Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters











Publication year range
1.
Article in English | MEDLINE | ID: mdl-38019048

ABSTRACT

Anisotropically aligned collagen scaffolds mimic the microarchitectural properties of native tissue, possess superior mechanical properties, and provide the essential physicochemical cues to guide cell response. Biofabrication methodologies to align collagen fibers include mechanical, electrical, magnetic, and microfluidic approaches. Magnetic alignment of collagen was first published in 1983 but widespread use of this technique was hindered mainly due to the low diamagnetism of collagen molecules and the need for very strong tesla-order magnetic fields. Over the last decade, there is a renewed interest in the use of magnetic approaches that employ magnetic particles and low-level magnetic fields to align collagen fibers. In this review, the working principle, advantages, and limitations of different collagen alignment techniques with special emphasis on the magnetic alignment approach are detailed. Key findings from studies that employ high-strength magnetic fields and the magnetic particle-based approach to align collagen fibers are highlighted. In addition, the most common qualitative and quantitative image analyses methods to assess collagen alignment are discussed. Finally, current challenges and future directions are presented for further development and clinical translation of magnetically aligned collagen scaffolds.

2.
Mater Today Bio ; 18: 100519, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36590983

ABSTRACT

The periosteum on the skeletal surface creates a unique micro-environment for cortical bone homeostasis, but how this micro-environment is formed remains a mystery. In our study, we observed the cells in the periosteum presented elongated spindle-like morphology within the aligned collagen fibers, which is in accordance with the differentiated osteoblasts lining on the cortical surface. We planted the bone marrow stromal cells(BMSCs), the regular shaped progenitor cells, on collagen-coated aligned fibers, presenting similar cell morphology as observed in the natural periosteum. The aligned collagen topology induced the elongation of BMSCs, whichfacilitated the osteogenic process. Transcriptome analysis suggested the aligned collagen induced the regular shaped cells to present part of the periosteum derived stromal cells(PDSCs) characteristics by showing close correlation of the two cell populations. In addition, the elevated expression of PDSCs markers in the cells grown on the aligned collagen-coated fibers further indicated the function of periosteal topology in manipulating cells' behavior. Enrichment analysis revealed cell-extracellular matrix interaction was the major pathway initiating this process, which created an osteo-friendly micro-environment as well. At last, we found the aligned topology of collagen induced mechano-growth factor expression as the result of Igf1 alternative splicing, guiding the progenitor cells behavior and osteogenic process in the periosteum. This study uncovers the key role of the aligned topology of collagen in the periosteum and explains the mechanism in creating the periosteal micro-environment, which gives the inspiration for artificial periosteum design.

3.
Biomater Res ; 26(1): 60, 2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36348451

ABSTRACT

BACKGROUND: Wound closure in the complex body environment places higher requirements on suture's mechanical and biological performance. In the scenario of frequent mechanical gastric motility and extremely low pH, single functional sutures have limitations in dealing with stomach bleeding trauma where the normal healing will get deteriorated in acid. It necessitates to advance suture, which can regulate wounds, resist acid and intelligently sense stomach pH. METHODS: Based on fish swim bladder, a double-stranded drug-loaded suture was fabricated. Its cytotoxicity, histocompatibility, mechanical properties, acid resistance and multiple functions were verified. Also, suture's performance suturing gastric wounds and Achilles tendon was verified in an in vivo model. RESULTS: By investigating the swim bladder's multi-scale structure, the aligned tough collagen fibrous membrane can resist high hydrostatic pressure. We report that the multi-functional sutures on the twisted and aligned collagen fibers have acid resistance and low tissue reaction. Working with an implantable "capsule robot", the smart suture can inhibit gastric acid secretion, curb the prolonged stomach bleeding and monitor real-time pH changes in rabbits and pigs. The suture can promote stomach healing and is strong enough to stitch the fractured Achilles tendon. CONCLUSIONS: As a drug-loaded absorbable suture, the suture shows excellent performance and good application prospect in clinical work.

4.
Biomaterials ; 275: 120922, 2021 08.
Article in English | MEDLINE | ID: mdl-34126408

ABSTRACT

Prior to cancer cell invasion, the structure of the extracellular matrix (ECM) surrounding the tumor is remodeled, such that circumferentially oriented matrix fibers become radially aligned. This predisposed radially aligned matrix structure serves as a critical regulator of cancer invasion. However, a biomimetic 3D model recapitulating a tumor's behavioral response to these ECM structures is not yet available. In this study, we have developed a phase-specific, force-guided method to establish a 3D dual topographical tumor model in which each tumor spheroid/organoid is surrounded by radially aligned collagen I fibers on one side and circumferentially oriented fibers on the opposite side. A coaxial rotating cylinder system was employed to construct the dual fiber topography and to pre-seed tumor spheroids/organoids within a single device. This system enables the application of different force mechanisms in the nucleation and elongation phases of collagen fiber polymerization to guide fiber alignment. In the nucleation phase, fiber alignment is enhanced by a horizontal laminar Couette flow driven by the inner cylinder rotation. In the elongation phase, fiber growth is guided by a vertical gravitational force to form a large aligned collagen matrix gel (35 × 25 × 0.5 mm) embedded with >1000 tumor spheroids. The fibers above each tumor spheroid are radially aligned along the direction of gravitational force in contrast to the circumferentially oriented fibers beneath each tumor spheroid/organoid, where the presence of the tumor interferes with the gravity-induced fiber alignment. After tumor invasion, there are more disseminated multicellular clusters on the radially aligned side, compared to the side of the tumor spheroid/organoid facing circumferentially oriented fibers. These results indicate that our 3D dual topographical model recapitulates the preference of tumors to invade and disseminate along radially aligned fibers. We anticipate that this 3D dual topographical model will have broad utility to those studying collective tumor invasion and that it has the potential to identify cancer invasion-targeted therapeutic agents.


Subject(s)
Extracellular Matrix , Neoplasms , Collagen , Collagen Type I , Mechanical Phenomena , Organoids
5.
Mater Sci Eng C Mater Biol Appl ; 118: 111418, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33255019

ABSTRACT

Tissue-engineered small caliber vascular grafts have attracted much research attention as a viable alternative to traditional vascular grafts with their biocompatibility and potential to achieve complete healing. However, the major challenge is to fabricate a scaffold with both satisfactory mechanical properties and fast endothelialization. In this study, a hybrid tubular vascular tissue engineered scaffold has been circular-knitted using novel electrochemically aligned collagen (ELAC) filaments plied together with traditional poly(lactic acid) (PLA) yarn. The collagen component was able to promote the recruitment and proliferation of endothelial cells by increasing the initial cell adhesion 10-fold and the eventual cell population 3.2 times higher than the PLA scaffold alone. At the same time, the PLA yarn was able to provide sufficient mechanical strength and structural stability, as well as facilitate scaffold fabrication on high speed textile production equipment. The tubular hybrid scaffold exhibited excellent bursting strength (1.89 ± 0.43 MPa) and suture retention strength (10.86 ± 0.49 N), and had comparable compliance (3.98 ± 1.94%/100 mmHg) to that of the coronary artery (3.8 ± 0.3%/100 mmHg) under normotensive pressure. With its excellent mechanical and biological performance, this prototype hybrid scaffold is a promising candidate for the construction of a clinically successful and easily translatable tissue-engineered small caliber vascular graft.


Subject(s)
Biocompatible Materials , Endothelial Cells , Biocompatible Materials/pharmacology , Blood Vessel Prosthesis , Collagen , Tissue Engineering , Tissue Scaffolds
6.
ACS Biomater Sci Eng ; 6(2): 779-797, 2020 02 10.
Article in English | MEDLINE | ID: mdl-33464865

ABSTRACT

Aligned tissue architecture is a basic proviso for several organs and tissues like intervertebral discs, tendons, ligaments, muscles, and neurons, which comprises type-I collagen as an eminent extracellular matrix (ECM) protein. Exploiting type-I collagen for the biofabrication of aligned constructs via different approaches is becoming apparent, as it comprises a major fraction of connective tissue, exhibits abundance in ECM, and displays poor antigenicity and immunogenicity, along-with the ease of remodelling adaptability. Collagen hydrogels or composite scaffolds with uniaxial fibril alignment or unidirectional pore architecture having different sizes and densities are being fabricated using electrical, mechanical, and freeze-drying processes which are applicable for tissue engineering and regenerative purposes. This review focuses on several multifarious approaches employed to fabricate anisotropic structures of type-I collagen which influences fibril alignment, pore architecture, stiffness anisotropy, and enhanced mechanical strength and mimics the tissue native microenvironment ushering cell niches to proliferate and differentiate into tissue specific lineages.


Subject(s)
Collagen , Tissue Engineering , Tissue Scaffolds , Collagen Type I , Tendons
7.
ACS Biomater Sci Eng ; 4(5): 1528-1535, 2018 May 14.
Article in English | MEDLINE | ID: mdl-33445310

ABSTRACT

Well-aligned collagen nanofibers are crucial in engineering bioinspired regenerative strategies, such as bone, muscle and cornea. However, keeping the natural bioactive of collagen and controlling its orientation in a coating still remain a challenge. Here we present a novel magnetically assisted electrochemical technique to deposit type-I collagen nanofibers with high alignment onto titanium. The magnetic assistance involved mainly the incorporation of iron oxide nanoparticles (IOPs) and the application of an external magnetic field during the electrochemical deposition. The combination of IOPs with the collagen nanofibrils in electrolyte endowed the nanofibrils with magnetism, which forced the collagen nanofibrils to be straightened and assembled into aligned nanofibers under magnetic field during electrodeposition. The influence of the applied magnetic field on orientational order of the collagen nanofibers in the coatings extended to drying stage. The aligned collagen coatings demonstrated to favorably guide the bone marrow mesenchymal stem cells (BMSCs) grow in the form of elongated morphology, which promoted the cellular osteogenic differentiation dramatically. The present magnetically assisted electrodeposition could emerge as an attractive approach to fabrication of aligned nanofibers on substrates for subsequent uses such as bone tissue engineering.

8.
Acta Biomater ; 63: 200-209, 2017 11.
Article in English | MEDLINE | ID: mdl-28890257

ABSTRACT

Flexor tendon lacerations are traditionally repaired by using non-absorbable monofilament sutures. Recent investigations have explored to improve the healing process by growth factor delivery from the sutures. However, it is difficult to conjugate growth factors to nylon or other synthetic sutures. This study explores the performance of a novel electrochemically aligned collagen suture in a flexor tendon repair model with and without platelet derived growth factor following complete tendon laceration in vivo. Collagen suture was fabricated via electrochemical alignment process. Heparin was covalently bound to electrochemically aligned collagen sutures (ELAS) to facilitate affinity bound delivery of platelet-derived growth factor-BB (PDGF-BB). Complete laceration of the flexor digitorum profundus in the third digit of the foot was performed in 36 skeletally mature White Leghorn chickens. The left foot was used as the positive control. Animals were randomly divided into three groups: control specimens treated with standard nylon suture (n=12), specimens repaired with heparinated ELAS suture without PDGF-BB (n=12) and specimens repaired with heparinated ELAS suture with affinity bound PDGF-BB (n=12). Specimens were harvested at either 4weeks or 12weeks following tendon repair. Differences between groups were evaluated by the degree of gross tendon excursion, failure load/stress, stiffness/modulus, absorbed energy at failure, elongation/strain at failure. Quantitative histological scoring was performed to assess cellularity and vascularity. Closed flexion angle measurements demonstrated no significant differences in tendon excursion between the study groups at 4 or 12weeks. Biomechanical testing showed that the group treated with PDGF-BB bound heparinated ELAS suture had significantly higher stiffness and failure load (p<0.05) at 12-weeks relative to both heparinated ELAS suture and nylon suture. Similarly, the group treated with PDGF-BB bound suture had significantly higher ultimate tensile strength and Young's modulus (p<0.05) at 12-weeks relative to both ELAS suture and nylon suture. Compared to nylon controls, heparinized ELAS with PDGF-BB improved biomechanics and vascularity during tendon healing by 12-weeks following primary repair. The ability of ELAS to deliver PDGF-BB to the lacerated area of tendon presents investigators with a functional bioinductive platform to improve repair outcomes following flexor tendon repair. STATEMENT OF SIGNIFICANCE: A high strength aligned collagen suture was fabricated via linear electrocompaction and heparinized for prolonged delivery of PDFG-BB. When it was used to suture a complete lacerated flexor tendon in a chicken model controlled release of the PDGF-BB improved the strength of treated tendon after 12 weeks compared to tendon sutured with commercial nylon suture. Furthermore, Collagen suture with affinity bound PDGF-BB enhanced the vascularization and remodeling of lacerated tendon when it compare to synthetic nylon suture. Overall, electrocompacted collagen sutures holds potential to improve repair outcome in flexor tendon surgeries by improving repair strength and stiffness, vascularity, and remodeling via sustained delivery of the PDGF-BB. The bioinductive collagen suture introduces a platform for sustained delivery of other growth factors for a wide-array of applications.


Subject(s)
Collagen/chemistry , Drug Delivery Systems , Heparin/chemistry , Lacerations/drug therapy , Proto-Oncogene Proteins c-sis/therapeutic use , Sutures , Tendons/pathology , Animals , Becaplermin , Biomechanical Phenomena , Cattle , Chickens , Lacerations/pathology , Lacerations/physiopathology , Proto-Oncogene Proteins c-sis/pharmacology , Tendons/drug effects , Tendons/physiopathology , Wound Healing/drug effects
9.
J Biomed Mater Res A ; 105(9): 2429-2440, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28470671

ABSTRACT

Bone tissue engineering mandates the development of a functional scaffold that mimics the physicochemical properties of native bone. Bioglass 45S5 (BG) is a highly bioactive material known to augment bone formation and restoration. Hybrid scaffolds fabricated using collagen type I and BG resemble the organic and inorganic composition of the bone extracellular matrix and hence have been extensively investigated for bone tissue engineering applications. However, collagen-BG scaffolds developed thus far do not recapitulate the aligned structure of collagen found in native bone. In this study, an electrochemical fabrication method was employed to synthesize BG-incorporated electrochemically aligned collagen (BG-ELAC) threads that are compositionally similar to native bone. Further, aligned collagen fibrils within BG-ELAC threads mimic the anisotropic arrangement of collagen fibrils in native bone. The effect of BG incorporation on the mechanical properties and cell-mediated mineralization on ELAC threads was investigated. The results indicated that BG can be successfully incorporated within ELAC threads, without disturbing collagen fibril alignment. Further, BG incorporation significantly increased the ultimate tensile stress (UTS) and modulus of ELAC threads (p < 0.05). SBF conditioning showed extensive mineralization on BG-ELAC threads that increased over time demonstrating the bone bioactivity of BG-ELAC threads. Additionally, BG incorporation into ELAC threads resulted in increased cell proliferation (p < 0.05) and deposition of a highly dense and continuous mineralized matrix. In conclusion, incorporation of BG into ELAC threads is a viable strategy for the development of an osteoconductive material for bone tissue engineering applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2429-2440, 2017.


Subject(s)
Calcification, Physiologic/drug effects , Ceramics/pharmacology , Collagen/pharmacology , Electrochemistry , Mechanical Phenomena , Animals , Body Fluids/chemistry , Cattle , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Shape/drug effects , Cell Survival/drug effects , Glass , Humans , Spectrometry, X-Ray Emission , Spectrum Analysis, Raman
10.
Acta Biomater ; 51: 317-329, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28093363

ABSTRACT

Rotator cuff tear is one of the most common types of shoulder injuries, often resulting in pain and physical debilitation. Allogeneic tendon-derived decellularized matrices do not have appropriate pore size and porosity to facilitate cell infiltration, while commercially-available synthetic scaffolds are often inadequate at inducing tenogenic differentiation. The aim of this study is to develop an advanced 3D aligned collagen/silk scaffold (ACS) and investigate its efficacy in a rabbit massive rotator cuff tear model. ACS has similar 3D alignment of collagen fibers as natural tendon with superior mechanical characteristics. Based on ectopic transplantation studies, the optimal collagen concentration (10mg/ml), pore diameter (108.43±7.25µm) and porosity (97.94±0.08%) required for sustaining a stable macro-structure conducive for cellular infiltration was determined. Within in vitro culture, tendon stem/progenitor cells (TSPCs) displayed spindle-shaped morphology, and were well-aligned on ACS as early as 24h. TSPCs formed intercellular contacts and deposited extracellular matrix after 7days. With the in vivo rotator cuff repair model, the regenerative tendon of the ACS group displayed more conspicuous native microstructures with larger diameter collagen fibrils (48.72±3.75 vs. 44.26±5.03nm) that had better alignment and mechanical properties (139.85±49.36vs. 99.09±33.98N) at 12weeks post-implantation. In conclusion, these findings demonstrate the positive efficacy of the macroporous 3D aligned scaffold in facilitating rotator cuff tendon regeneration, and its practical applications for rotator cuff tendon tissue engineering. STATEMENT OF SIGNIFICANCE: Massive rotator cuff tear is one of the most common shoulder injuries, and poses a formidable clinical challenge to the orthopedic surgeon. Tissue engineering of tendon can potentially overcome the problem. However, more efficacious scaffolds with good biocompatibility, appropriate pore size, favorable inductivity and sufficient mechanical strength for repairing massive rotator cuff tendon injuries need to be developed. In this study, we developed a novel macroporous 3D aligned collagen/silk scaffold, and demonstrated that this novel scaffold enhanced the efficacy of rotator cuff tendon regeneration by inducing aligned supracellular structures similar to natural tendon, which in turn enhanced cellular infiltration and tenogenic differentiation of stem/progenitor cells from both the tendon itself and surrounding tissues. Hence, it can potentially be a clinically useful application for tendon tissue engineering.


Subject(s)
Fibrillar Collagens/chemistry , Regeneration , Rotator Cuff/pathology , Silk/chemistry , Tissue Scaffolds/chemistry , Animals , Biomechanical Phenomena , Bombyx , Cell Proliferation/drug effects , Disease Models, Animal , Female , Fibrillar Collagens/pharmacology , Gene Expression Regulation/drug effects , Implants, Experimental , Porosity , Rabbits , Real-Time Polymerase Chain Reaction , Regeneration/drug effects , Rotator Cuff/drug effects , Rotator Cuff/ultrastructure , Silk/pharmacology , Sus scrofa
11.
Acta Biomater ; 41: 100-9, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27240725

ABSTRACT

UNLABELLED: Suturing is the standard of repair for lacerated flexor tendons. Past studies focused on delivering growth factors to the repair site by incorporating growth factors to nylon sutures which are commonly used in the repair procedure. However, conjugation of growth factors to nylon or other synthetic sutures is not straightforward. Collagen holds promise as a suture material by way of providing chemical sites for conjugation of growth factors. On the other hand, collagen also needs to be reconstituted as a mechanically robust thread that can be sutured. In this study, we reconstituted collagen solutions as suturable collagen threads by using linear electrochemical compaction. Prolonged release of PDGF-BB (Platelet derived growth factor-BB) was achieved by covalent bonding of heparin to the collagen sutures. Tensile mechanical tests of collagen sutures before and after chemical modification indicated that the strength of sutures following chemical conjugation stages was not compromised. Strength of lacerated tendons sutured with epitendinous collagen sutures (11.2±0.7N) converged to that of the standard nylon suture (14.9±2.9N). Heparin conjugation of collagen sutures didn't affect viability and proliferation of tendon-derived cells and prolonged the PDGF-BB release up to 15days. Proliferation of cells seeded on PDGF-BB incorporated collagen sutures was about 50% greater than those seeded on plain collagen sutures. Collagen that is released to the media by the cells increased by 120% under the effects of PDGF-BB and collagen production by cells was detectable by histology as of day 21. Addition of PDGF-BB to collagen sutures resulted in a moderate decline in the expression of the tendon-associated markers scleraxis, collagen I, tenomodulin, and COMP; however, expression levels were still greater than the cells seeded on collagen gel. The data indicate that the effects of PDGF-BB on tendon-derived cells mainly occur through increased cell proliferation and that longer term studies are needed to confirm whether this proliferation is outweighs the moderate reduction in the expression of tendon-associated genes. STATEMENT OF SIGNIFICANCE: A mechanically robust pure collagen suture was fabricated via linear electrocompaction and conjugated with heparin for prolonged delivery of PDFG-BB. Sustained delivery of the PDGF-BB improved the proliferation of tendon derived cells substantially at the expense of a moderate downregulation of tenogenic markers. The collagen threads were functionally applicable as epitendinous sutures when applied to chicken flexor tendons in vitro. Overall, electrocompacted collagen sutures holds potential to improve repair outcome in flexor tendon surgeries by improving cellularity and collagen production through delivery of the PDGF-BB. The bioinductive suture concept can be applied to deliver other growth factors for a wide-array of applications.


Subject(s)
Collagen/pharmacology , Drug Delivery Systems/methods , Heparin/pharmacology , Proto-Oncogene Proteins c-sis/pharmacology , Sutures , Tendons/cytology , Animals , Becaplermin , Cattle , Cell Proliferation/drug effects , Cell Shape/drug effects , Chickens , Cross-Linking Reagents/pharmacology , Delayed-Action Preparations , Real-Time Polymerase Chain Reaction , Staining and Labeling , Tensile Strength
12.
Macromol Biosci ; 16(7): 995-1000, 2016 07.
Article in English | MEDLINE | ID: mdl-27136124

ABSTRACT

A collagen sheet with highly aligned collagen fibers is fabricated by continuous cyclic stretch. The rearrangement of the collagen fibers depends on the different process parameters of the cyclic stretch, including magnitude, frequency, and period of stretch. The collagen fibers are aligned perpendicularly to the direction of the stretch. Corneal stromal cells and smooth muscle cells cultivated on the highly aligned collagen sheet show alignment along the collagen fibers without the stretch during culture. Thus, the sheet can be a suitable scaffold for use in regenerative medicine.


Subject(s)
Collagen/chemistry , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Nanofibers/chemistry , Tissue Scaffolds/chemistry , Cell Proliferation/drug effects , Collagen/therapeutic use , Cornea/drug effects , Humans , Hydrogel, Polyethylene Glycol Dimethacrylate/therapeutic use , Myocytes, Smooth Muscle/drug effects , Nanofibers/therapeutic use , Regenerative Medicine , Tissue Engineering
SELECTION OF CITATIONS
SEARCH DETAIL