Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters











Publication year range
1.
Genes (Basel) ; 15(6)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38927685

ABSTRACT

Laccase (LAC) is a diverse group of genes found throughout the plant genome essential for plant growth and the response to stress by converting monolignin into intricate lignin formations. However, a comprehensive investigation of maize laccase has not yet been documented. A bioinformatics approach was utilized in this research to conduct a thorough examination of maize (Zea mays L.), resulting in the identification and categorization of 22 laccase genes (ZmLAC) into six subfamilies. The gene structure and motifs of each subgroup were largely consistent. The distribution of the 22 LAC genes was uneven among the maize chromosomes, with the exception of chromosome 9. The differentiation of the genes was based on fragment replication, and the differentiation time was about 33.37 million years ago. ZmLAC proteins are primarily acidic proteins. There are 18 cis-acting elements in the promoter sequences of the maize LAC gene family associated with growth and development, stress, hormones, light response, and stress response. The analysis of tissue-specific expression revealed a high expression of the maize LAC gene family prior to the V9 stage, with minimal expression at post-V9. Upon reviewing the RNA-seq information from the publicly available transcriptome, it was discovered that ZmLAC5, ZmLAC10, and ZmLAC17 exhibited significant expression levels when exposed to various biotic and abiotic stress factors, suggesting their crucial involvement in stress responses and potential value for further research. This study offers an understanding of the functions of the LAC genes in maize's response to biotic and abiotic stress, along with a theoretical basis for comprehending the molecular processes at play.


Subject(s)
Gene Expression Regulation, Plant , Laccase , Multigene Family , Plant Proteins , Stress, Physiological , Zea mays , Zea mays/genetics , Zea mays/growth & development , Stress, Physiological/genetics , Laccase/genetics , Laccase/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Phylogeny , Promoter Regions, Genetic , Chromosomes, Plant/genetics
2.
Crit Rev Biotechnol ; : 1-18, 2024 May 26.
Article in English | MEDLINE | ID: mdl-38797669

ABSTRACT

Mitogen-activated protein Kinase Kinase 5 (MKK5) is a central hub in the complex phosphorylation chain reaction of the Mitogen-activated protein kinases (MAPK) cascade, regulating plant responses to biotic and abiotic stresses. This review manuscript aims to provide a comprehensive analysis of the regulatory mechanism of the MKK5 involved in stress adaptation. This review will delve into the intricate post-transcriptional and post-translational modifications of the MKK5, discussing how they affect its expression, activity, and subcellular localization in response to stress signals. We also discuss the integration of the MKK5 into complex signaling pathways, orchestrating plant immunity against pathogens and its modulating role in regulating abiotic stresses, such as: drought, cold, heat, and salinity, through the phytohormonal signaling pathways. Furthermore, we highlight potential applications of the MKK5 for engineering stress-resilient crops and provide future perspectives that may pave the way for future studies. This review manuscript aims to provide valuable insights into the mechanisms underlying MKK5 regulation, bridge the gap from numerous previous findings, and offer a firm base in the knowledge of MKK5, its regulating roles, and its involvement in environmental stress regulation.

4.
Protoplasma ; 261(5): 1035-1049, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38687397

ABSTRACT

In plants, the pathogenesis-related (PR) proteins have been identified as important regulators of biotic and abiotic stresses. PR proteins branch out into 19 different classes (PR1-PR19). Basically, all PR proteins display a well-established method of action, with the notable exception of PR1, which is a member of a large superfamily of proteins with a common CAP domain. We have previously isolated and characterized the first PR1 from durum wheat, called TdPR-1.2. In the current research work, TdPR1.2 gene was used to highlight its functional activities under various abiotic (sodium chloride (100 mM NaCl) and oxidative stresses (3 mM H2O2), hormonal salicylic acid (SA), abscisic acid (ABA) and jasmonic acid (JA), and abiotic stresses (Botrytis cinerea and Alternaria solani). Enhancement survival index was detected in Arabidopsis transgenic plants expressing TdPR1.2 gene. Moreover, quantitative real-time reverse transcription PCR (qRT-PCR) analysis demonstrated induction of antioxidant enzymes such as catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD). It equally revealed a decrease of malondialdehyde (MDA) as well as hydrogen peroxide (H2O2) levels in transgenic Arabidopsis plants compared to control lines, confirming the role of TdPR1.2 in terms of alleviating biotic and abiotic stresses in transgenic Arabidopsis plants. Eventually, RT-qPCR results showed a higher expression of biotic stress-related genes (PR1 and PDF1.2) in addition to a downregulation of the wound-related gene (LOX3 and VSP2) in transgenic lines treated with jasmonic acid (JA). Notably, these findings provide evidence for the outstanding functions of PR1.2 from durum wheat which can be further invested to boost tolerance in crop plants to abiotic and biotic stresses.


Subject(s)
Arabidopsis , Plant Proteins , Plants, Genetically Modified , Stress, Physiological , Triticum , Arabidopsis/genetics , Arabidopsis/microbiology , Triticum/genetics , Triticum/microbiology , Plants, Genetically Modified/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Cyclopentanes/metabolism , Cyclopentanes/pharmacology , Oxylipins/metabolism , Oxylipins/pharmacology , Oxidative Stress , Gene Expression Regulation, Plant/drug effects , Hydrogen Peroxide/metabolism , Alternaria/physiology , Plant Diseases/microbiology , Plant Diseases/genetics , Botrytis
5.
Trends Plant Sci ; 29(3): 303-318, 2024 03.
Article in English | MEDLINE | ID: mdl-37833181

ABSTRACT

The green revolution successfully increased agricultural output in the early 1960s by relying primarily on three pillars: plant breeding, irrigation, and chemical fertilization. Today, the need to reduce the use of chemical fertilizers, water scarcity, and future environmental changes, together with a growing population, requires innovative strategies to adapt to a new context and prevent food shortages. Therefore, scientists from around the world are directing their efforts to breed crops for future environments to sustainably produce more nutritious food. Herein, we propose scientific avenues to be reinforced in selecting varieties, including crop wild relatives, either for monoculture or mixed cropping systems, taking advantage of plant-microbial interactions, while considering the diversity of organisms associated with crops and unlocking combinatorial nutritional stresses.


Subject(s)
Crops, Agricultural , Plant Breeding , Crops, Agricultural/genetics , Agriculture , Adaptation, Physiological , Fertilizers
6.
Quant Plant Biol ; 4: e15, 2023.
Article in English | MEDLINE | ID: mdl-38156078

ABSTRACT

Most plants are adapted to their environments through generations of exposure to all elements. The adaptation process involves the best possible response to fluctuations in the environment based on the genetic and epigenetic make-up of the organism. Many plant species have the capacity to acclimate or adapt to certain stresses, allowing them to respond more efficiently, with fewer resources diverted from growth and development. However, plants can also acquire protection against stress across generations. Such a response is known as an intergenerational response to stress; typically, plants lose most of the tolerance in the subsequent generation when propagated without stress. Occasionally, the protection lasts for more than one generation after stress exposure and such a response is called transgenerational. In this review, we will summarize what is known about inter- and transgenerational responses to stress, focus on phenotypic and epigenetic events, their mechanisms and ecological and evolutionary meaning.

7.
Plants (Basel) ; 12(21)2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37960024

ABSTRACT

All species are well adapted to their environment. Stress causes a magnitude of biochemical and molecular responses in plants, leading to physiological or pathological changes. The response to various stresses is genetically predetermined, but is also controlled on the epigenetic level. Most plants are adapted to their environments through generations of exposure to all elements. Many plant species have the capacity to acclimate or adapt to certain stresses using the mechanism of priming. In most cases, priming is a somatic response allowing plants to deal with the same or similar stress more efficiently, with fewer resources diverted from growth and development. Priming likely relies on multiple mechanisms, but the differential expression of non-coding RNAs, changes in DNA methylation, histone modifications, and nucleosome repositioning play a crucial role. Specifically, we emphasize the role of BRM/CHR17, BRU1, FGT1, HFSA2, and H2A.Z proteins as positive regulators, and CAF-1, MOM1, DDM1, and SGS3 as potential negative regulators of somatic stress memory. In this review, we will discuss the role of epigenetic factors in response to stress, priming, and the somatic memory of stress exposures.

8.
Genes (Basel) ; 14(11)2023 Oct 27.
Article in English | MEDLINE | ID: mdl-38002948

ABSTRACT

The FKBP (FK506-binding protein) gene family is an important member of the PPlase protease family and plays a vital role during the processes of plant growth and development. However, no studies of the FKBP gene family have been reported in cucumber. In this study, 19 FKBP genes were identified in cucumber, which were located on chromosomes 1, 3, 4, 6, and 7. Phylogenetic analysis divided the cucumber FKBP genes into three subgroups. The FKBP genes in the same subgroup exhibited similar structures and conserved motifs. The cis-acting elements analysis revealed that the promoters of cucumber FKBP genes contained hormone-, stress-, and development-related cis-acting elements. Synteny analysis of the FKBP genes among cucumber, Arabidopsis, and rice showed that 12 kinds of syntenic relationships were detected between cucumber and Arabidopsis FKBP genes, and 3 kinds of syntenic relationships were observed between cucumber and rice FKBP genes. The tissue-specific expression analysis showed that some FKBP genes were expressed in all tissues, while others were only highly expressed in part of the 10 types of tissues. The expression profile analysis of cucumber FKBP genes under 13 types of stresses showed that the CsaV3_1G007080 gene was differentially expressed under abiotic stresses (high temperature, NaCl, silicon, and photoperiod) and biotic stresses (downy mildew, green mottle mosaic virus, Fusarium wilt, phytophthora capsica, angular leaf spot, and root-knot nematode), which indicated that the CsaV3_1G007080 gene plays an important role in the growth and development of cucumber. The interaction protein analysis showed that most of the proteins in the FKBP gene family interacted with each other. The results of this study will lay the foundation for further research on the molecular biological functions of the cucumber FKBP gene family.


Subject(s)
Arabidopsis , Cucumis sativus , Cucumis sativus/genetics , Cucumis sativus/metabolism , Genome, Plant/genetics , Tacrolimus Binding Proteins/genetics , Phylogeny , Arabidopsis/genetics , Arabidopsis/metabolism , Plant Proteins/metabolism , Stress, Physiological/genetics
9.
Plants (Basel) ; 12(14)2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37514224

ABSTRACT

The phytohormone abscisic acid (ABA) plays important roles in response to abiotic and biotic stresses in plants. Pyrabactin resistance 1-like (PYR/PYL) proteins are well-known as ABA receptors, which are responsible for ABA signal transduction. Nevertheless, the characteristics of PYL genes from Liriodendron chinense, an endangered timber tree, remain unclear in coping with various stresses. In this study, five PYLs were identified from the genome of Liriodendron chinense by sequence alignment and conserved motif analysis, which revealed that these LcPYLs contain a conserved gate and latch motif for ABA binding. The LcPYL promoters possess a series of cis-acting elements involved in response to various hormone and abiotic stresses. Moreover, the transcriptome data of Liriodendron hybrid leaves reveal that LcPYL genes specifically transcript under different abiotic stresses; Lchi11622 transcription was induced by drought and cold treatment, and Lchi01385 and Lchi16997 transcription was upregulated under cold and hot stress, respectively. Meanwhile, the LcPYLs with high expression levels shown in the transcriptomes were also found to be upregulated in whole plants treated with the same stresses tested by qPCR. Moreover, under biotic stress caused by scale insect and whitefly, Liriodendron hybrid leaves exhibited a distinct phenotype including disease spots that are dark green in the middle and yellow on the margin; the qPCR results showed that the relative expression levels of Lchi13641 and Lchi11622 in infected leaves were upregulated by 1.76 and 3.75 folds relative to normal leaves, respectively. The subcellular localizations of these stress-responsive LcPYLs were also identified in protoplasts of Liriodendron hybrid. These results provide a foundation to elucidate the function of PYLs from this elite tree species and assist in understanding the molecular mechanism of Liriodendron hybrid in dealing with abiotic and biotic stresses. In future research, the detailed biological function of LcPYLs and the genetic redundancy between LcPYLs can be explored by gene overexpression and knockout based on this study.

11.
J Exp Bot ; 74(9): 2787-2789, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37103001

Subject(s)
Climate Change , Plants
12.
Fish Shellfish Immunol ; 135: 108625, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36858327

ABSTRACT

Intensification of aquaculture production leads to abiotic and biotic stresses, which are further induced by the impact of climate change. Thus, it is important to explore a combined strategy to alleviate multiple stresses in fish. In the present investigation, the removal of nitrogenous metabolites from aquaponics water was studied using products derived from five different locally available medicinal and aromatic plants (MAPs) namely banana stem (Musa Accuminata), Aloe vera, Mint (Minata sepicata), Indian beech/Pongameoil-tree/Karanj (Pongamia pinnatum), and Coat Button/Mexican daisy/Dagadipala (Tridax procrumbens) in the batch experiment for 24 h. A reduction of 91-94% in the ammonia level and 75-80% removal of nitrite-N in the treatments with products derived from mint, banana stem, and aloe vera has been observed. Mint product was also found to be bactericidal against fish pathogenic bacteria. Based on this dual function of mint, further study was conducted under wet-lab conditions to evaluate the possible protective role of the mint-based product in dry powder form against abiotic stresses caused by nitrogenous toxicants for 24 h and 45 days multiple stresses caused by nitrogenous toxicants in freshwater stocked with eight fingerlings of Pangasianodon hypophthalmus of the initial weight of 8 ± 0.5g for 24 h and 8.82 ± 0.75g for 45 days. The results revealed that mint-derived plant product has better anti-stress properties in terms of their bioremediation effectiveness in lowering ammonia and nitrite. Mint also improved the fish growth performance with better physiological responses and anti-oxidative status and reduced the cellular metabolic stress in fish reared under ammonia, as further indicated by reduced oxidative stress parameters, and tissue biochemical indices. Overall, mint showed its main properties as a growth promoter, and immune enhancer, where this medicinal plant product acts as a bioremediation and antibacterial agent to the host immune system. This has potential applications in the environmental and health management of aquaculture.


Subject(s)
Catfishes , Magnoliopsida , Animals , Ammonia/pharmacology , Nitrites , Stress, Physiological , Oxidative Stress
15.
Sci Total Environ ; 860: 160476, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36436627

ABSTRACT

Nanotechnology is a burgeoning revolutionary technology in the 21st century. Climate emergencies caused by natural or anthropogenic activities have tragically consequential repercussions on agricultural output worldwide. Modern cropping systems profoundly rely on synthetic fertilizers to deliver necessary nutrients, yet their prolonged and persistent administration is hazardous to the environment, soil fertility, and nutritional dynamics of the rhizospheric microbiome. By addressing the drawback of physico-chemically synthesized nano-dimensioned fertilizer, this review emphasizes on integrating nanoparticles and biofertilizers conjointly as nano-biofertilizers (NBF) which can safeguard global food security, in light of the population surge. Inoculation with nanoparticles and biofertilizers strengthens plant growth and stress tolerance. However, combined together (NBF), they have emerged as a more economically and environmentally sustainable, highly versatile, and long-lasting agriculture tool. Microbe-based green synthesis using the encapsulation of inorganic nanoparticles of Si, Zn, Cu, Fe, Ni, Ti, and Ag as well as organic materials, including chitosan, cellulose, and starch, to formulate NBFs can eliminate the constraints of conventional fertilizer contamination. The application of NBFs is in its infancy in agriculture, yet it has promising potential for transforming traditional farming techniques into smart agriculture, compared to any of the existing strategies. From this perspective, this review is an attempt to provide a comprehensive understanding of the formulations, fabrication, and characterization of NBFs while unraveling the underlying mechanisms of plant-NBF interactions along with their contribution to climate change-induced biotic and abiotic stress tolerance. We substantially summarize the latest advancements of field applications of NBFs for precision farming. Moreover, we critically revised their applications in agro-ecosystems according to the current literature, while also discussing the bottlenecks and future trends for developing potent NBFs.


Subject(s)
Ecosystem , Fertilizers , Agriculture/methods , Soil/chemistry , Plants
17.
Environ Sci Pollut Res Int ; 29(54): 81130-81165, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36203045

ABSTRACT

Global agriculture is facing tremendous challenges due to climate change. The most predominant amongst these challenges are abiotic and biotic stresses caused by increased incidences of temperature extremes, drought, unseasonal flooding, and pathogens. These threats, mostly due to anthropogenic activities, resulted in severe challenges to crop and livestock production leading to substantial economic losses. It is essential to develop environmentally viable and cost-effective green processes to alleviate these stresses in the crops, livestock, and fisheries. The application of nanomaterials in farming practice to minimize nutrient losses, pest management, and enhance stress resistance capacity is of supreme importance. This paper explores innovative methods for synthesizing metallic and non-metallic nanoparticles using plants, animals, and fisheries wastes and their valorization to mitigate abiotic and biotic stresses and input use efficiency in climate-smart and stress-resilient agriculture including crop plants, livestock, and fisheries.


Subject(s)
Fisheries , Nanoparticles , Animals , Agriculture/methods , Crops, Agricultural , Droughts , Stress, Physiological
18.
Plant Cell Environ ; 45(12): 3387-3398, 2022 12.
Article in English | MEDLINE | ID: mdl-36180415

ABSTRACT

Environmental stresses can compromise the interactions of plants with beneficial microbes. In the present review, experimental results showing that stresses negatively affect the abundance and/or functionality of plant beneficial microbes are summarized. It is proposed that the environmental interference of these plant-microbe interactions is explained by the stress-mediated induction of plant signalling pathways associated with defence hormones and reactive oxygen species. These plant responses are recognized to regulate beneficial microbes within plants. The direct negative effect of stresses on microbes may also contribute to the environmental regulation of these plant mutualisms. It is also posited that, in stress situations, beneficial microbes harbour mechanisms that contribute to maintain the mutualistic associations. Beneficial microbes produce effector proteins and increase the antioxidant levels in plants that counteract the detrimental effects of plant stress responses on them. In addition, they deliver specific stress-protective mechanisms that assist to their plant hosts to mitigate the negative effects of stresses. Our study contributes to understanding how environmental stresses affect plant-microbe interactions and highlights why beneficial microbes can still deliver benefits to plants in stressful environments.


Subject(s)
Plants , Symbiosis , Plants/metabolism , Stress, Physiological/physiology
19.
Int J Mol Sci ; 23(16)2022 Aug 09.
Article in English | MEDLINE | ID: mdl-36012101

ABSTRACT

The raffinose synthetase (RFS) and galactinol synthase (GolS) are two critical enzymes for raffinose biosynthesis, which play an important role in modulating plant growth and in response to a variety of biotic or abiotic stresses. Here, we comprehensively analyzed the RFS and GolS gene families and their involvement in abiotic and biotic stresses responses at the genome-wide scale in kiwifruit. A total of 22 GolS and 24 RFS genes were identified in Actinidia chinensis and Actinidia eriantha genomes. Phylogenetic analysis showed that the GolS and RFS genes were clustered into four and six groups, respectively. Transcriptomic analysis revealed that abiotic stresses strongly induced some crucial genes members including AcGolS1/2/4/8 and AcRFS2/4/8/11 and their expression levels were further confirmed by qRT-PCR. The GUS staining of AcRFS4Pro::GUS transgenic plants revealed that the transcriptionlevel of AcRFS4 was significantly increased by salt stress. Overexpression of AcRFS4 in Arabidopsis demonstrated that this gene enhanced the raffinose accumulation and the tolerance to salt stress. The co-expression networks analysis of hub transcription factors targeting key AcRFS4 genes indicated that there was a strong correlation between AcNAC30 and AcRFS4 expression under salt stress. Furthermore, the yeast one-hybrid assays showed that AcNAC30 could bind the AcRFS4 promoter directly. These results may provide insights into the evolutionary and functional mechanisms of GolS and RFS genes in kiwifruit.


Subject(s)
Actinidia , Arabidopsis , Actinidia/genetics , Actinidia/metabolism , Arabidopsis/genetics , Galactosyltransferases , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Raffinose/metabolism , Stress, Physiological/genetics
20.
BMC Plant Biol ; 22(1): 420, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36045357

ABSTRACT

BACKGROUND: Cold is a major abiotic stress and Huanglongbing and citrus canker disease are two devastating bacterial diseases for citrus. The Ca2+-CBL-CIPK network is known to regulate different types of stress signalling in plants. How do CBL-CIPK signalling networks function in response to cold and infection by CLas or Xcc in citrus? RESULTS: Eight calcineurin B-like proteins (CBLs) and seventeen CBL-interacting protein kinases (CIPKs) were identified from the cold-tolerant satsuma mandarin 'Guijing2501' (Citrus. unshiu) and CLas/Xcc-sensitive sweet orange (C. sinensis). Phylogenetic analysis revealed that both CBL and CIPK family members in citrus were classified into an ancient and a recent clade according to their conserved domain characteristics and/or intron/exon structures. Genome duplication analysis suggested that both tandem and segmental duplications contributed to the amplification of the CBL and CIPK gene families in citrus under intense purifying selection, and the duplication events only existed in the recent clades. Expression comparison of the duplicated gene pairs indicated that the duplicated CBL and CIPK genes underwent functional differentiation. Further expression analysis identified that CBL1, 5, 6, and 8 and CIPK2, 8, 12, 15, 16, and 17 were significantly regulated by multiple stresses, including cold, Xcc infection and/or CLas infection, in citrus, whereas CBL2/7 and CIPK1/4/5/11/13/14 were independently highly regulated by cold and CIPK3 was uniquely responsive to Xcc infection. The combination analyses of targeted Y2H assay and expression analysis revealed that CBL6-CIPK8 was the common signalling network in response to cold and Xcc infection, while CBL6/CBL8-CIPK14 was uniquely responsive to cold in citrus. Further stable transformation and cold tolerance assay indicated that overexpression of CuCIPK16 enhanced the cold tolerance of transgenic Arabidopsis with higher POD activity and lower MDA content. CONCLUSIONS: In this study, evolution, gene expression and protein‒protein interaction analyses of citrus CBLs and CIPKs were comprehensively conducted over a genome-wide range. The results will facilitate future functional characterization of individual citrus CBLs and CIPKs under specific stresses and provide clues for the clarification of cold tolerance and disease susceptibility mechanisms in corresponding citrus cultivars.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Bacterial Infections , Citrus , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Calcium-Binding Proteins/genetics , Citrus/genetics , Citrus/metabolism , Gene Expression , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Serine-Threonine Kinases
SELECTION OF CITATIONS
SEARCH DETAIL