Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.103
Filter
1.
Mol Breed ; 44(10): 69, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39359407

ABSTRACT

The PHOSPHATE STARVATION RESPONSE REGULATOR (PHR) plays a crucial regulatory role in plants during the process of responding to phosphate starvation. In this study, we combined reverse genetics and biotechnology to investigate the function of ZmPHR1 and ZmPHR2, including proteins containing the Myb_DNA_banding and Myb_CC-LHEQLE structural domains, in maize seedlings. Phylogenetic analysis revealed that ZmPHR1 and ZmPHR2 have high homology with AtPHR1 and OsPHR2, and share the characteristic features of nuclear localisation and transcriptional self-activation. Real-time quantitative PCR analysis showed that low phosphate (Pi) stress significantly induced the expression of ZmPHR1 and ZmPHR2 in maize seedling stage, and candidate gene association analysis further revealed the close association of these two genes with root traits under Pi stress conditions. Transgenic plants overexpressing ZmPHR1 and ZmPHR2 in Arabidopsis show a significant increase in lateral root number, fresh weight and total phosphorus accumulation under low-Pi stress. Besides, CHIP-PCR experiments identified target genes involved in hormone regulation, metal ion transport and homeostasis, phosphatase encoding, and photosynthesis, providing new insights into the biological functions of ZmPHR1 and ZmPHR2. Furthermore, our study showed that ZmPHR1 interacts with six SPX domain-only proteins (ZmSPXs) in maize, while ZmPHR2 interacts with five of these proteins. ZmPHR1 and ZmPHR2 expression was repressed in low Pi conditions, but was up-regulated in ZmSPX1 knockout material, according to our study of transgenic seedlings overexpressing ZmSPX1 in maize. We identified downstream target genes involved in the phosphorus signaling pathway, which are mainly involved in plant-pathogen interactions, ascorbic acid and arabinose metabolism, and ABC transporter proteins, by RNA-seq analysis of transgenic seedlings grown under low Pi stress for 7 days. Collectively, these results provide important clues to elucidate the role and functional significance of ZmPHR1 and ZmPHR2 under low Pi stress and also provide insights into understand the molecular mechanism of phosphorus homeostasis in maize. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01508-2.

2.
Int J Phytoremediation ; : 1-12, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39354853

ABSTRACT

The absorption of cadmium by plants largely depends on cadmium contamination in the soil. The development of phytomining and phytoremediation methods to clean cadmium-contaminated ecosystems is an urgent issue that needs to be solved. Therefore, the role of exogenous O-(2-naphthylsulfonyl)oxime (ANSO) to maize seedlings under cadmium stress was tested. The results showed that when ANSO+cadmium application was compared to cadmium, the cadmium content increased by 7.8 times, while the abscisic acid content decreased. Under cadmium stress, ANSO application did not change the relative water content, but increased the chlorophyll content. While carotenoid content increased with cadmium application, it increased further with ANSO+cadmium application. As a result of the positive effects of ANSO application on the antioxidant system under cadmium stress, hydrogen peroxide content, lipid peroxidation and proline content decreased. ANSO application under cadmium stress increased the phenolic substance content. This study shows that exogenous ANSO makes significant contributions to the protection of maize seedlings despite being under cadmium stress. It also provides important references to the fact that despite stress, the cadmium chelation mechanisms of seedlings continue to work actively to accumulate cadmium in tissues, and it has deep implications for the remediation of cadmium-polluted soils.


Exogenous acetone O-(2-naphthylsulfonyl)oxime increased the activity of maize defense systems. Moreover, it supported the continuity of the activity of defense systems by regulating the phenolic content of maize.The fact that acetone O-(2-naphthylsulfonyl)oxime causes 7.8 times more cadmium accumulation and the use of a newly synthesized substance in the phytoremediation of cadmium is one of the most innovative approaches.The acetone O-(2-naphthylsulfonyl)oxime molecule can not only make serious contributions to the industrialization of cadmium in Cd-polluted soils through phytoremediation and phytomining, but also make significant contributions to environmental protection.

3.
Prev Nutr Food Sci ; 29(3): 376-383, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39371508

ABSTRACT

This study investigated the antioxidative characteristics of Zea mays L. purple corn cob and husk extract (PCHE) and its potential protective effects against blue light (BL)-induced damage in N-retinylidene-N-retinylethanolamine (A2E)-accumulated ARPE-19 retinal pigment epithelial cells. PCHE had a 2,2-diphenyl-1-picrylhydrazyl radical-scavenging capacity and Trolox equivalent antioxidant capacity of 1.28±0.43 mM Trolox equivalents (TE)/g and 2,545.41±34.13 mM TE/g, respectively. Total content of anthocyanins, polyphenols, and flavonoids in the PCHE was 11.13±0.10 mg cyanidin-3-glucoside equivalents/100 g, 227.90±7.38 mg gallic acid equivalents/g, and 117.75±2.46 mg catechin equivalents/g, respectively. PCHE suppressed the accumulation of A2E and the photooxidation caused by BL in a dose-dependent manner. After initial treatment with 25 µM/mL A2E and BL, ARPE-19 cells showed increased cell viability following additional treatment with 15 µg/mL PCHE while the expression of the p62 sequestosome 1 decreased, whereas that of heme oxygenase-1 protein increased compared with that in cells without PCHE treatment. This suggests that PCHE may slow the autophagy induced by BL exposure in A2E-accumulated retinal cells and protect them against oxidative stress.

4.
J Agric Food Chem ; 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-39389770

ABSTRACT

Arbuscular mycorrhizal (AM) fungi can enhance plant uptake of phosphorus (P) and potassium (K), but it is not yet clear whether rhizosphere bacteria can enhance the ability of AM fungi to acquire insoluble P and K from the soil. Here, pot experiments confirmed that AM fungus-promoted insoluble P and K uptake by plants requires rhizosphere bacteria. The changes of rhizosphere bacterial communities associated with AM fungi were explored by 16S rRNA amplicon sequencing and metagenomic sequencing. Five core bacteria genera identified were involved in P and K cycles. Synthetic community (SynCom) inoculation revealed that SynCom increased soil available P and K and its coinoculation with AM fungi increased P and K concentration in the plants. This study revealed that AM fungi interact with rhizosphere bacteria and promote insoluble P and K acquisition, which provided a foundation for the application of AM fungal-bacterial biofertilizers and was beneficial for the sustainable development of agriculture.

5.
BMC Vet Res ; 20(1): 437, 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39342169

ABSTRACT

BACKGROUND: Periodontitis is common in dogs. It is characterized by destruction of the supporting tissues of the teeth due to the host-immune response triggered by plaque. Magnoliae cortex and Zea mays L. extract showed anti-inflammatory and anti-microbial effects, respectively. This study aimed to evaluate improvement in periodontitis following the administration of Magnoliae cortex and Zea mays L. extract in dogs. Periodontitis was experimentally induced in 10 beagle dogs. Five dogs were administered 40 mg of Magnoliae cortex extract and 20 mg of Zea mays L. extract orally once per day for 2 months (MZ group), whereas the other group received empty gelatin capsules (control group). Periodontal clinical parameters, complete blood count, serum chemistry parameters, and tissue inflammatory cytokines and chemokine expression were assessed before and after combined oral extracts administration. RESULTS: The complete blood count and serum chemistry results of all dogs were within normal ranges. Gingival inflammation in MZ group was significantly better than that in the control group at 4 and 8 weeks post-medication (PM; p < 0.05). The periodontal pocket depth and clinical attachment loss at 8 weeks PM in the MZ group were significantly lower than the baseline values (p < 0.05). The incidence of bleeding on probing in the MZ group was significantly lower than that in the control group at 4 weeks PM (p < 0.05). Throughout the medication period, the percentages of CD4 + and CD8 + T cells were higher and lower, respectively, in the MZ group. However, these differences were only significant at 8 weeks PM. The expression of the inflammatory cytokines IL-1ß, IL-6, IL-17, and TNF-α and the chemokine IL-8 in the inflamed tissues was lower in the MZ group, and the two groups showed a significant difference in TNF-α expression. CONCLUSIONS: Combined administration of Magnoliae cortex and Zea mays L. extract improved the clinical symptoms of periodontal disease in dogs. This beneficial effect may be partly due to the inhibitory effects of these extracts on the inflammatory response.


Subject(s)
Anti-Inflammatory Agents , Dog Diseases , Periodontitis , Plant Extracts , Zea mays , Animals , Dogs , Periodontitis/veterinary , Periodontitis/drug therapy , Zea mays/chemistry , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/administration & dosage , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/administration & dosage , Dog Diseases/drug therapy , Cytokines/metabolism , Male , Female
6.
Data Brief ; 57: 110900, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39314889

ABSTRACT

There has been a global surge in the need for commercially accessible plant conditioners that are derived from natural ingredients and are therefore environmentally benign. Currently, sustainable agriculture and minimizing the ecological impact are of great importance. Preparations that contain commonly used humic acids and/or natural amino acids are ideal for meeting these criteria. An investigation was conducted to examine the impact of three plant foliar fertilizers containing humic acid and one fertilizer containing a combination of humic and amino acids on maize crops. By employing the shallow mRNA sequencing technique, we acquired datasets that, once processed, are ideal for investigating the impacts of the foliar fertilizers examined in the study. Five SRA datasets were uploaded to NCBI. These datasets include the TSA (Transcriptome Shotgun Assembly), the contigs that were blasted, mapped, and annotated from the pre-processed datasets, as well as the count table obtained from the RNA-seq read quantification. All of these data are included in the Mendeley database. In the future, the databases will enable the investigation of alterations in plant biochemical processes at the gene expression level.

7.
Plant Sci ; : 112270, 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39349145

ABSTRACT

Agrobacterium-mediated genetic transformation is the most effective and widely used delivery system for candidate genes and genome editors in maize, which is an important crop with the largest planting area and the highest yield. Here, we used gibberellin synthesis inhibitor, uniconazole, to enhance the stem strength of regenerated plantlets resulting in a significantly increase from 11.6% to 18.2% in the percentage of regenerated plantlets, and the transformation frequency was also improved from 9.4% to 15.6% in the test experiments. The physiological condition of immature embryo is greatly affected by ear source, season and insect pests, while it can cause significant fluctuations in the transformation frequency. Our optimization works at the differentiation subculture stage, avoiding the impact on the physiological condition of immature embryo. So, it can be applicated to high-throughput genetic transformation in different seasons and different ear sources throughout the year. The productive experiment results indicated that the annual average transformation frequency significantly improved from 2.76% to 7.14% (approximately 2.6 folds improvement), and the tissue culture cycle was shortened from 115 days to 106 days by using optimized system. Our optimized genetic transformation system opens avenues for maize improvement based on transgenic and genome editing technology.

8.
Life (Basel) ; 14(9)2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39337842

ABSTRACT

Leaf width is a key determinant of planting density and photosynthetic efficiency. In an effort to determine which genes regulate maize plant leaf width, we performed a genome-wide association study (GWAS) of 1.49 × 106 single nucleotide polymorphisms (SNPs) in 80 sequenced backbone inbred maize lines in Jilin Province, China, based upon phenotypic leaf width data from two years. In total, 14 SNPs were identified as being significantly related to leaf width (p < 0.000001), with these SNPs being located on chromosomes 1, 2, 3, 5, 6, 7, 8, and 9. A total of five candidate genes were identified within a mean linkage disequilibrium (LD) distance of 9.7 kb, with a significant SNP being identified within the Zm00001d044327 candidate gene. RNA was then isolated from 12 different inbred maize lines from this GWAS study cohort and was used to conduct qPCR analyses which revealed significant differences in Zm00001d044327 expression among strains exhibiting significant differences in leaf width. Based on an assessment of EMS mutant lines harboring a conserved amino acid stop mutation and two non-synonymous mutations in Zm00001d044327 that exhibited a narrow leaf width, these data suggested that Zm00001d044327 is a key regulator of maize leaf width.

9.
Sci Rep ; 14(1): 21712, 2024 09 17.
Article in English | MEDLINE | ID: mdl-39289494

ABSTRACT

The systemic coordination of accumulation of plasma membrane aquaporins (PIP) was investigated in this study in relation to mycorrhized maize response to a rapid development of severe drought followed by rewatering. In non-mycorrhizal roots, drought led to a drop in PIP abundance, followed by a transient increase under rewatering, whereas leaves showed an opposite pattern. In contrast, mycorrhiza contributed to maintenance of high and stable levels of PIPs in both plant organs after an initial increase, prolonged over the irrigation period. Isoelectric focusing electrophoresis resolved up to 13 aquaporin complexes with highly reproducible pl positions across leaf and root samples, symbiotic and non-symbiotic, stressed or not. Mass spectrometry recognized in leaves and roots a different ratio of PIP1 and PIP2 subunits within 2D spots that accumulated the most. Regardless of symbiotic status, drought regulation of aquaporins in roots was manifested as the prevalence of complexes that comprise almost exclusively PIP2 monomers. In contrast, the leaf response involved enrichment in PIP1s. PIP1s are thought to enhance water transport, facilitate CO2 diffusion but also affect stomatal movements. These features, together with elevated aquaporin levels, might explain a stress tolerance mechanism observed in mycorrhizal plants, resulting in faster recovery of stomatal water conductance and CO2 assimilation rate after drought.


Subject(s)
Aquaporins , Droughts , Mycorrhizae , Plant Leaves , Plant Proteins , Plant Roots , Zea mays , Zea mays/metabolism , Zea mays/microbiology , Aquaporins/metabolism , Mycorrhizae/metabolism , Mycorrhizae/physiology , Plant Roots/metabolism , Plant Roots/microbiology , Plant Leaves/metabolism , Plant Leaves/microbiology , Plant Proteins/metabolism , Stress, Physiological , Gene Expression Regulation, Plant , Water/metabolism , Organ Specificity
10.
Front Plant Sci ; 15: 1399072, 2024.
Article in English | MEDLINE | ID: mdl-39309183

ABSTRACT

Introduction: The stay-green (SG) or delayed leaf senescence enables crop plants to maintain their green leaves and photosynthetic capacity for a longer time after flowering. It is considered an important trait in maize breeding, which has contributed to gain in grain yield of modern varieties. It has been also used to improve the tolerance to drought and deficiencies in nitrogen fertilization (NF). However, the objective of this study is to evaluate the influence of water irrigation (WI), NF, and plant density (PD) on SG and the effect of SG on agronomic traits in maize. Methods: Four SG lines and four non-stay-green (NSG) lines were evaluated in four contrasting environments under two WI, three NF, and two PD levels. Results and discussion: As expected, the chlorophyll content of leaves at 45 days after flowering (Chlo45) was, on average, higher in the SG group of lines. The difference in Chlo45 between the SG and NSG genotypes was consistent across WI, NF, and PD and the environments. This is indicative that internal or developmental factors were more important than external signals in controlling the senescence. The effect of SG increasing thousand-kernel weight, stover yield at harvest, or moisture was not influenced by WI, NF, or PD but was altered by the background environment. Our results have implications for the application of SG as a secondary trait for enhancing abiotic stress tolerance. Future studies could consider a wider range of environmental conditions to assess the performance of SG traits under different climatic and soil conditions.

11.
Plant J ; 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39259496

ABSTRACT

Genome-wide association study (GWAS) with single nucleotide polymorphisms (SNPs) has been widely used to explore genetic controls of phenotypic traits. Alternatively, GWAS can use counts of substrings of length k from longer sequencing reads, k-mers, as genotyping data. Using maize cob and kernel color traits, we demonstrated that k-mer GWAS can effectively identify associated k-mers. Co-expression analysis of kernel color k-mers and genes directly found k-mers from known causal genes. Analyzing complex traits of kernel oil and leaf angle resulted in k-mers from both known and candidate genes. A gene encoding a MADS transcription factor was functionally validated by showing that ectopic expression of the gene led to less upright leaves. Evolution analysis revealed most k-mers positively correlated with kernel oil were strongly selected against in maize populations, while most k-mers for upright leaf angle were positively selected. In addition, genomic prediction of kernel oil, leaf angle, and flowering time using k-mer data resulted in a similarly high prediction accuracy to the standard SNP-based method. Collectively, we showed k-mer GWAS is a powerful approach for identifying trait-associated genetic elements. Further, our results demonstrated the bridging role of k-mers for data integration and functional gene discovery.

12.
Front Microbiol ; 15: 1443327, 2024.
Article in English | MEDLINE | ID: mdl-39252841

ABSTRACT

Introduction: The fungus Fusarium verticillioides significantly threatens maize crops in tropical soils. In light of this, biological control has emerged as a promising strategy to reduce fungicide costs and environmental risks. In this study, we aimed to test the antifungal activity of cell-free supernatant (CFS) from three Bacillus velezensis (CT02, IM14, and LIS05) and one Paenibacillus ottowii (LIS04) against F. verticillioides, thereby contributing to the development of effective biocontrol measures. Methods: The research employed a comprehensive approach. The antifungal activity of the bacterial strains was tested using cell-free supernatant (CFS) from three Bacillus velezensis (CT02, IM14, and LIS05) and one Paenibacillus ottowii (LIS04). The UPLC-MS evaluated the CFS to identify the main bioactive molecules involved in the inhibitory effect on F. verticillioides. Scanning electron microscopy (SEM) was used to assess the impact of CFS on spores and hyphae, and genome sequencing was conducted to identify the genes involved in biological control. These robust methodologies ensure the reliability and validate our findings. Results: The CFS of the four strains demonstrated significant inhibition of fungal growth. The UPLC-MS analysis revealed the presence of lipopeptides with antifungal activity, including surfactin and fengycins A and B expressed by the three strains of Bacillus velezensis and iturin A expressed by strains LIS05 and IM14. For Paenibacillus ottowii, fusaricidins, ABCDE, and five previously unreported lipopeptides were detected. Scanning electron microscopy (SEM) showed that treatments with CFS led to significant distortion and breakage of the F. verticillioides hyphae, in addition to the formation of cavities in the membrane. Genome mining confirmed the presence of genes coding for the lipopeptides identified by UPLC-MS, including the gene for iturin in CTO2. Genomic sequencing revealed that CT02, IM14, and LIS05 belong to different strains of Bacillus velezensis, and LIS04 belongs to Paenibacillus ottowii, a species recently described. Discussion: The four bacterial strains, including three novel strains identified as Bacillus velezensis and one as the recently described species Paenibacillus ottowii, demonstrate significant potential as biocontrol agents for managing fungal disease. This finding underscores the novelty and potential impact of our research.

13.
Carbohydr Polym ; 345: 122555, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39227118

ABSTRACT

As a typical C4 plant and important crop worldwide, maize is susceptible to drought. In maize, transitory starch (TS) turnover occurs in the vascular bundle sheath of leaves, differing from that in Arabidopsis (a C3 plant). This process, particularly its role in drought tolerance and the key starch-hydrolyzing enzymes involved, is not fully understood. We discovered that the expression of the ß-amylase (BAM) gene ZmBAM8 is highly upregulated in the drought-tolerant inbred line Chang7-2t. Inspired by this finding, we systematically investigated TS degradation in maize lines, including Chang7-2t, Chang7-2, B104, and ZmBAM8 overexpression (OE) and knockout (KO) lines. We found that ZmBAM8 was significantly induced in the vascular bundle sheath by drought, osmotic stress, and abscisic acid. The stress-induced gene expression and chloroplast localization of ZmBAM8 align with the tissue and subcellular sites where TS turnover occurs. The recombinant ZmBAM8 was capable of effectively hydrolyzing leaf starch. Under drought conditions, the leaf starch in ZmBAM8-OE plants substantially decreased under light, while that in ZmBAM8-KO plants did not decrease. Compared with ZmBAM8-KO plants, ZmBAM8-OE plants exhibited increased drought tolerance. Our study provides insights into the significance of leaf starch degradation in C4 crops and contributes to the development of drought-resistant maize.


Subject(s)
Droughts , Gene Expression Regulation, Plant , Plant Leaves , Starch , Zea mays , beta-Amylase , Zea mays/genetics , Zea mays/metabolism , Zea mays/enzymology , Starch/metabolism , beta-Amylase/metabolism , beta-Amylase/genetics , Plant Leaves/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Plants, Genetically Modified , Abscisic Acid/metabolism , Stress, Physiological , Osmotic Pressure , Chloroplasts/metabolism , Drought Resistance
14.
Plant Biotechnol J ; 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39284226

ABSTRACT

MicroRNA827 (miR827) is functionally conserved among different plant species and displays species-specific characteristics, but the mechanisms by which miR827 regulates phosphate (Pi) starvation tolerance and maize development remain elusive. We found that miR827 selectively targets the Pi transporter genes SPX-MFS1 and SPX-MFS5. miR827 overexpression improved the Pi starvation tolerance, plant architecture and grain yield and quality, whereas miR827 suppression yielded a contrasting phenotype. In addition, we identified a specific long noncoding RNA (lncRNA767) that serves as a direct target and a facilitator of miR827 and can stabilize the SPX-MFS1 and SPX-MFS5 transcripts, leading to their translation inhibition. The orchestrated regulation of SPX-MFS1 and SPX-MFS5 modulates PHR1; 1 and PHR1; 2, which are critical transcription factors in Pi signalling, and thereby affects the expression of downstream Pi starvation-induced genes. Together, these findings demonstrate that miR827, assisted by lncRNA767, enhances SPX-MFS1 and SPX-MFS5 suppression and thus exerts a significant impact on Pi homeostasis and several essential agronomic traits of maize.

15.
Int J Mol Sci ; 25(17)2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39273633

ABSTRACT

The maize Snf2 gene family plays a crucial role in chromatin remodeling and response to environmental stresses. In this study, we identified and analyzed 35 members of the maize Snf2 gene family (ZmCHR1 to ZmCHR35) using the Ensembl Plants database. Each protein contained conserved SNF2-N and Helicase-C domains. Phylogenetic analysis revealed six groups among the Snf2 proteins, with an uneven distribution across subfamilies. Physicochemical analysis indicated that the Snf2 proteins are hydrophilic, with varied amino acid lengths, isoelectric points, and molecular weights, and are predominantly localized in the nucleus. Chromosomal mapping showed that these genes are distributed across all ten maize chromosomes. Gene structure analysis revealed diverse exon-intron arrangements, while motif analysis identified 20 conserved motifs. Collinearity analysis highlighted gene duplication events, suggesting purifying selection. Cis-regulatory element analysis suggested involvement in abiotic and biotic stress responses. Expression analysis indicated tissue-specific expression patterns and differential expression under various stress conditions. Specifically, qRT-PCR validation under drought stress showed that certain Snf2 genes were upregulated at 12 h and downregulated at 24 h, revealing potential roles in drought tolerance. These findings provide a foundation for further exploration of the functional roles of the maize Snf2 gene family in development and stress responses.


Subject(s)
Gene Expression Regulation, Plant , Multigene Family , Phylogeny , Plant Proteins , Stress, Physiological , Zea mays , Zea mays/genetics , Zea mays/metabolism , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Droughts , Chromosomes, Plant/genetics , Chromosome Mapping , Transcription Factors/genetics , Transcription Factors/metabolism
16.
Plants (Basel) ; 13(17)2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39273949

ABSTRACT

Planting geometry is one of the most important management practices that determine plant growth and yield of corn. The effects of eight planting geometries (35 × 23 cm, 40 × 21 cm, 45 × 19 cm, 50 × 18 cm, 55 × 17 cm, 60 × 16 cm, 65 × 15 cm, 70 × 15 cm) on plant growth and yields of three sweet corn hybrids (Argos F1, Challenger F1, Khan F1) were investigated under Erzurum, Türkiye conditions in 2022 and 2023 years. Variance analysis of the main factors shows a highly significant effect on whole traits but in two-way interactions some of the traits were significant and in the three-way interactions, it was insignificant. As an average of years, the number of plants per hectare at the harvest varied between 92,307 (35 × 23 cm) and 120,444 (70 × 15 cm) according to the planting geometries. The highest marketable ear number per hectare (107,456), marketable ear yield (24,887 kg ha-1), and fresh kernel yield (19,493 kg ha-1) were obtained from the 40 × 21 cm planting geometry. The results showed that the variety Khan F1 grown at 40 × 21 cm planting geometry obtained the highest marketable ear number (112,472), marketable ear yield (29,788 kg ha-1), and fresh kernel yield (22,432 kg ha-1). The plant density was positively correlated with marketable ear number (r = 0.904 **), marketable ear yield (r = 0.853 **), and fresh kernel yield (r = 0.801 **). The differences among the varieties were significant for the studied traits, except for plant density and kernel number per ear. In conclusion, the variety Khan F1 should be grown at the 40 × 21 cm planting geometry to maximize yields under study area conditions without water and nutrient limitations.

17.
Molecules ; 29(17)2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39274945

ABSTRACT

Considering that maize (Zea mays L.) is a staple food for a large segment of the population worldwide, many attempts have been made to improve the nutritional value of its grain and at the same time to achieve sustainable cropping systems. The present study aimed to characterize the composition and nutritional value of maize grain as influenced by cropping system, genetic background (variety), and growing year using untargeted NMR metabolomics. The composition of both water- (sugars and polyols, organic acids, and amino acids) and liposoluble metabolites (free and esterified fatty acids, sterols, and lipids) extracted from the maize grain was determined. Multivariate statistical analyses (PCA and ANOVA) pointed to the growing year and the variety as the most important random and fixed factors, respectively, influencing the metabolite profile. The samples were separated along PC1 and PC3 according to the growing year and the variety, respectively. A higher content of citric acid and diunsaturated fatty acids and a lower content of tyrosine, trigonelline, and monounsaturated fatty acids was observed in the organic with respect to the conventional variety. The effect of the cropping system was overwhelmed by the random effect of the growing year. The results provide novel knowledge on the influence of agronomic practices on maize micronutrient contents.


Subject(s)
Magnetic Resonance Spectroscopy , Metabolomics , Zea mays , Zea mays/metabolism , Zea mays/growth & development , Zea mays/chemistry , Magnetic Resonance Spectroscopy/methods , Metabolomics/methods , Edible Grain/metabolism , Edible Grain/growth & development , Edible Grain/chemistry , Fatty Acids/metabolism , Fatty Acids/analysis , Metabolome , Amino Acids/metabolism , Amino Acids/analysis , Nutritive Value
18.
Environ Sci Pollut Res Int ; 31(47): 57973-57988, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39305414

ABSTRACT

Biosurfactants are amphiphilic biomolecules with promising tensoative and emulsifying properties that find application in the most varied industrial sectors: environment, food, agriculture, petroleum, cosmetics, and hygiene. In the current work, a 23 full-factorial design was performed to evaluate the effect and interactions of pineapple peel and corncob as substrates for biosurfactant production by Bacillus subtilis LMA-ICF-PC 001. In a previous stage, an alkaline pretreatment was applied to corncob samples to extract the xylose-rich hydrolysate. The results indicated that pineapple peel extract and xylose-rich hydrolysate acted as partial glucose substitutes, minimizing production costs with exogenous substrates. Biosurfactant I (obtained at 8.11% pineapple peel extract, 8.11% xylose-rich hydrolysate from corncob, and 2.8109 g/L glucose) exhibited a significant surface tension reduction (52.37%) and a promising bioremediation potential (87.36%). On the other hand, biosurfactant III (obtained at 8.11% pineapple peel extract, 31.89% xylose-rich hydrolysate from corncob, and 2.8109 g/L glucose) exhibited the maximum emulsification index in engine oil (69.60%), the lowest critical micellar concentration (68 mg/L), and the highest biosurfactant production (5.59 g/L). These findings demonstrated that using pineapple peel extract and xylose-rich hydrolysate from corncob effectively supports biosurfactant synthesis by B. subtilis, reinforcing how agro-industrial wastes can substitute traditional carbon sources, contributing to cost reduction and environmental sustainability.


Subject(s)
Ananas , Surface-Active Agents , Zea mays , Surface-Active Agents/chemistry , Ananas/chemistry , Zea mays/chemistry , Bacillus subtilis/metabolism , Biodegradation, Environmental
19.
J Genet Genomics ; 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39241862

ABSTRACT

Pentatricopeptide repeat (PPR) proteins are a large group of eukaryote-specific RNA-binding proteins that play pivotal roles in plant organelle gene expression. Here, we report the function of PPR21 in mitochondrial intron splicing and its role in maize kernel development. PPR21 is a typical P-type PPR protein targeted to mitochondria. The ppr21 mutants are arrested in embryogenesis and endosperm development, leading to embryo lethality. Null mutations of PPR21 reduce the splicing efficiency of nad2 intron 1, 2, and 4 and impair the assembly and activity of mitochondrial complex I. Previous studies show that the P-type PPR protein EMP12 is required for the splicing of identical introns. However, our protein interaction analyses reveal that PPR21 does not interact with EMP12. Instead, both PPR21 and EMP12 interact with the small MutS-related (SMR) domain-containing PPR protein 1 (PPR-SMR1) and the short P-type PPR protein 2 (SPR2). PPR-SMR1 interacts with SPR2, and both proteins are required for the splicing of many introns in mitochondria, including nad2 intron 1, 2, and 4. These results suggest that a PPR21-(PPR-SMR1/SPR2)-EMP12 complex is involved in the splicing of nad2 introns in maize mitochondria.

20.
Front Plant Sci ; 15: 1397552, 2024.
Article in English | MEDLINE | ID: mdl-39246811

ABSTRACT

Introduction: Salinity negatively affects maize productivity. However, calcium lignosulfonate (CLS) could improve soil properties and maize productivity. Methods: In this study, we evaluated the effects of CLS application on soil chemical properties, plant physiology and grain quality of maize under salinity stress. Thus, this experiment was conducted using three CLS application rates, CLS0, CLS5, and CLS10, corresponding to 0%, 5%, and 10% of soil mass, for three irrigation water salinity (WS) levels WS0.5, WS2.5, and WS5.5 corresponding to 0.5 and 2.5 and 5.5 dS/m, respectively. Results and discussion: Results show that the WS0.5 × CLS10 combination increased potassium (K 0.167 g/kg), and calcium (Ca, 0.39 g/kg) values while reducing the sodium (Na, 0.23 g/kg) content in soil. However, the treatment WS5.5 × CLS0 decreased K (0.120 g/kg), and Ca (0.15 g/kg) values while increasing Na (0.75 g/kg) content in soil. The root activity was larger in WS0.5 × CLS10 than in WS5.5 × CLS0, as the former combination enlarged K and Ca contents in the root while the latter decreased their values. The leaf glutamine synthetase (953.9 µmol/(g.h)) and nitrate reductase (40.39 µg/(g.h)) were higher in WS0.5 × CLS10 than in WS5.5 × CLS0 at 573.4 µmol/(g.h) and 20.76 µg/(g.h), leading to the improvement in cell progression cycle, as revealed by lower malonaldehyde level (6.57 µmol/g). The K and Ca contents in the leaf (881, 278 mg/plant), stem (1314, 731 mg/plant), and grains (1330, 1117 mg/plant) were greater in WS0.5 × CLS10 than in WS5.5 × CLS0 at (146, 21 mg/plant), (201, 159 mg/plant) and (206, 157 mg/plant), respectively. Therefore, the maize was more resistance to salt stress under the CLS10 level, as a 7.34% decline in yield was noticed when salinity surpassed the threshold value (5.96 dS/m). The protein (13.6 %) and starch (89.2 %) contents were greater in WS0.5 × CLS10 than in WS5.5 × CLS0 (6.1 %) and (67.0 %), respectively. This study reveals that CLS addition can alleviate the adverse impacts of salinity on soil quality and maize productivity. Thus, CLS application could be used as an effective soil amendment when irrigating with saline water for sustainable maize production.

SELECTION OF CITATIONS
SEARCH DETAIL