesis.

14.
Proc Natl Acad Sci U S A ; 121(28): e2322066121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38968125

ABSTRACT

The Wnt/Wingless signaling pathway plays critical roles in metazoan development and energy metabolism, but its role in regulating lipid homeostasis remains not fully understood. Here, we report that the activation of canonical Wnt/Wg signaling promotes lipolysis while concurrently inhibiting lipogenesis and fatty acid ß-oxidation in both larval and adult adipocytes, as well as cultured S2R+ cells, in Drosophila. Using RNA-sequencing and CUT&RUN (Cleavage Under Targets & Release Using Nuclease) assays, we identified a set of Wnt target genes responsible for intracellular lipid homeostasis. Notably, active Wnt signaling directly represses the transcription of these genes, resulting in decreased de novo lipogenesis and fatty acid ß-oxidation, but increased lipolysis. These changes lead to elevated free fatty acids and reduced triglyceride (TG) accumulation in adipocytes with active Wnt signaling. Conversely, downregulation of Wnt signaling in the fat body promotes TG accumulation in both larval and adult adipocytes. The attenuation of Wnt signaling also increases the expression of specific lipid metabolism-related genes in larval adipocytes, wing discs, and adult intestines. Taken together, these findings suggest that Wnt signaling-induced transcriptional repression plays an important role in regulating lipid homeostasis by enhancing lipolysis while simultaneously suppressing lipogenesis and fatty acid ß-oxidation.


Subject(s)
Drosophila Proteins , Wnt Signaling Pathway , Animals , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Adipocytes/metabolism , Lipid Mobilization , Drosophila melanogaster/metabolism , Drosophila melanogaster/genetics , Wnt1 Protein/metabolism , Wnt1 Protein/genetics , Lipolysis , Lipogenesis/genetics , Triglycerides/metabolism , Lipid Metabolism/genetics , Larva/metabolism , Larva/genetics , Transcription, Genetic , Homeostasis
15.
Int J Biol Macromol ; : 133639, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969042

ABSTRACT

Clarifying the cellular origin and regulatory mechanisms of intramuscular fat (IMF) deposition is crucial for improving beef quality. Here, we used single-nucleus RNA sequencing to analyze the structure and heterogeneity of skeletal muscle cell populations in different developmental stages of Yanbian cattle and identified eight cell types in two developmental stages of calves and adults. Among them, fibro/adipogenic progenitors (FAPs) expressing CD29 (ITGA7)pos and CD56 (NCAM1)neg surface markers were committed to IMF deposition in beef cattle and expressed major Wnt ligands and receptors. LY2090314/XAV-939 was used to activate/inhibit Wnt/ß-catenin signal. The results showed that the blockade of Glycogen Synthase Kinase 3 (GSK3) by LY2090314 promoted the stabilization of ß-catenin and reduced the expression of genes related adipogenic differentiation (e.g., PPARγ and C/EBPα) in bovine FAPs, confirming the anti-adipogenic effect of GSK3. XAV-939 inhibition of the Wnt/ß-catenin pathway promoted the lipid accumulation capacity of FAPs. Furthermore, we found that blocking GSK3 enhanced the paracrine effects of FAPs-MuSCs and increased myotube formation in muscle satellite cells (MuSCs). Overall, our results outline a single-cell atlas of skeletal muscle development in Yanbian cattle, revealed the role of Wnt/GSK3/ß-catenin signaling in FAPs adipogenesis, and provide a theoretical basis for further regulation of bovine IMF deposition.

16.
Int J Dev Neurosci ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961588

ABSTRACT

In this study, we delved into the intricate world of autism spectrum disorder (ASD) and its connection to the disturbance in the Wnt signaling pathway and immunological abnormalities. Our aim was to evaluate the impact of silibinin, a remarkable modulator of both the Wnt signaling pathway and the immune system, on the neurobehavioral and molecular patterns observed in a zebrafish model of ASD induced by valproic acid (VPA). Because silibinin is a hydrophobic molecule and highly insoluble in water, it was used in the form of silibinin nanoparticles (nanosilibinin, NS). After assessing survival, hatching rate, and morphology of zebrafish larvae exposed to different concentrations of NS, the appropriate concentrations were chosen. Then, zebrafish embryos were exposed to VPA (1 µM) and NS (100 and 200 µM) at the same time for 120 h. Next, anxiety and inattentive behaviors and the expression of CHD8, CTNNB, GSK3beta, LRP6, TNFalpha, IL1beta, and BDNF genes were assessed 7 days post fertilization. The results indicated that higher concentrations of NS had adverse effects on survival, hatching, and morphological development. The concentrations of 100 and 200 µM of NS could ameliorate the anxiety-like behavior and learning deficit and decrease ASD-related cytokines (IL1beta and TNFalpha) in VPA-treated larvae. In addition, only 100 µM of NS prevented raising the gene expression of Wnt signaling-related factors (CHD8, CTNNB, GSK3beta, and LRP6). In conclusion, NS treatment for the first 120 h showed therapeutic effect on an autism-like phenotype probably via reducing the expression of pro-inflammatory cytokines genes and changing the expression of Wnt signaling components genes.

17.
Mol Biol Rep ; 51(1): 788, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970704

ABSTRACT

Despite many efforts, a comprehensive understanding and clarification of the intricate connections within cancer cell metabolism remain elusive. This might pertain to intracellular dynamics and the complex interplay between cancer cells, and cells with the tumor stroma. Almost a century ago, Otto Warburg found that cancer cells exhibit a glycolytic phenotype, which continues to be a subject of thorough investigation. Past and ongoing investigations have demonstrated intricate mechanisms by which tumors modulate their functionality by utilizing extracellular glucose as a substrate, thereby sustaining the essential proliferation of cancer cells. This concept of "aerobic glycolysis," where cancer cells (even in the presence of enough oxygen) metabolize glucose to produce lactate plays a critical role in cancer progression and is regulated by various signaling pathways. Recent research has revealed that the canonical wingless-related integrated site (WNT) pathway promotes aerobic glycolysis, directly and indirectly, thereby influencing cancer development and progression. The present review seeks to gather knowledge about how the WNT/ß-catenin pathway influences aerobic glycolysis, referring to relevant studies in different types of cancer. Furthermore, we propose the concept of impeding the glycolytic phenotype of tumors by employing specific inhibitors that target WNT/ß-catenin signaling.


Subject(s)
Glycolysis , Neoplasms , Wnt Signaling Pathway , Humans , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/genetics , beta Catenin/metabolism , Warburg Effect, Oncologic , Animals , Glucose/metabolism
18.
Gastroenterology ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971196

ABSTRACT

BACKGROUND AND AIMS: WNT signaling is central to spatial tissue arrangement, regulating stem cell activity, and represents the hallmark of gastrointestinal cancers. While its role in driving intestinal tumors is well characterized, WNT's role in gastric tumorigenesis remains elusive. METHODS: We have developed mouse models to control the specific expression of an oncogenic form of B-CATENIN in combination with MYC activation in Lgr5+ cells of the gastric antrum. We used multi-omics approaches applied in vivo and in organoid models to characterize their cooperation in driving gastric tumorigenesis. RESULTS: We report that constitutive B-CATENIN stabilization in the stomach has negligible oncogenic effects and requires MYC activation to induce gastric tumour formation. While physiologically low MYC levels in gastric glands limit B-CATENIN transcriptional activity, increased MYC expression unleashes the WNT oncogenic transcriptional program, promoting B-CATENIN enhancer invasion without a direct transcriptional cooperation. MYC activation induces a metabolic rewiring that suppresses lysosomal biogenesis through mTOR and ERK activation and MiT/TFE inhibition. This prevents EPCAM degradation by macropinocytosis, promoting B-CATENIN chromatin accumulation and activation of WNT oncogenic transcription. CONCLUSION: Our results uncovered a new signaling framework with important implications for the control of gastric epithelial architecture and WNT-dependent oncogenic transformation.

19.
Arch Toxicol ; 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38971901

ABSTRACT

Steroid-induced osteonecrosis of the femoral head (SONFH) is a prevalent form of osteonecrosis in young individuals. More efficacious clinical strategies must be used to prevent and treat this condition. One of the mechanisms through which SONFH operates is the disruption of normal differentiation in bone marrow adipocytes and osteoblasts due to prolonged and extensive use of glucocorticoids (GCs). In vitro, it was observed that atorvastatin (ATO) effectively suppressed the impact of dexamethasone (DEX) on bone marrow mesenchymal stem cells (BMSCs), specifically by augmenting their lipogenic differentiation while impeding their osteogenic differentiation. To investigate the underlying mechanisms further, we conducted transcriptome sequencing of BMSCs subjected to different treatments, leading to the identification of Wnt5a as a crucial gene regulated by ATO. The analyses showed that ATO exhibited the ability to enhance the expression of Wnt5a and modulate the MAPK pathway while regulating the Wnt canonical signaling pathway via the WNT5A/LRP5 pathway. Our experimental findings provide further evidence that the combined treatment of ATO and DEX effectively mitigates the effects of DEX, resulting in the upregulation of osteogenic genes (Runx2, Alpl, Tnfrsf11b, Ctnnb1, Col1a) and the downregulation of adipogenic genes (Pparg, Cebpb, Lpl), meanwhile leading to the upregulation of Wnt5a expression. So, this study offers valuable insights into the potential mechanism by which ATO can be utilized in the prevention of SONFH, thereby holding significant implications for the prevention and treatment of SONFH in clinical settings.

20.
Allergol Immunopathol (Madr) ; 52(4): 46-52, 2024.
Article in English | MEDLINE | ID: mdl-38970264

ABSTRACT

BACKGROUND: Lung adenocarcinoma (LUAD) is a leading cause of tumor-associated mortality, and it is needed to find new target to combat this disease. Guanine nucleotide-binding -protein-like 3 (GNL3) mediates cell proliferation and apoptosis in several cancers, but its role in LUAD remains unclear. OBJECTIVE: To explore the expression and function of Guanine nucleotide-binding protein-like 3 (GNL3) in lung adenocarcinoma (LUAD) and its potential mechanism in inhibiting the growth of LUAD cells. METHODS: We evaluated the expression of GNL3 in LUAD tissues and its association with patient prognosis using databases and immunohistochemistry. Cell proliferation was assessed by CCK-8 assay as well as colony formation, while apoptosis was evaluated by FCM. The effect of GNL3 knockdown on the Wnt/ß-catenin axis was investigated by Immunoblot analysis. RESULTS: GNL3 is overexpressed in LUAD tissues and is correlated with poor prognosis. Knockdown of GNL3 significantly inhibited the growth as well as induced apoptosis in A549 as well as H1299 cells. Furthermore, we found that the inhibitory effect of GNL3 knockdown on LUAD cell growth is associated with the downregulation of the Wnt/ß-catenin axis. CONCLUSION: GNL3 is key in the progression of LUAD by metiating Wnt/ß-catenin axis. Targeting GNL3 may represent a novel therapeutic method for LUAD treatment.


Subject(s)
Adenocarcinoma of Lung , Apoptosis , Cell Proliferation , Gene Knockdown Techniques , Lung Neoplasms , Wnt Signaling Pathway , Humans , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Cell Line, Tumor , Prognosis , GTP-Binding Proteins/metabolism , GTP-Binding Proteins/genetics , beta Catenin/metabolism , Gene Expression Regulation, Neoplastic , A549 Cells , Nuclear Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...