Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 634
Filter
1.
Philos Trans R Soc Lond B Biol Sci ; 379(1912): 20220524, 2024 Oct 21.
Article in English | MEDLINE | ID: mdl-39230450

ABSTRACT

The structure of social networks fundamentally influences spreading dynamics. In general, the more contact between individuals, the more opportunity there is for the transmission of information or disease to take place. Yet, contact between individuals, and any resulting transmission events, are determined by a combination of spatial (where individuals choose to move) and social rules (who they choose to interact with or learn from). Here, we examine the effect of the social-spatial interface on spreading dynamics using a simulation model. We quantify the relative effects of different movement rules (localized, semi-localized, nomadic and resource-based movement) and social transmission rules (simple transmission, anti-conformity, proportional, conformity and threshold rules) to both the structure of social networks and spread of a novel behaviour. Localized movement created weakly connected sparse networks, nomadic movement created weakly connected dense networks, and resource-based movement generated strongly connected modular networks. The resulting rate of spreading varied with different combinations of movement and transmission rules, but-importantly-the relative rankings of transmission rules changed when running simulations on static versus dynamic representations of networks. Our results emphasize that individual-level social and spatial behaviours influence emergent network structure, and are of particular consequence for the spread of information under complex transmission rules.This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.


Subject(s)
Social Networking , Humans , Movement , Computer Simulation , Models, Theoretical
2.
Biol Open ; 13(8)2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39162010

ABSTRACT

Collectively migrating Xenopus mesendoderm cells are arranged into leader and follower rows with distinct adhesive properties and protrusive behaviors. In vivo, leading row mesendoderm cells extend polarized protrusions and migrate along a fibronectin matrix assembled by blastocoel roof cells. Traction stresses generated at the leading row result in the pulling forward of attached follower row cells. Mesendoderm explants removed from embryos provide an experimentally tractable system for characterizing collective cell movements and behaviors, yet the cellular mechanisms responsible for this mode of migration remain elusive. We introduce a novel agent-based computational model of migrating mesendoderm in the Cellular-Potts computational framework to investigate the respective contributions of multiple parameters specific to the behaviors of leader and follower row cells. Sensitivity analyses identify cohesotaxis, tissue geometry, and cell intercalation as key parameters affecting the migration velocity of collectively migrating cells. The model predicts that cohesotaxis and tissue geometry in combination promote cooperative migration of leader cells resulting in increased migration velocity of the collective. Radial intercalation of cells towards the substrate is an additional mechanism contributing to an increase in migratory speed of the tissue. Model outcomes are validated experimentally using mesendoderm tissue explants.


Subject(s)
Cell Movement , Models, Biological , Xenopus , Animals , Xenopus/embryology , Mesoderm/cytology , Mesoderm/embryology , Cell Adhesion , Xenopus laevis/embryology , Computer Simulation
3.
Math Biosci ; 376: 109266, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39127094

ABSTRACT

Studies in the collective motility of organisms use a range of analytical approaches to formulate continuous kinetic models of collective dynamics from rules or equations describing agent interactions. However, the derivation of these kinetic models often relies on Boltzmann's "molecular chaos" hypothesis, which assumes that correlations between individuals are short-lived. While this assumption is often the simplest way to derive tractable models, it is often not valid in practice due to the high levels of cooperation and self-organization present in biological systems. In this work, we illustrated this point by considering a general Boltzmann-type kinetic model for the alignment of self-propelled rods where rod reorientation occurs upon binary collisions. We examine the accuracy of the kinetic model by comparing numerical solutions of the continuous equations to an agent-based model that implements the underlying rules governing microscopic alignment. Even for the simplest case considered, our comparison demonstrates that the kinetic model fails to replicate the discrete dynamics due to the formation of rod clusters that violate statistical independence. Additionally, we show that introducing noise to limit cluster formation helps improve the agreement between the analytical model and agent simulations but does not restore the agreement completely. These results highlight the need to both develop and disseminate improved moment-closure methods for modeling biological and active matter systems.

4.
BMC Infect Dis ; 24(1): 880, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39210276

ABSTRACT

BACKGROUND: Residential aged-care facilities (RACFs, also called long-term care facilities, aged care homes, or nursing homes) have elevated risks of respiratory infection outbreaks and associated disease burden. During the COVID-19 pandemic, social isolation policies were commonly used in these facilities to prevent and mitigate outbreaks. We refer specifically to general isolation policies that were intended to reduce contact between residents, without regard to confirmed infection status. Such policies are controversial because of their association with adverse mental and physical health indicators and there is a lack of modelling that assesses their effectiveness. METHODS: In consultation with the Australian Government Department of Health and Aged Care, we developed an agent-based model of COVID-19 transmission in a structured population, intended to represent the salient characteristics of a residential care environment. Using our model, we generated stochastic ensembles of simulated outbreaks and compared summary statistics of outbreaks simulated under different mitigation conditions. Our study focuses on the marginal impact of general isolation (reducing social contact between residents), regardless of confirmed infection. For a realistic assessment, our model included other generic interventions consistent with the Australian Government's recommendations released during the COVID-19 pandemic: isolation of confirmed resident cases, furlough (mandatory paid leave) of staff members with confirmed infection, and deployment of personal protective equipment (PPE) after outbreak declaration. RESULTS: In the absence of any asymptomatic screening, general isolation of residents to their rooms reduced median cumulative cases by approximately 27%. However, when conducted concurrently with asymptomatic screening and isolation of confirmed cases, general isolation reduced the median number of cumulative infections by only 12% in our simulations. CONCLUSIONS: Under realistic sets of assumptions, our simulations showed that general isolation of residents did not provide substantial benefits beyond those achieved through screening, isolation of confirmed cases, and deployment of PPE. Our results also highlight the importance of effective case isolation, and indicate that asymptomatic screening of residents and staff may be warranted, especially if importation risk from the outside community is high. Our conclusions are sensitive to assumptions about the proportion of total contacts in a facility accounted for by casual interactions between residents.


Subject(s)
COVID-19 , Disease Outbreaks , SARS-CoV-2 , Social Isolation , Humans , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/transmission , Australia/epidemiology , Social Isolation/psychology , Disease Outbreaks/prevention & control , SARS-CoV-2/isolation & purification , Nursing Homes , Homes for the Aged , Aged , Residential Facilities
5.
ISME Commun ; 4(1): ycae045, 2024 Jan.
Article in English | MEDLINE | ID: mdl-39081364

ABSTRACT

How to derive principles of community dynamics and stability is a central question in microbial ecology. Bottom-up experiments, in which a small number of bacterial species are mixed, have become popular to address it. However, experimental setups are typically limited because co-culture experiments are labor-intensive and species are difficult to distinguish. Here, we use a four-species bacterial community to show that information from monoculture growth and inhibitory effects induced by secreted compounds can be combined to predict the competitive rank order in the community. Specifically, integrative monoculture growth parameters allow building a preliminary competitive rank order, which is then adjusted using inhibitory effects from supernatant assays. While our procedure worked for two different media, we observed differences in species rank orders between media. We then parameterized computer simulations with our empirical data to show that higher order species interactions largely follow the dynamics predicted from pairwise interactions with one important exception. The impact of inhibitory compounds was reduced in higher order communities because their negative effects were spread across multiple target species. Altogether, we formulated three simple rules of how monoculture growth and supernatant assay data can be combined to establish a competitive species rank order in an experimental four-species community.

6.
Vaccines (Basel) ; 12(7)2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39066449

ABSTRACT

Rubella infection is typically mild or asymptomatic except when infection occurs during pregnancy. Infection in early pregnancy can cause miscarriage, stillbirth, or congenital rubella syndrome. Only individuals that are still susceptible to rubella infection during child-bearing age are vulnerable to this burden. Rubella-containing vaccine (RCV) is safe and effective, providing life-long immunity. However, average age-at-infection increases with increasing vaccination coverage, which could potentially lead to increased disease burden if the absolute risk of infection during child-bearing age increases. The dynamics of rubella transmission were explored using EMOD, a software tool for building stochastic, agent-based infection models. Simulations of pre-vaccine, endemic transmission of rubella virus introduced RCV at varying levels of coverage to determine the expected future trajectories of disease burden. Introducing RCV reduces both rubella virus transmission and disease burden for a period of around 15 years. Increased disease burden is only possible more than a decade post-introduction, and only for contexts with persistently high transmission intensity. Low or declining rubella virus transmission intensity is associated with both greater burden without vaccination and greater burden reduction with vaccination. The risk of resurgent burden due to incomplete vaccination only exists for locations with persistently high infectivity, high connectivity, and high fertility. A trade-off between the risk of a small, future burden increase versus a large, immediate burden decrease strongly favors RCV introduction.

7.
PNAS Nexus ; 3(7): pgae264, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39045016

ABSTRACT

Collective motion provides a spectacular example of self-organization in Nature. Visual information plays a crucial role among various types of information in determining interactions. Recently, experiments have revealed that organisms such as fish and insects selectively utilize a portion, rather than the entirety, of visual information. Here, focusing on fish, we propose an agent-based model where the direction of attention is guided by visual stimuli received from the images of nearby fish. Our model reproduces a branching phenomenon where a fish selectively follows a specific individual as the distance between two or three nearby fish increases. Furthermore, our model replicates various patterns of collective motion in a group of agents, such as vortex, polarized school, swarm, and turning. We also discuss the topological nature of the visual interaction, as well as the positional distribution of nearby fish and the map of pairwise and three-body interactions induced by them. Through a comprehensive comparison with existing experimental results, we clarify the roles of visual interactions and issues to be resolved by other forms of interactions.

8.
Ecol Evol ; 14(7): e11715, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39045500

ABSTRACT

We explore the use of movable automata in numerical modelling of male competition for territory. We used territorial dragonflies as our biological inspiration for the model, assuming two types of competing males: (a) faster and larger males that adopt a face-off strategy and repulse other males; (b) slower and smaller males that adopt a non-aggressive strategy. The faster and larger males have higher noise intensity, leading to faster motion and longer conservation of motion direction. The velocity distributions resemble the Maxwell distributions of velocity, expected in Brownian dynamics, with two probable velocities and distribution widths for the two animal subpopulations. The fast animals' trajectories move between visually fixed density folds of the slower animal subpopulation. A correlation is found between individual velocity and individual area distribution, with smaller animals concentrated in a region of small velocities and areas. Attraction between animals results in a modification of the system behaviour, with larger animals spending more time being surrounded by smaller animals and being slowed down by their interaction with the surroundings. Overall, the study provides insights into the dynamics of animal competition for territory and the impact of attraction between animals.

9.
Comput Biol Med ; 179: 108831, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38970834

ABSTRACT

This work presents an advanced agent-based model developed within the FLAMEGPU2 framework, aimed at simulating the intricate dynamics of cell microenvironments. Our primary objective is to showcase FLAMEGPU2's potential in modelling critical features such as cell-cell and cell-ECM interactions, species diffusion, vascularisation, cell migration, and/or cell cycling. By doing so, we provide a versatile template that serves as a foundational platform for researchers to model specific biological mechanisms or processes. We highlight the utility of our approach as a microscale component within multiscale frameworks. Through four example applications, we demonstrate the model's versatility in capturing phenomena such as strain-stiffening behaviour of hydrogels, cell migration patterns within hydrogels, spheroid formation and fibre reorientation, and the simulation of diffusion processes within a vascularised and deformable domain. This work aims to bridge the gap between computational efficiency and biological fidelity, offering a scalable and flexible platform to advance our understanding of tissue biology and engineering.


Subject(s)
Cellular Microenvironment , Computer Simulation , Models, Biological , Humans , Cellular Microenvironment/physiology , Cell Movement/physiology , Hydrogels/chemistry
10.
R Soc Open Sci ; 11(7): 231337, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39021779

ABSTRACT

A successful cryopreservation of tissues and organs is crucial for medical procedures and drug development acceleration. However, there are only a few instances of successful tissue cryopreservation. One of the main obstacles to successful cryopreservation is intracellular ice damage. Understanding how ice spreads can accelerate protocol development and enable model-based decision-making. Previous models of intracellular ice formation in individual cells have been extended to one-cell-wide arrays to establish the theory of intercellular ice propagation in tissues. The current lattice-based ice propagation models do not account for intercellular forces resulting from cell solidification, which could lead to mechanical disruption of tissue structures during freezing. Moreover, these models have not been expanded to include more realistic tissue architectures. In this article, we discuss the development and validation of a stochastic model for the formation and propagation of ice in small tissues using lattice-free agent-based model. We have improved the existing model by incorporating the mechanical effects of water crystallization within cells. Using information from previous research, we have also created a new model that accounts for ice growth in tissue slabs, spheroids and hepatocyte discs. Our model demonstrates that individual cell freezing can have mechanical consequences and is consistent with earlier findings.

11.
Epidemics ; 48: 100779, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39024889

ABSTRACT

UVA-EpiHiper is a national scale agent-based model to support the US COVID-19 Scenario Modeling Hub (SMH). UVA-EpiHiper uses a detailed representation of the underlying social contact network along with data measured during the course of the pandemic to initialize and calibrate the model. In this paper, we study the role of heterogeneity on model complexity and resulting epidemic dynamics using UVA-EpiHiper. We discuss various sources of heterogeneity that we encounter in the use of UVA-EpiHiper to support modeling and analysis of epidemic dynamics under various scenarios. We also discuss how this affects model complexity and computational complexity of the corresponding simulations. Using round 13 of the SMH as an example, we discuss how UVA-EpiHiper was initialized and calibrated. We then discuss how the detailed output produced by UVA-EpiHiper can be analyzed to obtain interesting insights. We find that despite the complexity in the model, the software, and the computation incurred to an agent-based model in scenario modeling, it is capable of capturing various heterogeneities of real-world systems, especially those in networks and behaviors, and enables analyzing heterogeneities in epidemiological outcomes between different demographic, geographic, and social cohorts. In applying UVA-EpiHiper to round 13 scenario modeling, we find that disease outcomes are different between and within states, and between demographic groups, which can be attributed to heterogeneities in population demographics, network structures, and initial immunity.

12.
Spora ; 10(1): 65-82, 2024.
Article in English | MEDLINE | ID: mdl-39006246

ABSTRACT

Neuropathic pain is caused by nerve injury and involves brain areas such as the central nucleus of the amygdala (CeA). We developed the first 3-D agent-based model (ABM) of neuropathic pain-related neurons in the CeA using NetLogo3D. The execution time of a single ABM simulation using realistic parameters (e.g., 13,000 neurons and 22,000+ neural connections) is an important factor in the model's usability. In this paper, we describe our efforts to improve the computational efficiency of our 3-D ABM, which resulted in a 28% reduction in execution time on average for a typical simulation. With this upgraded model, we performed one- and two-parameter sensitivity analyses to study the sensitivity of model output to variability in several key parameters along the anterior to posterior axis of the CeA. These results highlight the importance of computational modeling in exploring spatial and cell-type specific properties of brain regions to inform future wet lab experiments.

13.
J Hosp Infect ; 152: 81-92, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39019117

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) outbreaks in acute care settings can have severe consequences for patients due to their underlying vulnerabilities, and can be costly due to additional patient bed-days and the need to replace isolating staff. This study assessed the cost-effectiveness of clinical staff N95 respirators and admission screening testing of patients to reduce COVID-19 hospital-acquired infections. METHODS: An agent-based model was calibrated to data on 178 outbreaks in acute care settings in Victoria, Australia between October 2021 and July 2023. Outbreaks were simulated under different combinations of staff masking (surgical, N95) and patient admission screening testing [none, rapid antigen test (RAT), polymerase chain reaction]. For each scenario, average diagnoses, COVID-19 deaths, quality-adjusted life years from discharged patients, and costs (masks, testing, patient COVID-19 bed-days, staff replacement costs while isolating) from acute COVID-19 were estimated over a 12-month period. FINDINGS: Compared with no admission screening testing and staff surgical masks, all scenarios were cost saving with health gains. Staff N95 respirators + RAT admission screening of patients was the cheapest scenario, saving A$78.4M [95% uncertainty interval (UI) 44.4M-135.3M] and preventing 1543 (95% UI 1070-2146) deaths state-wide per annum. Both interventions were individually beneficial: staff N95 respirators saved A$54.7M and 854 deaths state-wide per annum, while RAT admission screening of patients saved A$57.6M and 1176 deaths state-wide per annum. INTERPRETATION: In acute care settings, staff N95 respirators and admission screening testing of patients can reduce hospital-acquired COVID-19 and COVID-19 deaths, and are cost saving because of reduced patient bed-days and staff replacement needs.

14.
Front Public Health ; 12: 1344916, 2024.
Article in English | MEDLINE | ID: mdl-38835609

ABSTRACT

Introduction: A disproportionate number of COVID-19 deaths occur in Residential Aged Care Facilities (RACFs), where better evidence is needed to target COVID-19 interventions to prevent mortality. This study used an agent-based model to assess the role of community prevalence, vaccination strategies, and non-pharmaceutical interventions (NPIs) on COVID-19 outcomes in RACFs in Victoria, Australia. Methods: The model simulated outbreaks in RACFs over time, and was calibrated to distributions for outbreak size, outbreak duration, and case fatality rate in Victorian RACFs over 2022. The number of incursions to RACFs per day were estimated to fit total deaths and diagnoses over time and community prevalence.Total infections, diagnoses, and deaths in RACFs were estimated over July 2023-June 2024 under scenarios of different: community epidemic wave assumptions (magnitude and frequency); RACF vaccination strategies (6-monthly, 12-monthly, no further vaccines); additional non-pharmaceutical interventions (10, 25, 50% efficacy); and reduction in incursions (30% or 60%). Results: Total RACF outcomes were proportional to cumulative community infections and incursion rates, suggesting potential for strategic visitation/staff policies or community-based interventions to reduce deaths. Recency of vaccination when epidemic waves occurred was critical; compared with 6-monthly boosters, 12-monthly boosters had approximately 1.2 times more deaths and no further boosters had approximately 1.6 times more deaths over July 2023-June 2024. Additional NPIs, even with only 10-25% efficacy, could lead to a 13-31% reduction in deaths in RACFs. Conclusion: Future community epidemic wave patterns are unknown but will be major drivers of outcomes in RACFs. Maintaining high coverage of recent vaccination, minimizing incursions, and increasing NPIs can have a major impact on cumulative infections and deaths.


Subject(s)
COVID-19 , Disease Outbreaks , Homes for the Aged , Humans , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/mortality , Victoria/epidemiology , Homes for the Aged/statistics & numerical data , Aged , Disease Outbreaks/prevention & control , Disease Outbreaks/statistics & numerical data , SARS-CoV-2 , Vaccination/statistics & numerical data , Systems Analysis
15.
Elife ; 132024 Jun 03.
Article in English | MEDLINE | ID: mdl-38828844

ABSTRACT

Muscle regeneration is a complex process due to dynamic and multiscale biochemical and cellular interactions, making it difficult to identify microenvironmental conditions that are beneficial to muscle recovery from injury using experimental approaches alone. To understand the degree to which individual cellular behaviors impact endogenous mechanisms of muscle recovery, we developed an agent-based model (ABM) using the Cellular-Potts framework to simulate the dynamic microenvironment of a cross-section of murine skeletal muscle tissue. We referenced more than 100 published studies to define over 100 parameters and rules that dictate the behavior of muscle fibers, satellite stem cells (SSCs), fibroblasts, neutrophils, macrophages, microvessels, and lymphatic vessels, as well as their interactions with each other and the microenvironment. We utilized parameter density estimation to calibrate the model to temporal biological datasets describing cross-sectional area (CSA) recovery, SSC, and fibroblast cell counts at multiple timepoints following injury. The calibrated model was validated by comparison of other model outputs (macrophage, neutrophil, and capillaries counts) to experimental observations. Predictions for eight model perturbations that varied cell or cytokine input conditions were compared to published experimental studies to validate model predictive capabilities. We used Latin hypercube sampling and partial rank correlation coefficient to identify in silico perturbations of cytokine diffusion coefficients and decay rates to enhance CSA recovery. This analysis suggests that combined alterations of specific cytokine decay and diffusion parameters result in greater fibroblast and SSC proliferation compared to individual perturbations with a 13% increase in CSA recovery compared to unaltered regeneration at 28 days. These results enable guided development of therapeutic strategies that similarly alter muscle physiology (i.e. converting extracellular matrix [ECM]-bound cytokines into freely diffusible forms as studied in cancer therapeutics or delivery of exogenous cytokines) during regeneration to enhance muscle recovery after injury.


Subject(s)
Muscle, Skeletal , Regeneration , Animals , Regeneration/physiology , Mice , Muscle, Skeletal/physiology , Muscle, Skeletal/metabolism , Cytokines/metabolism , Models, Biological , Fibroblasts/metabolism , Fibroblasts/physiology , Macrophages/metabolism
16.
Reprod Toxicol ; 128: 108625, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38857815

ABSTRACT

Developmental hazard evaluation is an important part of assessing chemical risks during pregnancy. Toxicological outcomes from prenatal testing in pregnant animals result from complex chemical-biological interactions, and while New Approach Methods (NAMs) based on in vitro bioactivity profiles of human cells offer promising alternatives to animal testing, most of these assays lack cellular positional information, physical constraints, and regional organization of the intact embryo. Here, we engineered a fully computable model of the embryonic disc in the CompuCell3D.org modeling environment to simulate epithelial-mesenchymal transition (EMT) of epiblast cells and self-organization of mesodermal domains (chordamesoderm, paraxial, lateral plate, posterior/extraembryonic). Mesodermal fate is modeled by synthetic activity of the BMP4-NODAL-WNT signaling axis. Cell position in the epiblast determines timing with respect to EMT for 988 computational cells in the computer model. An autonomous homeobox (Hox) clock hidden in the epiblast is driven by WNT-FGF4-CDX signaling. Executing the model renders a quantitative cell-level computation of mesodermal fate and consequences of perturbation based on known biology. For example, synthetic perturbation of the control network rendered altered phenotypes (cybermorphs) mirroring some aspects of experimental mouse embryology, with electronic knockouts, under-activation (hypermorphs) or over-activation (hypermorphs) particularly affecting the size and specification of the posterior mesoderm. This foundational model is trained on embryology but capable of performing a wide variety of toxicological tasks conversing through anatomical simulation to integrate in vitro chemical bioactivity data with known embryology. It is amenable to quantitative simulation for probabilistic prediction of early developmental toxicity.


Subject(s)
Computer Simulation , Epithelial-Mesenchymal Transition , Germ Layers , Animals , Epithelial-Mesenchymal Transition/drug effects , Models, Biological , Embryonic Development/drug effects , Humans , Female , Mesoderm , Mice
17.
bioRxiv ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38895374

ABSTRACT

Volumetric Muscle Loss (VML) injuries are characterized by significant loss of muscle mass, usually due to trauma or surgical resection, often with a residual open wound in clinical settings and subsequent loss of limb function due to the replacement of the lost muscle mass with non-functional scar. Being able to regrow functional muscle in VML injuries is a complex control problem that needs to override robust, evolutionarily conserved healing processes aimed at rapidly closing the defect in lieu of restoration of function. We propose that discovering and implementing this complex control can be accomplished by the development of a Medical Digital Twin of VML. Digital Twins (DTs) are the subject of a recent report from the National Academies of Science, Engineering and Medicine (NASEM), which provides guidance as to the definition, capabilities and research challenges associated with the development and implementation of DTs. Specifically, DTs are defined as dynamic computational models that can be personalized to an individual real world "twin" and are connected to that twin via an ongoing data link. DTs can be used to provide control on the real-world twin that is, by the ongoing data connection, adaptive. We have developed an anatomic scale cell-level agent-based model of VML termed the Wound Environment Agent Based Model (WEABM) that can serve as the computational specification for a DT of VML. Simulations of the WEABM provided fundamental insights into the biology of VML, and we used the WEABM in our previously developed pipeline for simulation-based Deep Reinforcement Learning (DRL) to train an artificial intelligence (AI) to implement a robust generalizable control policy aimed at increasing the healing of VML with functional muscle. The insights into VML obtained include: 1) a competition between fibrosis and myogenesis due to spatial constraints on available edges of intact myofibrils to initiate the myoblast differentiation process, 2) the need to biologically "close" the wound from atmospheric/environmental exposure, which represents an ongoing inflammatory stimulus that promotes fibrosis and 3) that selective, multimodal and adaptive local mediator-level control can shift the trajectory of healing away from a highly evolutionarily beneficial imperative to close the wound via fibrosis. Control discovery with the WEABM identified the following design principles: 1) multimodal adaptive tissue-level mediator control to mitigate pro-inflammation as well as the pro-fibrotic aspects of compensatory anti-inflammation, 2) tissue-level mediator manipulation to promote myogenesis, 3) the use of an engineered extracellular matrix (ECM) to functionally close the wound and 4) the administration of an anti-fibrotic agent focused on the collagen-producing function of fibroblasts and myofibroblasts. The WEABM-trained DRL AI integrates these control modalities and provides design specifications for a potential device that can implement the required wound sensing and intervention delivery capabilities needed. The proposed cyber-physical system integrates the control AI with a physical sense-and-actuate device that meets the tenets of DTs put forth in the NASEM report and can serve as an example schema for the future development of Medical DTs.

18.
Math Biosci Eng ; 21(4): 5536-5555, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38872547

ABSTRACT

Ant colonies demonstrate a finely tuned alarm response to potential threats, offering a uniquely manageable empirical setting for exploring adaptive information diffusion within groups. To effectively address potential dangers, a social group must swiftly communicate the threat throughout the collective while conserving energy in the event that the threat is unfounded. Through a combination of modeling, simulation, and empirical observations of alarm spread and damping patterns, we identified the behavioral rules governing this adaptive response. Experimental trials involving alarmed ant workers (Pogonomyrmex californicus) released into a tranquil group of nestmates revealed a consistent pattern of rapid alarm propagation followed by a comparatively extended decay period [1]. The experiments in [1] showed that individual ants exhibiting alarm behavior increased their movement speed, with variations in response to alarm stimuli, particularly during the peak of the reaction. We used the data in [1] to investigate whether these observed characteristics alone could account for the swift mobility increase and gradual decay of alarm excitement. Our self-propelled particle model incorporated a switch-like mechanism for ants' response to alarm signals and individual variations in the intensity of speed increased after encountering these signals. This study aligned with the established hypothesis that individual ants possess cognitive abilities to process and disseminate information, contributing to collective cognition within the colony (see [2] and the references therein). The elements examined in this research support this hypothesis by reproducing statistical features of the empirical speed distribution across various parameter values.


Subject(s)
Animal Communication , Ants , Computer Simulation , Models, Biological , Social Behavior , Animals , Ants/physiology , Behavior, Animal
19.
BMC Infect Dis ; 24(1): 475, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714946

ABSTRACT

BACKGROUND: Prior to September 2021, 55,000-90,000 hospital inpatients in England were identified as having a potentially nosocomial SARS-CoV-2 infection. This includes cases that were likely missed due to pauci- or asymptomatic infection. Further, high numbers of healthcare workers (HCWs) are thought to have been infected, and there is evidence that some of these cases may also have been nosocomially linked, with both HCW to HCW and patient to HCW transmission being reported. From the start of the SARS-CoV-2 pandemic interventions in hospitals such as testing patients on admission and universal mask wearing were introduced to stop spread within and between patient and HCW populations, the effectiveness of which are largely unknown. MATERIALS/METHODS: Using an individual-based model of within-hospital transmission, we estimated the contribution of individual interventions (together and in combination) to the effectiveness of the overall package of interventions implemented in English hospitals during the COVID-19 pandemic. A panel of experts in infection prevention and control informed intervention choice and helped ensure the model reflected implementation in practice. Model parameters and associated uncertainty were derived using national and local data, literature review and formal elicitation of expert opinion. We simulated scenarios to explore how many nosocomial infections might have been seen in patients and HCWs if interventions had not been implemented. We simulated the time period from March-2020 to July-2022 encompassing different strains and multiple doses of vaccination. RESULTS: Modelling results suggest that in a scenario without inpatient testing, infection prevention and control measures, and reductions in occupancy and visitors, the number of patients developing a nosocomial SARS-CoV-2 infection could have been twice as high over the course of the pandemic, and over 600,000 HCWs could have been infected in the first wave alone. Isolation of symptomatic HCWs and universal masking by HCWs were the most effective interventions for preventing infections in both patient and HCW populations. Model findings suggest that collectively the interventions introduced over the SARS-CoV-2 pandemic in England averted 400,000 (240,000 - 500,000) infections in inpatients and 410,000 (370,000 - 450,000) HCW infections. CONCLUSIONS: Interventions to reduce the spread of nosocomial infections have varying impact, but the package of interventions implemented in England significantly reduced nosocomial transmission to both patients and HCWs over the SARS-CoV-2 pandemic.


Subject(s)
COVID-19 , Cross Infection , Health Personnel , SARS-CoV-2 , Humans , COVID-19/transmission , COVID-19/prevention & control , COVID-19/epidemiology , Cross Infection/prevention & control , Cross Infection/transmission , England/epidemiology , Computer Simulation , Infection Control/methods , State Medicine , Masks/statistics & numerical data
20.
Am Nat ; 203(6): 695-712, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38781528

ABSTRACT

AbstractA change to a population's social network is a change to the substrate of cultural transmission, affecting behavioral diversity and adaptive cultural evolution. While features of network structure such as population size and density have been well studied, less is understood about the influence of social processes such as population turnover-or the repeated replacement of individuals by naive individuals. Experimental data have led to the hypothesis that naive learners can drive cultural evolution by better assessing the relative value of behaviors, although this hypothesis has been expressed only verbally. We conducted a formal exploration of this hypothesis using a generative model that concurrently simulated its two key ingredients: social transmission and reinforcement learning. We simulated competition between high- and low-reward behaviors while varying turnover magnitude and tempo. Variation in turnover influenced changes in the distributions of cultural behaviors, irrespective of initial knowledge-state conditions. We found optimal turnover regimes that amplified the production of higher reward behaviors through two key mechanisms: repertoire composition and enhanced valuation by agents that knew both behaviors. These effects depended on network and learning parameters. Our model provides formal theoretical support for, and predictions about, the hypothesis that naive learners can shape cultural change through their enhanced sampling ability. By moving from experimental data to theory, we illuminate an underdiscussed generative process that can lead to changes in cultural behavior, arising from an interaction between social dynamics and learning.


Subject(s)
Cultural Evolution , Learning , Humans , Reward , Social Behavior , Models, Theoretical , Reinforcement, Psychology
SELECTION OF CITATIONS
SEARCH DETAIL