Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 446
Filter
1.
Front Oncol ; 14: 1339737, 2024.
Article in English | MEDLINE | ID: mdl-39091920

ABSTRACT

Background: Familial 46, XY Disorder of Sexual Development (DSD) was discovered in a Ph+, BCR::ABL1P210+ Acute Lymphoblastic Leukemia (ALL) female with RCBTB2::LPAR6 fusion gene. Siblings developing 46, XY DSD are extremely rare. Patients with 46, XY DSD have much higher rates of gonadal cancers. Nevertheless, the incidence of hematologic malignancies in patients with DSDs has received little attention. RCBTB2::LPAR6 is a rarely reported fusion gene in ALL. Case presentation: Herein, we report a rare case of a newly diagnosed Ph+, BCR::ABL1P210+ ALL patient who was 77 years old and female by social sex. Whole Exome Sequencing (WES) and RNA sequencing revealed TET2 and NF1 mutations in addition to a rarely reported RCBTB2::LPAR6 fusion gene and 17 other genes with uncertain clinical significance. The patient was surprisingly found to have a male karyotype. On ultrasound, neither the uterus nor the ovaries were discernible. A detailed family and marital history revealed that the patient had undergone surgery at an early age for an unexplained inguinal mass. She had slow pubertal development, scanty menstruation, and few overtly feminine characteristics. She had three marriages, but none succeeded in getting pregnant. The patient had never sought therapy for infertility due to the inaccessibility of medical treatment and a lack of medical knowledge. Her sister, 73 years old and female by social sex, who had amenorrhea in adolescence and was unable to conceive, had the same experience. To our surprise, she also had a male karyotype. Conclusions: Due to the absence of long-term social attention and follow-up, studies on the incidence of hematologic malignancies in patients with 46, XY DSD are incredibly uncommon. Siblings developing 46, XY DSD is extremely rare. We report the oldest patient diagnosed with 46, XY DSD. There have not yet been any reports of familial 46, XY DSD with a concurrent diagnosis of Ph+BCR::ABL1P210+ ALL with a rarely reported RCBTB2::LPAR6 fusion gene.

2.
Sci Rep ; 14(1): 17869, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090159

ABSTRACT

NR2F2 encodes COUP-TFII, an orphan nuclear receptor required for the development of the steroidogenic lineages of the murine fetal testes and ovaries. Pathogenic variants in human NR2F2 are associated with testis formation in 46,XX individuals, however, the function of COUP-TFII in the human testis is unknown. We report a de novo heterozygous variant in NR2F2 (c.737G > A, p.Arg246His) in a 46,XY under-masculinized boy with primary hypogonadism. The variant, located within the ligand-binding domain, is predicted to be highly damaging. In vitro studies indicated that the mutation does not impact the stability or subcellular localization of the protein. NR5A1, a related nuclear receptor that is a key factor in gonad formation and function, is known to physically interact with COUP-TFII to regulate gene expression. The mutant protein did not affect the physical interaction with NR5A1. However, in-vitro assays demonstrated that the mutant protein significantly loses the inhibitory effect on NR5A1-mediated activation of both the LHB and INSL3 promoters. The data support a role for COUP-TFII in human testis formation. Although mutually antagonistic sets of genes are known to regulate testis and ovarian pathways, we extend the list of genes, that together with NR5A1 and WT1, are associated with both 46,XX and 46,XY DSD.


Subject(s)
COUP Transcription Factor II , Testis , Humans , COUP Transcription Factor II/metabolism , COUP Transcription Factor II/genetics , Testis/metabolism , Male , Steroidogenic Factor 1/metabolism , Steroidogenic Factor 1/genetics , Mutation , Hypogonadism/genetics , Hypogonadism/metabolism
3.
Hormones (Athens) ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39048863

ABSTRACT

PURPOSE: In addition to chromosomal abnormalities, several genes have been implicated as causes of disorders of sex development (DSD). The NR5A1 gene expresses SF1, a transcription factor that plays a role in steroidogenesis by controlling multiple stages of adrenal and gonadal development, its mutations having been reported in cases of DSD. CASE PRESENTATION: A 15-year-old teenager was admitted to the Children's ICU of a tertiary center due to acute encephalitis. On physical examination, labia majora and minora, open vaginal opening, and a 4.8 cm phallus (stretched length) in the anatomical position of the clitoris were identified. The patient also presented with hirsutism, breast development was Tanner stage I, and pubic hair was Tanner V. Medical history revealed primary amenorrhea. Imaging studies revealed oval formations primarily compatible with testicular parenchyma in the anatomical location of the inguinal ducts. The karyotype identified a 46,XY individual, while whole exome sequencing (WES) revealed the presence of a heterozygous pathogenic splice site variant of the NR5A1 gene (NM_004959.5), c.990G > C, p.Glu330Asp, which, on further genetic testing of the parents, was proven to be de novo. According to psychiatric assessment, the patient self-identifies as a female. Laparoscopic exploration showed no residual Mullerian ducts or the presence of testicular tissue. A gonadectomy was performed and hormone replacement therapy with estrogens was initiated. CONCLUSION: We describe a rare case of 46,XY DSD in an phenotypically female adolescent carrying the novel de novo p.Glu330Asp variant of the NR5A1 gene. We also highlight the frequent delay in diagnosis of ambiguous external genitalia.

4.
Article in English | MEDLINE | ID: mdl-38973169

ABSTRACT

OBJECTIVES: 45,X/46,XY mosaicism is a rare condition with clinical and genetic heterogeneity and have a greatly increased risk of developing germ cell tumors. We describe a rare 45,X/46,XY Chinese girl with malignant tumors, especially focusing on the molecular genetics of gonadal tumor. CASE PRESENTATION: We report a phenotypically Turner-like Chinese adolescent girl who presented primary amenorrhea and a pelvic mass as the chief complaint, which finally demonstrated dysgerminoma replacing the left gonad and gonadoblastoma arising from right gonad respectively. Her chromosome karyotype was 45,X(4)/46,XY(46); Y-chromosome microdeletions in AZFb regions were found on gonadal DNA rather than peripheral blood lymphocyte (PBL) DNA, while no variants were found in the promoter and coding region of SRY gene in both PBL and gonadal tissues. She underwent bilateral gonadectomy; no recurrence or serious complications were identified after 3 years of follow-up. CONCLUSIONS: This case emphasizes the probable correlation between Y chromosome microdeletions in gonadal tissue and the severity of the phenotype in patients with 45,X/46,XY mosaicism and highlights the importance of clinical genetic testing at the chromosomal and molecular level.

5.
BMC Vet Res ; 20(1): 298, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971779

ABSTRACT

BACKGROUND: Sex chromosome abnormalities associated with disorders of sexual development (DSD) are rarely described in cats, mainly due to the lack of chromossome studies that precisely reveal the condition. Genetic approaches are therefore required in order to detect sex chromossomes abnormalities as variations in the number and structure of chromosomes, or the presence of a second cell line as mosaicim or chimerism. CASE PRESENTATION: A male Shorthair cryptorchid cat was presented with clinical signs of anorexia, tenesmus and hyperthermia. Ultrasonography revealed a fluid-filled structure, with approximately 1 cm in diameter, adjacent to the descending colon. Computed tomography evidenced a tubular structure, ventral to the descending colon and caudal to the bladder, which extended cranially, through two branches. Histopathological evaluation confirmed the presence of two atrophic uterine horns and one hypoplastic testicle with epididymis at the end of one of the uterine horns. The end of the other uterine horn was attached to a structure composed by a mass of adipocytes. Cytogenetic analysis revealed a mosaic 37,X/38,XY karyotype. The two cell lines were found in 15% and 85% of the lymphocytes, respectively. Genetic analysis confirmed the presence of SRY and ZFY genes in blood and hair bulbs, and revealed a marked reduction in SRY expression in the testicle. Additionally, this case presented exceptionally rare features, such as a Leydig' cell tumour and a chronic endometritis in both uterine horns. CONCLUSIONS: Complete imaging workup, cytogenetic analysis and SRY gene expression should be systematically realized, in order to properly classify disorders of sexual development (DSD) in cats.


Subject(s)
Cat Diseases , Karyotype , Mosaicism , Animals , Cats , Male , Cat Diseases/genetics , Cat Diseases/pathology , Cat Diseases/diagnostic imaging , Disorders of Sex Development/veterinary , Disorders of Sex Development/genetics , Disorders of Sex Development/pathology
6.
IJU Case Rep ; 7(4): 329-332, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38966769

ABSTRACT

Introduction: 17α-Hydroxylase deficiency is a very rare disease reported to be associated with a risk of gonadal malignancy. We herein report a rare case of seminoma in a 46, XY patient with 17α-hydroxylase deficiency. Case presentation: A 52-year-old woman presented with a 9-cm pelvic tumor. At age 14, she had been identified as having the XY karyotype and 17α-hydroxylase deficiency. However, she was not informed and did not consult the urology department. Laparoscopic gonadectomy was performed at the latest consultation, and seminoma was diagnosed. Conclusion: This is the third reported case of testicular tumor and the first of germ cell tumor in a 46, XY patient with 17α-hydroxylase deficiency. Given the rarity and the risk of gonadal malignancy associated with 17α-hydroxylase deficiency, the involvement of multidisciplinary specialists and prophylactic gonadectomy is considered crucial in its management.

7.
Andrology ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39081229

ABSTRACT

 : Differences/disorders of sex development can be caused by disruptions to the molecular and cellular mechanisms that control development and sex determination of the reproductive organs with 1:100 live births affected. Multiple genes are associated with 46, XY differences/disorders of sex development that can cause varying clinical phenotypes. An accurate genetic diagnosis is essential to guide clinical care for individuals with 46, XY differences/disorders of sex development and can contribute to family planning. The use of genomics in differences/disorders of sex development has grown, with several advances employed in genetic diagnosis; however, diagnostic rates have stagnated at less than 50% for these conditions. This review will discuss 46, XY differences/disorders of sex development, its molecular causes, and the genomic technologies currently utilized for diagnosis with focus on reports from the last 5 years. We also touch on the challenges in diagnosing 46, XY differences/disorders of sex development and discuss new and future technologies that promise to improved diagnostic rates for these difficult conditions.

8.
Endocr J ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39048383

ABSTRACT

There have been no reports comparing neonatal external genitalia of 5α-reductase deficiency (5αRD) with those of other 46,XY differences of sex differentiation (DSD). This study enrolled 31 Japanese cases of 46,XY DSD whose external genitalia was examined during the neonatal period; four were diagnosed as 5αRD and 15 were defined as non-5αRD by genetic analysis of SRD5A2 or urinary steroid metabolites. We compared the following characteristics between 5αRD and non-5αRD groups, adjusting the severity of undermasculinization of the external genitalia: stretched penile length (SPL), glans width, location of the external urethral opening, and proportion of undescended testis. The external genitalia of all the 5αRD cases were Quigley classification grade 2 or 3. We compared the phenotypes between the four 5αRD cases and 11 non-5αRD cases with grade 2 or 3. The median (range) of SPL in the 5αRD group (14 mm [11-16]) was significantly lower than that in the non-5αRD group (22 mm [15-29]) (p = 0.003). An SPL cut-off value of <15 mm yielded a sensitivity of 50% (95% confidence interval [CI]; 7-93%) and specificity of 100% (95% CI, 72-100%) for discriminating between the groups. The median glans width, location of the external urethral opening, and proportion of undescended testis were not significantly different between the groups. The SPL of 5αRD in Quigley classification grade 2 or 3 was significantly shorter than that of other 46,XY DSDs with the equivalent grade.

9.
Indian J Endocrinol Metab ; 28(2): 197-200, 2024.
Article in English | MEDLINE | ID: mdl-38911109

ABSTRACT

Introduction: One of the common causes of 46,XY differences in sex development (DSD) cases is androgen insensitivity syndrome. This X-linked recessive inherited condition is associated with pathological variations of the AR gene, leading to defects in androgen action. Affected 46,XY infants or individuals experience variable degrees of undervirilization and those with severe form will have female-like external genitalia. Therefore, they were more likely assigned and reared as females. The confirmatory molecular test is often needed due to similar clinical manifestations with other conditions causing 46,XY DSD. Since in our country, the molecular test for the AR gene is lacking, the study is conducted as a preliminary study to elaborate on the possibility of developing a molecular test for the AR gene in 46,XY DSD cases. Methods: Archived DNAs of 13 46,XY DSD cases were analyzed using polymerase chain reaction and direct sequencing for molecular defects in the AR gene. Clinical and hormonal data were collected and analyzed. Results: The study successfully amplified and visualized the eight exons of the AR gene and revealed two subjects carrying AR gene variants at exon 7. In the first case, 1.2-year-old boy carried heterozygous p.Gln825Arg, which has never been reported elsewhere, and the second subject, a 2.1-year-old girl with heterozygous p.Arg841His. Both subjects presented with severe undervirilization of external genitalia with external genitalia masculinization scores (EMS) of 1.5 and 3. Conclusion: In this series, two of 13 46,XY DSD cases carried variants at the AR gene, resulting in complete androgen insensitivity syndrome.

10.
Front Genet ; 15: 1387598, 2024.
Article in English | MEDLINE | ID: mdl-38915825

ABSTRACT

Differences/disorders of sex development (DSDs) in individuals with a 46, XY karyotype are a group of congenital disorders that manifest as male gonadal hypoplasia or abnormalities of the external genitalia. Approximately 50% of patients with 46, XY DSDs cannot obtain a molecular diagnosis. The aims of this paper were to review the most common causative genes and rare genes in patients with 46, XY DSDs, analyze global molecular diagnostic cohorts for the prevalence and geographic distribution of causative genes, and identify the factors affecting cohort detection results. Although the spectrum of genetic variants varies across regions and the severity of the clinical phenotype varies across patients, next-generation sequencing (NGS), the most commonly used detection method, can still reveal genetic variants and aid in diagnosis. A comparison of the detection rates of various sequencing modalities revealed that whole-exome sequencing (WES) facilitates a greater rate of molecular diagnosis of the disease than panel sequencing. Whole-genome sequencing (WGS), third-generation sequencing, and algorithm advancements will contribute to the improvement of detection efficiency. The most commonly mutated genes associated with androgen synthesis and action are AR, SR5A2, and HSD17B3, and the most commonly mutated genes involved in gonadal formation are NR5A1 and MAP3K1. Detection results are affected by differences in enrollment criteria and sequencing technologies.

11.
J Phys Condens Matter ; 36(41)2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38941995

ABSTRACT

The Berezinskii-Kosterlitz-Thouless (BKT) transition in magnetic systems is an intriguing phenomenon, and estimating the BKT transition temperature is a long-standing problem. In this work, we explore anisotropic classical Heisenberg XY and XXZ models with ferromagnetic exchange on a square lattice and antiferromagnetic exchange on a triangular lattice using an unsupervised machine learning approach called principal component analysis (PCA). The earlier PCA studies of the BKT transition temperature (TBKT) using the vorticities as input fail to give any conclusive results, whereas, in this work, we show that the proper analysis of the first principal component-temperature curve can estimateTBKTwhich is consistent with the existing literature. This analysis works well for the anisotropic classical Heisenberg with a ferromagnetic exchange on a square lattice and for frustrated antiferromagnetic exchange on a triangular lattice. The classical anisotropic Heisenberg antiferromagnetic model on the triangular lattice has two close transitions: theTBKTand Ising-like phase transition for chirality atTc, and it is difficult to separate these transition points. It is also noted that using the PCA method and manipulation of their first principal component not only makes the separation of transition points possible but also determines transition temperature.

12.
J Evol Biol ; 37(7): 779-794, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38699972

ABSTRACT

Molluscs have undergone many transitions between separate sexes and hermaphroditism, which is of interest in studying the evolution of sex determination and differentiation. Here, we combined multi-locus genotypes obtained from restriction site-associated DNA (RAD) sequencing with anatomical observations of the gonads of three deep-sea hydrothermal vent gastropods of the genus Alviniconcha living in the southwest Pacific. We found that all three species (Alviniconcha boucheti, Alviniconcha strummeri, and Alviniconcha kojimai) share the same male-heterogametic XY sex-determination system but that the gonads of XX A. kojimai individuals are invaded by a variable proportion of male reproductive tissue. The identification of Y-specific RAD loci (found only in A. boucheti) and the phylogenetic analysis of three sex-linked loci shared by all species suggested that X-Y recombination has evolved differently within each species. This situation of three species showing variation in gonadal development around a common sex-determination system provides new insights into the reproductive mode of poorly known deep-sea species and opens up an opportunity to study the evolution of recombination suppression on sex chromosomes and its association with mixed or transitory sexual systems.


Subject(s)
Gastropoda , Hydrothermal Vents , Phylogeny , Sex Determination Processes , Animals , Male , Gastropoda/genetics , Gastropoda/anatomy & histology , Gastropoda/classification , Female , Disorders of Sex Development/genetics , Gonads/anatomy & histology , Gonads/growth & development
13.
Ital J Pediatr ; 50(1): 93, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715086

ABSTRACT

BACKGROUND: we aim to discuss the origin and the differences of the phenotypic features and the management care of rare form of disorder of sex development due to Mosaic monosomy X and Y chromosome materiel. METHODS: We report our experience with patients harboring mosaic monosomy X and Y chromosome material diagnosed by blood cells karyotypes and cared for in our department from 2005 to 2022. RESULTS: We have included five infants in our study. The current average age was 8 years. In four cases, the diagnosis was still after born and it was at the age of 15 years in one case. Physical examination revealed a variable degree of virilization, ranging from a normal male phallus with unilateral ectopic gonad to ambiguous with a genital tubercle and bilateral not palpable gonads in four cases and normal female external genitalia in patient 5. Karyotype found 45, X/46, XY mosaicism in patient 1 and 2 and 45, X/46, X, der (Y) mosaicism in patient 3, 4 and 5. Three cases were assigned to male gender and two cases were assigned to female. After radiologic and histologic exploration, four patients had been explored by laparoscopy to perform gonadectomy in two cases and Mullerian derivative resection in the other. Urethroplasty was done in two cases of posterior hypospadias. Gender identity was concordant with the sex of assignment at birth in only 3 cases. CONCLUSION: Because of the phenotypic heterogeneity of this sexual disorders and the variability of its management care, then the decision should rely on a multidisciplinary team approach.


Subject(s)
Chromosomes, Human, Y , Mosaicism , Phenotype , Adolescent , Child , Child, Preschool , Female , Humans , Infant , Male , Chromosomes, Human, X/genetics , Chromosomes, Human, Y/genetics , Disorders of Sex Development/genetics , Disorders of Sex Development/therapy , Disorders of Sex Development/diagnosis , Karyotyping , Monosomy/genetics , Turner Syndrome/genetics , Turner Syndrome/therapy
14.
Indian J Pediatr ; 2024 May 18.
Article in English | MEDLINE | ID: mdl-38761274

ABSTRACT

OBJECTIVES: To evaluate the clinical, hormonal and genetic characteristics of 46XY disorders of sexual development (DSD) patients from South India. METHODS: 46XY DSD patients with a provisional diagnosis of 17ß-hydroxysteroid dehydrogenase 3 (17BHSD3) deficiency, 5 alpha-reductase type 2 deficiency (5ARD2) or partial androgen insensitivity syndrome (PAIS) based on clinical and hormonal analysis were included in this study. All the patients underwent detailed clinical and hormonal evaluations. Targeted next-generation sequencing for all three genes (AR, HSD17B3, and SRD5A2) in parallel was carried out for all the included patients and their parents. RESULTS: Based upon the clinical and hormonal analysis, among the 37 children with 46XY DSD in the present study, 21 children were diagnosed with 5ARD2, 10 with PAIS, and six with 17BHSD3 deficiency. However, genetic analysis revealed pathogenic mutations in nine patients - six in the AR gene, two in the SRD5A2 gene, and one in the HSD17B3 gene. The concordance rate between provisional hormonal and genetic diagnosis was only 22.2%. Two out of six subjects with AR gene variants were positive for somatic mosaicism. CONCLUSIONS: In the present study, a positive genetic diagnosis was detected in nine patients (24%), including five novel variants. In this study, mutations in the AR gene was the most reported. The authors did not find the testosterone: dihydrotestosterone (T: DHT) ratio to be an accurate hormonal diagnostic tool.

15.
Entropy (Basel) ; 26(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38785650

ABSTRACT

Long-range interactions are relevant for a large variety of quantum systems in quantum optics and condensed matter physics. In particular, the control of quantum-optical platforms promises to gain deep insights into quantum-critical properties induced by the long-range nature of interactions. From a theoretical perspective, long-range interactions are notoriously complicated to treat. Here, we give an overview of recent advancements to investigate quantum magnets with long-range interactions focusing on two techniques based on Monte Carlo integration. First, the method of perturbative continuous unitary transformations where classical Monte Carlo integration is applied within the embedding scheme of white graphs. This linked-cluster expansion allows extracting high-order series expansions of energies and observables in the thermodynamic limit. Second, stochastic series expansion quantum Monte Carlo integration enables calculations on large finite systems. Finite-size scaling can then be used to determine the physical properties of the infinite system. In recent years, both techniques have been applied successfully to one- and two-dimensional quantum magnets involving long-range Ising, XY, and Heisenberg interactions on various bipartite and non-bipartite lattices. Here, we summarise the obtained quantum-critical properties including critical exponents for all these systems in a coherent way. Further, we review how long-range interactions are used to study quantum phase transitions above the upper critical dimension and the scaling techniques to extract these quantum critical properties from the numerical calculations.

16.
DNA Repair (Amst) ; 139: 103692, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38759435

ABSTRACT

Over the past few decades, unbiased approaches such as genetic screening and protein affinity purification have unveiled numerous proteins involved in DNA double-strand break (DSB) repair and maintaining genome stability. However, despite our knowledge of these protein factors, the underlying molecular mechanisms governing key cellular events during DSB repair remain elusive. Recent evidence has shed light on the role of non-protein factors, such as RNA, in several pivotal steps of DSB repair. In this review, we provide a comprehensive summary of these recent findings, highlighting the significance of ribosomal RNA (rRNA) as a critical mediator of DNA damage response, meiosis, and mitosis. Moreover, we discuss potential mechanisms through which rRNA may influence genome integrity.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair , Genomic Instability , RNA, Ribosomal , Humans , RNA, Ribosomal/metabolism , RNA, Ribosomal/genetics , Animals , Mitosis , Meiosis
17.
Mol Genet Genomic Med ; 12(5): e2453, 2024 May.
Article in English | MEDLINE | ID: mdl-38769888

ABSTRACT

BACKGROUND: 46,XY sex reversal 11 (SRXY11) [OMIM#273250] is characterized by genital ambiguity that may range from mild male genital defects to gonadal sex reversal in severe cases. DHX37 is an RNA helicase that has recently been reported as a cause of SRXY11. So far, a total of 21 variants in DHX37 have been reported in 58 cases with 46,XY disorders of sex development (DSD). METHODS: Whole exome sequencing (WES) was conducted to screen for variations in patients with 46,XY DSD. The subcellular localization of mutant DHX37 proteins was detected by immunofluorescence. And the levels of mutant DHX37 proteins were detected via Western blotting. RESULTS: A novel pathogenic variant of DHX37 was identified in a patient with 46,XY DSD c.2012G > C (p.Arg671Thr). Bioinformatics analysis showed that the protein function of the variant was impaired. Compared with the structure of the wild-type DHX37 protein, the number of hydrogen bonds and interacting amino acids of the variant protein were changed to varying degrees. In vitro assays revealed that the variant had no significant effect on the intracellular localization of the protein but significantly reduced the expression level of the protein. CONCLUSIONS: Our finding further expands the spectrum of the DHX37 variant and could assist in the molecular diagnosis of 46,XY DSD patients.


Subject(s)
DEAD-box RNA Helicases , Disorder of Sex Development, 46,XY , Humans , Disorder of Sex Development, 46,XY/genetics , Disorder of Sex Development, 46,XY/pathology , Male , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Female , HEK293 Cells
18.
Histochem Cell Biol ; 162(1-2): 41-52, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38762823

ABSTRACT

During development and differentiation, histone modifications dynamically change locally and globally, associated with transcriptional regulation, DNA replication and repair, and chromosome condensation. The level of histone H4 Lys20 monomethylation (H4K20me1) increases during the G2 to M phases of the cell cycle and is enriched in facultative heterochromatin, such as inactive X chromosomes in cycling cells. To track the dynamic changes of H4K20me1 in living cells, we have developed a genetically encoded modification-specific intracellular antibody (mintbody) probe that specifically binds to the modification. Here, we report the generation of knock-in mice in which the coding sequence of the mCherry-tagged version of the H4K20me1-mintbody is inserted into the Rosa26 locus. The knock-in mice, which ubiquitously expressed the H4K20me1-mintbody, developed normally and were fertile, indicating that the expression of the probe does not disturb the cell growth, development, or differentiation. Various tissues isolated from the knock-in mice exhibited nuclear fluorescence without the need for fixation. The H4K20me1-mintbody was enriched in inactive X chromosomes in developing embryos and in XY bodies during spermatogenesis. The knock-in mice will be useful for the histochemical analysis of H4K20me1 in any cell types.


Subject(s)
Gene Knock-In Techniques , Histones , Luminescent Proteins , Animals , Mice , Histones/metabolism , Luminescent Proteins/metabolism , Luminescent Proteins/genetics , Antibodies/metabolism , Red Fluorescent Protein , Male , Mice, Inbred C57BL , Mice, Transgenic
19.
J Pediatr Endocrinol Metab ; 37(6): 575-579, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38650427

ABSTRACT

OBJECTIVES: Nuclear receptor subfamily 5 group A member 1 (NR5A1) is a transcription factor critical for the development of various organs. Pathogenic variants in NR5A1 are associated with a spectrum of disorders of sex development (DSD). CASE PRESENTATION: A 15-month-old baby, raised as a girl, was referred for genital swelling and ambiguous genitalia. Born to healthy consanguineous parents, the baby had a phallus, perineal hypospadias, labial fusion, and a hypoplastic scrotum. Hormonal evaluation showed normal levels, and ultrasonography revealed small gonads and absence of Müllerian derivatives. Post-human chorionic gonadotropin (hCG) testing indicated an adequate testosterone response. The karyotype was 46,XY, and in it was found a homozygous NR5A1 variant (c.307 C>T, p.Arg103Trp) in a custom 46 XY DSD gene panel. Notably, the patient exhibited complete sex reversal, hyposplenia, and no adrenal insufficiency. CONCLUSIONS: Previously, NR5A1 pathogenic variants were considered to be dominantly inherited, and homozygous cases were thought to be associated with adrenal insufficiency. Despite the homozygous pathogenic variant, our patient showed hyposplenism with normal adrenal function; this highlights the complexity of NR5A1 genotype-phenotype correlations. These patients should be monitored for adrenal insufficiency and DSD as well as splenic function.


Subject(s)
Disorder of Sex Development, 46,XY , Homozygote , Steroidogenic Factor 1 , Humans , Steroidogenic Factor 1/genetics , Disorder of Sex Development, 46,XY/genetics , Female , Male , Infant , Mutation , Prognosis
20.
Endocr Rev ; 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578952

ABSTRACT

Elite individual sports in which success depends on power, speed or endurance are conventionally divided into male and female events using traditional binary definitions of sex. Male puberty creates durable physical advantages due to the 20-30-fold increase in circulating testosterone producing a sustained uplift in men's muscle, bone, hemoglobin, and cardiorespiratory function resulting from male puberty and sustained during men's lives. These male physical advantages provide strong justification for separate protected category of female events allowing women to achieve the fame and fortune from success they would be denied if competing against men. Recent wider social acceptance of transgender individuals, together with the less recognized involvement of intersex (46 XY DSD) individuals, challenge and threaten to defeat the sex classifications for elite individual female events. This can create unfair advantages if seeking inclusion into elite female events of unmodified male-bodied athletes with female gender identity who have gained the physical advantages of male puberty. Based on reproductive physiology, this paper proposes a working definition of sport sex based primarily on an individual's experience of male puberty and can be applied to transgender and various XY intersex conditions. Consistent with the multidimensionality of biological sex (chromosomal, genetic, hormonal, anatomical sex), this definition may be viewed as a multistrand cable whose overall strength survives when any single strand weakens or fails, rather than as a unidimensional chain whose strength is only as good as its weakest link.

SELECTION OF CITATIONS
SEARCH DETAIL