Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters











Publication year range
1.
Molecules ; 29(17)2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39274935

ABSTRACT

Due to the high impact of semiconductors with respect to many applications for electronics and energy transformation, the search for new compounds and a deep understanding of the structure-property relationship in such materials has a high priority. Electron-precise Zintl compounds of the composition A3TrPn2 (A = Li - Cs, Tr = Al - In, Pn = P, As) have been reported for 22 possible element combinations and show a large variety of different crystal structures comprising zero-, one-, two- and three-dimensional polyanionic substructures. From Li to Cs, the compounds systematically lower the complexity of the anionic structure. For an insight into possible crystal-structure band-structure relations for all compounds (experimentally known or predicted), their band structures, density of states and crystal orbital Hamilton populations were calculated on a basis of DFT/PBE0 and SVP/TZVP basis sets. All but three (Na3AlP2, Na3GaP2 and Na3AlAs2) compounds show direct or pseudo-direct band gaps. Indirect band gaps seem to be linked to one specific structure type, but only for Al and Ga compounds. Arsenides show smaller band gaps than phosphides due to weaker Tr-As bonds. The bonding situation was confirmed by a Mullikan analysis, and most states close to the Fermi level were assigned to non-bonding orbitals.

2.
Adv Sci (Weinh) ; 11(33): e2402209, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38946664

ABSTRACT

Zintl phases typically exhibit low lattice thermal conductivity, which are extensively investigated as promising thermoelectric candidates. While the significance of Zintl anionic frameworks in electronic transport properties is widely recognized, their roles in thermal transport properties have often been overlooked. This study delves into KCdSb as a representative case, where the [CdSb4/4]- tetrahedrons not only impact charge transfer but also phonon transport. The phonon velocity and mean free path, are heavily influenced by the bonding distance and strength of the Zintl anions Cd and Sb, considering the three acoustic branches arising from their vibrations. Furthermore, the weakly bound Zintl cation K exhibits localized vibration behaviors, resulting in strong coupling between the high-lying acoustic branch and the low-lying optical branch, further impeding phonon diffusion. The calculations reveal that grain boundaries also contribute to the low lattice thermal conductivity of KCdSb through medium-frequency phonon scattering. These combined factors create a glass-like thermal transport behavior, which is advantageous for improving the thermoelectric merit of zT. Notably, a maximum zT of 0.6 is achieved for K0.84Na0.16CdSb at 712 K. The study offers both intrinsic and extrinsic strategies for developing high-efficiency thermoelectric Zintl materials with extremely low lattice thermal conductivity.

3.
Chemistry ; 30(22): e202400002, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38320961

ABSTRACT

Investigating the relationship between atomic and electronic structures is a powerful tool to screen the wide variety of Zintl phases for interesting (opto-)electronic properties. To get an insight in such relations, the A10Tt2P6 system (A=Li-Cs; Tt=Si-Sn) was picked as model system to analyse the influence of structural motives, combination of elements and their properties on type and width of the band gaps. Those compounds comprise two interesting structural motives of their anions, which are either monomeric trigonal planar TtP3 5- units which are isostructural to CO3 2- or [Tt2P6]10- dimers which correspond to two edge-sharing TtP4 tetrahedra. The A10Tt2P6 compounds were structurally optimized for both polymorphs and subsequent frequency analysis, band structure as well as density of states calculations were performed. The Gibbs free energies were compared to determine temperature dependent stability, where Na10Si2P6, Na10Ge2P6 and K10Sn2P6 were found to be candidates for a high temperature phase transition between the two polymorphs. Additionally, the unknown, but predicted compound K10Sn2P6 was synthesized and characterized by single crystal and powder x-ray diffraction. It crystalizes in the monoclinic space group P 21/n and incorporates [Sn2P6]10- edge sharing double tetrahedra. It was determined to be a direct band gap semiconductor with a band gap of 2.57 eV.

4.
ACS Appl Mater Interfaces ; 16(2): 2309-2318, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38170673

ABSTRACT

Dendritic copper offers a highly effective method for synthesizing porous copper anodes due to its intricate branching structure. This morphology results in an elevated surface area-to-volume ratio, facilitating shortened electron pathways during aqueous and electrolyte permeation. Here, we demonstrate a procedure for a time- and cost-efficient synthesis routine of fern-like copper microstructures as a host for polymer-templated Si/Ge/C thin films. Dissolvable Zintl clusters and sol-gel chemistry are used to synthesize nanoporous coating as the anode. Cyclic voltammetry (CV) with KOH as the electrolyte is used to estimate the surface area increase in the dendritic copper current collectors (CCs). Half cells are assembled and tested with battery-related techniques such as CV, galvanostatic cycling, and electrochemical impedance spectroscopy, showing a capacity increase in the dendritic copper cells. Energy-dispersive X-ray spectroscopy is used to estimate the removal of K in the bulk after oxidizing the Zintl phase K12Si8Ge9 in the polymer/precursor blend with SiCl4. Furthermore, scanning electron microscopy images are provided to depict the thin films after synthesis and track the degradation of the half cells after cycling, revealing that the morphological degradation through alloying/dealloying is reduced for the dendritic Cu CC anodes as compared with the bare reference. Finally, we highlight this time- and cost-efficient routine for synthesizing this capacity-boosting material for low-mobility and high-capacity anode coatings.

5.
Small ; 19(33): e2301382, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37086113

ABSTRACT

Thermal properties strongly affect the applications of functional materials, such as thermal management, thermal barrier coatings, and thermoelectrics. Thermoelectric (TE) materials must have a low lattice thermal conductivity to maintain a temperature gradient to generate the voltage. Traditional strategies for minimizing the lattice thermal conductivity mainly rely on introduced multiscale defects to suppress the propagation of phonons. Here, the origin of the anomalously low lattice thermal conductivity is uncovered in Cd-alloyed Mg3 Sb2 Zintl compounds through complementary bonding analysis. First, the weakened chemical bonds and the lattice instability induced by the antibonding states of 5p-4d levels between Sb and Cd triggered giant anharmonicity and consequently increased the phonon scattering. Moreover, the bond heterogeneity also augmented Umklapp phonon scatterings. Second, the weakened bonds and heavy element alloying softened the phonon mode and significantly decreased the group velocity. Thus, an ultralow lattice thermal conductivity of ≈0.33 W m-1 K-1 at 773 K is obtained, which is even lower than the predicated minimum value. Eventually, Na0.01 Mg1.7 Cd1.25 Sb2 displays a high ZT of ≈0.76 at 773 K, competitive with most of the reported values. Based on the complementary bonding analysis, the work provides new means to control thermal transport properties through balancing the lattice stability and instability.

6.
ChemistryOpen ; 12(3): e202200263, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36855332

ABSTRACT

Zintl compounds are promising thermoelectric materials for power generation as their electronic and thermal transport properties can be simultaneously engineered with anion/cation alloying. Recently, a peak thermoelectric figure-of-merit, zT, of 1.4 was achieved in a (Yb0.9 Mg0.1 )Cd1.2 Mg0.4 Zn0.4 Sb2 Zintl phase at 700 K. Although the effects of alloying Zn in lattice thermal conductivity had been studied thoroughly, how the Zn alloying affects its electronic transport properties has not yet been fully investigated. This study evaluates how the Zn alloying at Cd sites alters the band parameters of (Yb0.9 Mg0.1 )Cd1.6-x Mg0.4 Znx Sb2 (x=0-0.6) using the Single Parabolic Band model at 700 K. The Zn alloying increased the density-of-states effective mass (md * ) from 0.87 to 0.97 m0 . Among Zn-alloyed samples, the md * of the x=0.4 sample was the lowest (0.93 m0 ). The Zn alloying decreased the non-degenerate mobility (µ0 ) from 71 to 57 cm2 s-1 V-1 . Regardless of Zn alloying content, the µ0 of the Zn-alloyed samples were similar (∼57 cm2 s-1 V-1 ). Consequently, the x=0.4 with the highest zT exhibited the lowest weighted mobility (µW ). The lowest µW represents the lowest theoretical electronic transport properties among other x. The highest zT at x=0.4 despite the lowest µW was explained with a significant lattice thermal conductivity reduction achieved with Zn alloying with x=0.4, which outweighed the deteriorated electronic transport properties also due to the alloying.

7.
Angew Chem Int Ed Engl ; 62(3): e202212515, 2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36226714

ABSTRACT

Many Zintl phases are promising thermoelectric materials owning to their features like narrow band gaps, multiband behaviors, ideal charge transport tunnels, and loosely bound cations. Herein we show a new Zintl phase NaCdSb with exceptional intrinsic thermoelectric performance. Pristine NaCdSb exhibits semiconductor behaviors with an experimental hole concentration of 2.9×1018  cm-3 and a calculated band gap of 0.5 eV. As the temperature increases, the hole concentration rises gradually and approaches its optimal one, leading to a high power factor of 11.56 µW cm-1 K-2 at 673 K. The ultralow thermal conductivity is derived from the small phonon group velocity and short phonon lifetime, ascribed to the structural anharmonicity of Cd-Sb bonds. As a consequence, a maximum zT of 1.3 at 673 K has been achieved without any doping optimization or structural modification, demonstrating that NaCdSb is a remarkable thermoelectric compound with great potential for performance improvement.

8.
ACS Appl Mater Interfaces ; 14(48): 53860-53871, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36441189

ABSTRACT

Li-M-Si ternary Zintl phases have gained attention recently due to their high structural stability, which can improve the cycling stability compared to a bulk Si electrode. Adding multivalent cation salts (such as Mg2+ and Ca2+) in the electrolyte was proven to be a simple way to form Li-M-Si ternary phases in situ in Si-based Li-ion cells. To explore the promise of Zintl-phase-forming electrolytes, we systematically investigated their application in pouch cells via electrochemical and multiscale postmortem analysis. The introduction of multivalent cations, such as Mg2+, during charging can form LixMySi ternary phases. They can stabilize Si anions and reduce side reactions with electrolyte, improving the bulk stability. More importantly, Mg2+ and Ca2+ incorporate into interfacial side reactions and generate inorganic-rich solid-electrolyte interphase, thus enhancing the interfacial stability. Therefore, the full cells with Zintl-phase-forming electrolytes achieve higher capacity retentions at the C/3 rate after 100 cycles, compared to a baseline electrolyte. Additionally, strategies for mitigating the electrode-level fractures of Si were evaluated to make the best use of Zintl-phase-forming electrolytes. This work highlights the significance of synergistic impact of multifunctional additives to stabilize both bulk and interface chemistry in high-energy Si anode materials for Li-ion batteries.

9.
ACS Appl Mater Interfaces ; 14(4): 5634-5642, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35057614

ABSTRACT

Doping in semiconductors is a widely implemented strategy for manipulation of carrier concentration, which is a critical parameter to regulate the thermoelectric performance. Stoichiometric BaCu2Te2 shows high hole concentration and unstable transport properties owing to the inherent Cu vacancy and dynamic precipitation behavior. In this work, Te has been partially substituted by Cl in BaCu2Te2 to suppress the overhigh hole concentration. Due to the high electronegativity of Cl, strong Cl-Cu bonds can significantly inhibit the Cu migration and the consequent dynamic precipitation. Meanwhile, nano-precipitate BaCl2 distributes in the grain boundary, acting as ionic blocking layers. Therefore, the thermal stability of the samples can be essentially improved via chemical bonding strengthening and grain boundary engineering. In terms of thermal transport, the introduced point defects and second phase strengthen the short-wavelength and medium-wavelength phonon scattering, leading to further reduced thermal conductivity. Eventually, the repeatable ZT value of BaCu2Te1.98Cl0.02 reached 1.22 at 823 K, which is higher by 19.6% compared with 1.02 of pristine BaCu2Te2. The average ZTs of BaCu2Te2-xClx (x = 0, 0.02, 0.04, and 0.06) in the temperature range of 323-823 K are 0.737 for x = 0.02, 0.689 for x = 0.04, and 0.667 for x = 0.06, which are 24.6, 17.2, and 13.4% higher than the average ZT of 0.588 corresponding to the undoped sample, respectively. The study shows that synergetic enhancements of thermal stability and thermoelectric properties can be achieved by strengthening chemical bonding and constructing ionic blocking layers in the grain boundary, which can be applied to other fast-ionic conductor thermoelectric materials.

10.
ACS Appl Mater Interfaces ; 13(44): 52152-52159, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34427429

ABSTRACT

Transition-metal-free Zintl-Klemm phases have received little attention as heterogeneous catalysis. Here, we show that a large family of structurally and electronically similar layered Zintl-Klemm phases built from honeycomb layers of group 13 triel (Tr) or group 14 tetrel (Tt) networks separated by electropositive cations (A) and having a stoichiometry of ATr2 or ATrTt (A = Ca, Ba, Y, La, Eu; Tr = Ga, In; Tt = Si, Ge) exhibit varying degrees of activity for the hydrogenation of phenylacetylene to styrene and ethylbenzene at 51 bar H2 and 40-100 °C across a variety of solvents. The most active catalysts contain Ga with, formally, a half-filled pz orbital, and minimal bonding between neighboring Tr2 or TrTt layers. A 13-layer trigonal polytype of CaGaGe (13T-CaGaGe) was the most active, cyclable, and robust catalyst and under modest conditions (1 atm H2, 40 °C) had a surface specific activity (590 h-1) comparable to a commercial Lindlar's catalyst. Additionally, 13T-CaGaGe maintained 100% conversion of phenylacetylene to styrene at 51 bar H2, even after 5 months of air exposure. This work reveals the structural design elements that lead to particularly high catalytic activity in Zintl-Klemm phases, further establishing them as a promising materials platform for hydrogen-based heterogeneous catalysis.

11.
Adv Sci (Weinh) ; 8(11): 2100109, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34141525

ABSTRACT

TiNiSi-type Zintl phase CaAgSb can transform into LiGaGe-type Zintl phase CaAg x Zn(1- x )/2Sb when some of the Ag atoms are substituted by Zn atoms, leading to an ultralow thermal conductivity of ≈0.4 W m-1 K-1 in the whole measured temperature range of CaAg0.2Zn0.4Sb. The microstructure is then investigated by spherical aberration-corrected electron microscopy on an atomic scale, which reveals an all-scale hierarchical structure that can scatter the phonons in a wide frequency range. There exist a large quantity of CaAgSb nanometer precipitates as well as quite a lot of edge dislocations close to these nanometer precipitates, thus releasing the stress caused by the mismatch between the precipitates and the parent phase. Many twin boundaries also exist around the CaAgSb precipitates. High-density point defects contain the randomly dispersed Ag vacancies and Zn atoms substituted for the Ag atoms. All these widely distributed multidimensional defects contribute to the decrease of lattice thermal conductivity in a wide temperature range.

12.
Acta Crystallogr C Struct Chem ; 77(Pt 6): 281-285, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34089251

ABSTRACT

A rare-earth-containing compound, ytterbium aluminium antimonide, Yb3AlSb3 (Ca3AlAs3-type structure), has been successfully synthesized within the Yb-Al-Sb system through flux methods. According to the Zintl formalism, this structure is nominally made up of (Yb2+)3[(Al1-)(1b - Sb2-)2(2b - Sb1-)], where 1b and 2b indicate 1-bonded and 2-bonded, respectively, and Al is treated as part of the covalent anionic network. The crystal structure features infinite corner-sharing AlSb4 tetrahedra, [AlSb2Sb2/2]6-, with Yb2+ cations residing between the tetrahedra to provide charge balance. Herein, the synthetic conditions, the crystal structure determined from single-crystal X-ray diffraction data, and electronic structure calculations are reported.

13.
Acta Crystallogr C Struct Chem ; 76(Pt 9): 869-873, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32887857

ABSTRACT

The novel Zintl phase dibarium zinc diphosphide (Ba2ZnP2) was synthesized for the first time. This was accomplished using the Pb flux technique, which allowed for the growth of crystals of adequate size for structural determination via single-crystal X-ray diffraction methods. The Ba2ZnP2 compound was determined to crystallize in a body-centered orthorhombic space group, Ibam (No. 72). Formally, this crystallographic arrangement belongs to the K2SiP2 structure type. Therefore, the structure can be best described as infinite [ZnP2]4- polyanionic chains with divalent Ba2+ cations located between the chains. All valence electrons are partitioned, which conforms to the Zintl-Klemm concept and suggests that Ba2ZnP2 is a valence-precise composition. The electronic band structure of this new compound, computed with the aid of the TB-LMTO-ASA code, shows that Ba2ZnP2 is an intrinsic semiconductor with a band gap of ca 0.6 eV.

14.
ACS Appl Mater Interfaces ; 12(33): 37330-37337, 2020 Aug 19.
Article in English | MEDLINE | ID: mdl-32814413

ABSTRACT

Isoelectronic Zn substitution at the Mg site has been proved to be effective in regulating the carrier concentration of p-type Mg3Sb2 Zintl phase. However, the reported thermoelectric performance is still unsatisfactory compared with that of n-type Mg3Sb2 due to the poor electrical transport properties. Here, we report an enhanced average ZT through improving low-temperature ZTs by introducing Zn vacancy followed suppressing the bipolar effect by doping. First, the Zn vacancy simultaneously increases the power factor and decreases the thermal conductivity, leading to a peak ZT value of ∼0.52 at 773 K in Mg2Zn0.98Sb2. Additionally, doping Li or Ag at the Mg site is identified as a high-efficiency strategy for further increasing the carrier concentration and hence suppressing the bipolar effect. Finally, a peak ZT of ∼0.73 at 773 K and an average ZT of ∼0.46 between 300 and 773 K were obtained in Mg1.98Li0.02Zn0.98Sb2.

15.
Acta Crystallogr C Struct Chem ; 76(Pt 6): 585-590, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32499456

ABSTRACT

A ternary derivative of Li3Bi with the composition Li3-x-yInxBi (x ≃ 0.14, y ≃ 0.29) was produced by a mixed In+Bi flux approach. The crystal structure adopts the space group Fd-3m (No. 227), with a = 13.337 (4) Å, and can be viewed as a 2 × 2 × 2 superstructure of the parent Li3Bi phase, resulting from a partial ordering of Li and In in the tetrahedral voids of the Bi fcc packing. In addition to the Li/In substitutional disorder, partial occupation of some Li sites is observed. The Li deficiency develops to reduce the total electron count in the system, counteracting thereby the electron doping introduced by the In substitution. First-principles calculations confirm the electronic rationale of the observed disorder.

16.
Angew Chem Int Ed Engl ; 59(17): 6800-6805, 2020 Apr 20.
Article in English | MEDLINE | ID: mdl-31917887

ABSTRACT

Polymeric 1 ∞ [Bi]- in KBi⋅NH3 has planar zigzag chains with two-connected Bi atoms and metallic properties, whereas KBi, which has helical chains of Bi atoms, is semiconducting. The isomerization of the Bi chain is induced by solvate molecules. In the novel layered solvate structure uncharged 2 ∞ [KBi] layers are separated by intercalated NH3 molecules. These layers are a structural excerpt of the iso(valence)electronic CaSi, whose metallic properties arise from the planarity of the zigzag chain of Si atoms. Computational studies support this view, they show an anisotropic metallic behavior along the Bi chain. Electron delocalization is also found in the new cyclic anion [Bi6 ]4- isolated in K2 [K(18-crown-6)]2 [Bi6 ]⋅9 NH3 . Although [Bi6 ]4- should exhibit one localized double bond, electron delocalization is observed in analogy to the lighter homologues [P6 ]4- and [As6 ]4- . Both compounds were characterized by single-crystal X-ray structure determination.

17.
ACS Appl Mater Interfaces ; 11(41): 37741-37747, 2019 Oct 16.
Article in English | MEDLINE | ID: mdl-31553558

ABSTRACT

Zintl phase compounds Ca9Zn4+xSb9 have promising thermoelectric properties due to their complex crystal structure and tunable interstitial Zn. In this work, we prepared nominal Ca9Zn4+xSb9 (x = 0.5, 0.6, 0.7, and 0.8) using ball milling and hot pressing. Further decreased lattice thermal conductivity was obtained by isoelectronic substitution of Eu on the selective Ca site, which is farther away from the framework of [Zn4+xSb9]δ- for the smaller disturbance of carrier transport. Together with the intensively enhanced carrier mobility, which is attributed to the decreased effective mass and the increased interstitial Zn by inclusion of Eu, an increased peak ZT value to ∼1.05 at 773 K and an enhanced average ZT value to ∼0.73 from 300 to 823 K were achieved in Ca6.75Eu2.25Zn4.7Sb9.

18.
Materials (Basel) ; 12(7)2019 Apr 08.
Article in English | MEDLINE | ID: mdl-30965603

ABSTRACT

Recent experimental and theoretical work has demonstrated significant potential to tune the properties of silicon and germanium by adjusting the mesostructure, nanostructure, and/or crystalline structure of these group 14 elements. Despite the promise to achieve enhanced functionality with these already technologically important elements, a significant challenge lies in the identification of effective synthetic approaches that can access metastable silicon and germanium-based extended solids with a particular crystal structure or specific nano/meso-structured features. In this context, the class of intermetallic compounds known as Zintl phases has provided a platform for discovery of novel silicon and germanium-based materials. This review highlights some of the ways in which silicon and germanium-based Zintl phases have been utilized as precursors in innovative approaches to synthesize new crystalline modifications, nanoparticles, nanosheets, and mesostructured and nanoporous extended solids with properties that can be very different from the ground states of the elements.

19.
Materials (Basel) ; 12(8)2019 Apr 25.
Article in English | MEDLINE | ID: mdl-31027267

ABSTRACT

A tetragonal distortion of the long-time known NaTl structure at 298 K was observed in different experimental setups, including Zintl's original procedure of reducing Tl(I)-iodide by sodium liquid ammonia solutions. The powder diffraction pattern obtained by the high temperature synthesis using classical solid-state techniques allowed a model-independent unambiguous structure solution and refinement of tetragonal distorted NaTl (Rp = 0.0179, wRp = 0.0246, R = 0.0477, wR = 0.0527, GooF = 1.24).

20.
Proc Natl Acad Sci U S A ; 116(8): 2831-2836, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30718395

ABSTRACT

Zintl compounds are considered to be potential thermoelectric materials due to their "phonon glass electron crystal" (PGEC) structure. A promising Zintl-phase thermoelectric material, 2-1-2-type Eu2ZnSb2 (P63/mmc), was prepared and investigated. The extremely low lattice thermal conductivity is attributed to the external Eu atomic layers inserted in the [Zn2Sb2]2- network in the structure of 1-2-2-type EuZn2Sb2 [Formula: see text], as well as the abundant inversion domain boundary. By regulating the Zn deficiency, the electrical properties are significantly enhanced, and the maximum ZT value reaches ∼1.0 at 823 K for Eu2Zn0.98Sb2 Our discovery provides a class of Zintl thermoelectric materials applicable in the medium-temperature range.

SELECTION OF CITATIONS
SEARCH DETAIL