Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 139
Filter
Add more filters











Publication year range
1.
J Mol Model ; 30(7): 226, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38913196

ABSTRACT

CONTEXT: Allene (H2C = C = CH2) and propyne (CH3-C≡CH) are important compounds in the combustion chemistry. They can be created from the reaction of proparyl radicals with water. In this study, therefore, a computational study into the C3H3 + H2O potential energy landscape has been carefully conducted. The computed results indicate that the reaction paths forming the products (allene: CH2CCH2 + •OH) and (propyne: HCCCH3 + •OH) prevail under the 300-2000 K temperature range, where the latter is much more predominant compared to the former. However, these two products are not easily formed under ambient conditions due to the high energy barriers. In the 300 - 2000 K temperature range, the branching ratio for the propyne + •OH product declines from 100 to 86%, whereas the allene + •OH product shows an increase, reaching 14% at 2000 K. The overall bimolecular rate constant of the title reaction can be presented by the modified Arrhenius expression of ktotal = 1.94 × 10-12 T0.14 exp[(-30.55 kcal.mol-1)/RT] cm3 molecule-1 s-1. The total rate constant at the ambient conditions in this work, 2.37 × 10-34 cm3 molecule-1 s-1, was found to be over five orders of magnitude lower than the total rate constant of the C3H3 + NH3 reaction, 7.98 × 10-29 cm3 molecule-1 s-1, calculated by Hue et al. (Int. J. Chem. Kinet. 2020, 4(2), 84-91). The results in this study contribute to elucidating the mechanism of allene and propylene formation from the C3H3 + H2O reaction, and they can be used for modeling C3H3-related systems under atmospheric and combustion conditions. METHODS: All the geometric structures of the C3H3 + H2O system were optimized by the B3LYP method in conjunction with the 6-311 + + G(3df,2p) basis set. Single-point energies of these species were calculated at the CCSD(T)/6-311 + + G(3df,2p) level of theory. The CCSD(T)/CBS level has also been used to compute single-point energies for the two major reaction channels (C3H3 + H2O → allene + •OH and C3H3 + H2O → propyne + •OH). Rate constants and branching ratios of the key reaction channels were calculated in the 300-2000 K temperature interval using the Chemrate software based on the transition state theory (TST) with Eckart tunneling corrections.

2.
Chemistry ; 30(39): e202401234, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38712548

ABSTRACT

1,3-Enynes with conjugated alkene and alkyne moieties are attractive building blocks in synthetic chemistry. However, neither 4,1-hydrophosphination nor dihydrophosphination of 1,3-enynes has been reported. In this paper, the divalent ytterbium and calcium amide complexes supported by silaimine-functionalized cyclopentadienyl ligands (C5Me4-Si(L)=NR) were developed, which successfully catalyzed the efficient single and double hydrophosphination of 1,3-enynes with diarylphosphines. The hydrophosphination reactions selectively produced homoallenyl phosphines and (E)-propenylene diphosphines, respectively. This work demonstrated the potential of hemilabile silaimine-Cp ligands in the supporting the efficient and selective rare- and alkaline-earth catalysts.

3.
Chemistry ; 30(48): e202401480, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-38727792

ABSTRACT

A mechanochemistry approach is developed for regioselective synthesis of functionalized dihydropyrido[2,3-d]pyrimidines by milling propargylic alcohols and 6-aminouracils with HFIP/p-TsOH. In the case of tert-propargyl alcohols, this [3+3] cascade annulation proceeded through allenylation of uracil followed by a 6-endo trig cyclization. With sec-propargyl alcohols, the reaction furnished the propargylation of uracil. This atom economy ball milling reaction allows access to a broad range of dihydropyrido[2,3-d]pyrimidine derivatives in excellent yields. We demonstrated the gram scale synthesis of 3 g and post-synthetic modifications to effect the cyclization of 5 to 6.

4.
Open Life Sci ; 19(1): 20220855, 2024.
Article in English | MEDLINE | ID: mdl-38681731

ABSTRACT

Allene oxide synthase (AOS) is a key enzyme involved in the jasmonic acid (JA) synthesis pathway in plants. To explore its function on the regulatory mechanism of JA synthesis, we screened and identified two AOS genes HvnAOS1 and HvnAOS2 in qingke. Both HvnAOS1 and HvnAOS2 contained conserved heme-binding motif, which is most closely related to AtsAOS2, indicating controlled dehydration of fatty acid hydroperoxides to allene oxides. Molecular docking simulations identified the key amino acid sites that were important for heme binding and interaction with 13(S)-HPOT, respectively. The expression pattern also indicated that HvnAOS1 and HvnAOS2 were highly induced by JA, abscisic acid, and salicylic acid. Subcellular localization of HvnAOS1 and HvnAOS2 using transient expression of Agrobacterium tumefaciens showed the green fluorescent protein signal in the cell cytoplasm of the N. benthamiana leaves. Overexpression of HvnAOS1 and HvnAOS2 in Arabidopsis aos mutant restored male fertility and plant resistance to Botrytis cinerea, indicating that HvnAOS1 and HvnAOS2 can restore the functions of AOS in Arabidopsis aos mutant.

5.
Adv Sci (Weinh) ; 11(21): e2308710, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38477453

ABSTRACT

The synthesis of allenyl boronates is an important yet challenging topic in organic synthesis. Reported herein is an NHC-gold-catalyzed 1,3-H shift toward allenyl boronates synthesis from simple propargylic B(MIDA)s. Mechanistic studies suggest dual roles of the boryl moiety in the reaction: to activate the substrate for isomerization and at the same time, to prevent the allene product from further isomerization. These effects should be a result of α-anion stabilization and α-cation destabilization conferred by the B(MIDA) moiety, respectively. The NHC-Au catalyst, which is commercially available, is also found to be reactive in alkyne-to-1,3-diene isomerization reactions in an atom-economic and base-free manner.

6.
Int J Mol Sci ; 25(6)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38542213

ABSTRACT

The microalgae Vischeria sp. IPPAS C-70 produces eicosapentaenoic acid. Several stresses cause the formation of fatty acid peaks that resemble hexadecadienoic acids. We used the integrated technique including TLC, HPLC, and GC-MS to search and determine these fatty acids. Double bond positioning in these fatty acids indicated that they were conjugated dienes and allenes. We identified and described natural nine isomers of C16 polyunsaturated fatty acids, including common methylene-interrupted dienes (Δ6,9-16:2, Δ7,10-16:2, Δ9,12-16:2), and unusual conjugated dienes (Δ6,8-, Δ7,9-, Δ8,10-, Δ9,11-, and Δ10,12-16:2), as well as allenic diene (Δ9,10-16:2). We hypothesize that the formation of conjugated dienes and allenes among fatty acids is the result of oxidative stress caused by H2O2. Hydrogen peroxide also caused an increase in saturated at the expense of unsaturated fatty acids, suggesting inhibition either fatty acid desaturases activities or the corresponding gene expression.


Subject(s)
Fatty Acids , Hydrogen Peroxide , Fatty Acids/metabolism , Fatty Acids, Unsaturated/metabolism , Gas Chromatography-Mass Spectrometry , Oxidative Stress , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism
7.
Angew Chem Int Ed Engl ; 63(21): e202401433, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38433099

ABSTRACT

We introduce the heterocumulene ligand [(Ad)NCC(tBu)]- (Ad=1-adamantyl (C10H15), tBu=tert-butyl, (C4H9)), which can adopt two forms, the azaalleneyl and ynamide. This ligand platform can undergo a reversible chelotropic shift using Brønsted acid-base chemistry, which promotes an unprecedented spin-state change of the [VIII] ion. These unique scaffolds are prepared via addition of 1-adamantyl isonitrile (C≡NAd) across the alkylidyne in complexes [(BDI)V≡CtBu(OTf)] (A) (BDI-=ArNC(CH3)CHC(CH3)NAr), Ar=2,6-iPr2C6H3) and [(dBDI)V≡CtBu(OEt2)] (B) (dBDI2-=ArNC(CH3)CHC(CH2)NAr). Complex A reacts with C≡NAd, to generate the high-spin [VIII] complex with a κ1-N-ynamide ligand, [(BDI)V{κ1-N-(Ad)NCC(tBu)}(OTf)] (1). Conversely, B reacts with C≡NAd to generate a low-spin [VIII] diamagnetic complex having a chelated κ2-C,N-azaalleneyl ligand, [(dBDI)V{κ2-N,C-(Ad)NCC(tBu)}] (2). Theoretical studies have been applied to better understand the mechanism of formation of 2 and the electronic reconfiguration upon structural rearrangement by the alteration of ligand denticity between 1 and 2.

8.
Angew Chem Int Ed Engl ; 63(15): e202400938, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38329239

ABSTRACT

Selective functionalization of allenic C(sp2)-H is an ideal approach to upgrading simple allenes to synthetically useful allenes, albeit suffering from challenges associated with inert reactivity and inferior selectivity. Inspired by energy chemistry, a catalytic hydrogen evolution reaction (HER) strategy was leveraged to selectively activate weakly acidic allene C(sp2)-H bonds in a reductive mode. An array of [Co2O2] metallacycle complexes were readily devised starting from amino acids, and they were demonstrated as robust HER catalysts, which would selectively break allenic C(sp2)-H bonds to release hydrogen. With the newly developed HER catalyst, regioselective electrochemical functionalization of allenic C(sp2)-H with alcoholic α C(sp3)-H was unprecedentedly achieved. This strategy features excellent regioselectivity, unconventional chemoselectivity, good functional-group tolerance (62 examples), and mild conditions. Mechanism experiments revealed a reactive hydroxy-coordinated cobalt(II) species in the reaction. Density functional theory (DFT) calculations were also conducted to rationalize the regioselectivity observed in the reaction.

9.
Molecules ; 29(2)2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38257236

ABSTRACT

This study presents a comprehensive analysis of nickel-phosphine complexes, specifically Ni(PH3)2(OCCH2), Ni(PH3)2(H2CCO), Ni(PH3)2(H2CCCH2), Ni(PH3)2(NNCH2), and Ni(PH3)2(η1-H2CNN). Utilizing ETS-NOCV analysis, we explored orbital energy decomposition and the Hirshfeld charges of the ligands, providing insights into the electronic structures and donor-acceptor interactions within these complexes. The interactions in the ketene and allene complexes exhibit similar deformation densities and NOCV orbital shapes to those calculated for Ni(PH3)2(NNCH2), indicating consistent interaction characteristics across these complexes. The total interaction energy for all η2 complexes is observed to be over 60 kcal/mol, slightly exceeding that of the analogous carbon dioxide complex reported earlier. Furthermore, the study highlights the stronger back-donation as compared to donor interactions across all η2 complexes. This is further corroborated by Hirshfeld analysis, revealing the charge distribution dynamics within the ligand fragments. The research offers new perspectives on the electron distribution and interaction energies in nickel-phosphine complexes, contributing to a deeper understanding of their catalytic and reactive behaviors.

10.
Curr Issues Mol Biol ; 46(1): 821-841, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38248355

ABSTRACT

Oxylipins are one of the most important classes of bioregulators, biosynthesized through the oxidative metabolism of unsaturated fatty acids in various aerobic organisms. Oxylipins are bioregulators that maintain homeostasis at the cellular and organismal levels. The most important oxylipins are mammalian eicosanoids and plant octadecanoids. In plants, the main source of oxylipins is the lipoxygenase cascade, the key enzymes of which are nonclassical cytochromes P450 of the CYP74 family, namely allene oxide synthases (AOSs), hydroperoxide lyases (HPLs), and divinyl ether synthases (DESs). The most well-studied plant oxylipins are jasmonates (AOS products) and traumatin and green leaf volatiles (HPL products), whereas other oxylipins remain outside of the focus of researchers' attention. Among them, there is a large group of epoxy hydroxy fatty acids (epoxyalcohols), whose biosynthesis has remained unclear for a long time. In 2008, the first epoxyalcohol synthase of lancelet Branchiostoma floridae, BfEAS (CYP440A1), was discovered. The present review collects data on EASs discovered after BfEAS and enzymes exhibiting EAS activity along with other catalytic activities. This review also presents the results of a study on the evolutionary processes possibly occurring within the P450 superfamily as a whole.

11.
Biomolecules ; 13(12)2023 12 12.
Article in English | MEDLINE | ID: mdl-38136646

ABSTRACT

In light of recent climate change, with its rising temperatures and precipitation changes, we are facing the need to increase the valuable crop's tolerance against unfavorable environmental conditions. Emmer wheat is a cereal crop with high nutritional value. We investigated the possibility of improving the stress tolerance of emmer wheat by activating the synthesis of the stress hormone jasmonate by overexpressing two genes of the jasmonate biosynthetic pathway from Arabidopsis thaliana, ALLENE OXIDE SYNTHASE (AtAOS) and OXOPHYTODIENOATE REDUCTASE 3 (AtOPR3). Analyses of jasmonates in intact and mechanically wounded leaves of non-transgenic and transgenic plants showed that the overexpression of each of the two genes resulted in increased wounding-induced levels of jasmonic acid and jasmonate-isoleucine. Against all expectations, the overexpression of AtAOS, encoding a chloroplast-localized enzyme, does not lead to an increased level of the chloroplast-formed 12-oxo-phytodienoic acid (OPDA), suggesting an effective conversion of OPDA to downstream products in wounded emmer wheat leaves. Transgenic plants overexpressing AtAOS or AtOPR3 with increased jasmonate levels show a similar phenotype, manifested by shortening of the first and second leaves and elongation of the fourth leaf, as well as increased tolerance to osmotic stress induced by the presence of the polyethylene glycol (PEG) 6000.


Subject(s)
Arabidopsis , Triticum , Triticum/genetics , Osmotic Pressure , Arabidopsis/metabolism , Plant Leaves/metabolism , Plants, Genetically Modified/genetics
12.
ACS Catal ; 13(3): 1662-1668, 2023 Feb 03.
Article in English | MEDLINE | ID: mdl-37869365

ABSTRACT

Iodide-bound ruthenium-JOSIPHOS complexes catalyze the redox-neutral C-C coupling of primary alcohols 2a-2r with the gaseous allene (propadiene) 1a to form enantiomerically enriched homoallylic alcohols 3a-3r with complete atom-efficiency. Using formic acid as reductant, aldehydes dehydro-2a and dehydro-2c participate in reductive C-C coupling with allene to deliver adducts 3a and 3c with comparable levels of asymmetric induction. Deuterium labeling studies corroborate a mechanism in which alcohol dehydrogenation triggers allene hydroruthenation to form transient allylruthenium-aldehyde pairs that participate in carbonyl addition. Notably, due to a kinetic preference for primary alcohol dehydrogenation, chemoselective C-C coupling of 1°,2°-1,3-diols occurs in the absence of protecting groups. As illustrated by the synthesis of C7-C15 of spirastrellolide B and F (7 vs 17 steps), C3-C10 of cryptocarya diacetate (3 vs 7 or 9 steps), and a fragment common to C8'-C14' of mycolactone F (1 vs 4 steps) and C22-C28 marinomycin A (1 vs 9 steps), this capability streamlines type I polyketide construction.

13.
Synthesis (Stuttg) ; 55(10): 1487-1496, 2023 May.
Article in English | MEDLINE | ID: mdl-37841289

ABSTRACT

The evolution of methods for carbonyl allylation and crotylation of alcohol proelectrophiles culminating in the design of iodide-bound ruthenium-JOSIPHOS catalysts is prefaced by a brief historical perspective on asymmetric carbonyl allylation and its relevance to polyketide construction. Using gaseous allene or butadiene as precursors to allyl- or crotylruthenium nucleophiles, respectively, new capabilities for carbonyl allylation and crotylation have been unlocked, including stereo- and site-selective methods for the allylation and crotylation of 1,3-diols and related polyols.

14.
Angew Chem Int Ed Engl ; 62(51): e202314191, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-37906448

ABSTRACT

A new phosphine-catalyzed reaction of α-substituted allenes with aryl imines, in stark contrast to classic cycloaddition reactions, has been developed. This reaction delivers valuable highly functionalized itaconimides with excellent stereoselectivities by a new «un-cyclizing¼ reaction mode involving ß'-carbon of α-substituted allenes. Moreover, the present «un-cyclizing¼ reaction can also be carried out in a one-pot fashion and scaled up to the gram scale by using aryl aldehydes, without the need to isolate the aryl imines. Mechanistic studies and control experiments reveal the crucial role of H2 CO3 for the present reaction mode. In addition, density functional theory (DFT) calculations were performed to understand the possible mechanism.

15.
Chem Asian J ; 18(21): e202300724, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37712336

ABSTRACT

Density functional theory (DFT) has provided a detailed mechanistic picture for the redox neutral nickel(II)-catalyzed arylative cyclization reactions of a tethered allene-ketone with arylboronic acids. A mechanistic rationale for the high diastereo- and enantioselectivity achieved experimentally at high reaction temperature was uncovered through modeling the reaction with a chiral ligand and the predicted stereochemical outcome corroborates with experimental results. An unprecedented mechanism for the base-free organoboron transmetalation was revealed and the regioselectivity of migratory insertion of tethered allene-ketones as well as the stability of the possible allylnickel isomers (σ-allyl vs π-allyl) were clarified. The multifaceted nature of the reaction is revealed with certain elementary steps preferring cationic compared to the neutral state.

16.
Angew Chem Int Ed Engl ; 62(37): e202308636, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37491811

ABSTRACT

Herein, we disclose the first report of 1,2-difunctionalization of C-C multiple bonds using electrochemical gold redox catalysis. By adopting the electrochemical strategy, the inherent π-activation and cross-coupling reactivity of gold catalysis are harnessed to develop the oxy-alkynylation of allenoates under external-oxidant-free conditions. Detailed mechanistic investigations such as 31 P NMR, control experiments, mass studies, and cyclic voltammetric (CV) analysis have been performed to support the proposed reaction mechanism.

17.
Biomed Pharmacother ; 165: 115188, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37480829

ABSTRACT

The innate immune system plays a critical role in the host response against pathogenic microbial infection. However, aberrant activation of the innate immune pathways is a characteristic feature of various diseases. Thus, targeted drugs must be developed based on the understanding of the innate immune signaling pathways. This study demonstrated that an allene small molecule (DWL-4-140) can efficiently and selectively exert regulatory effects on the stimulator of interferon genes (STING), resulting in the downregulation of DNA-induced interferon responses. Mechanistically, DWL-4-140 targeted the cyclized nucleotide-binding domain (CBD) of STING, inhibiting the assembly of the STING multimeric complex and the recruitment of downstream signaling mediators. In addition to downregulating the 10-carboxymethyl-9-acridanone-induced production of inflammatory factors, DWL-4-140 alleviated the pathological features of Trex1 deletion-induced lupus in mice. Thus, this study demonstrated that DWL-4-140 pharmacologically inhibits STING with potential therapeutic applications in auto-inflammatory diseases.


Subject(s)
Membrane Proteins , Signal Transduction , Animals , Mice , Membrane Proteins/genetics , Membrane Proteins/metabolism , DNA , Interferons
18.
Chemistry ; 29(51): e202301633, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37365999

ABSTRACT

Described herein is a visible-light photoredox-catalyzed regioselective 1,4-hydroalkylation of 1,3-enynes. Various of di- and tri-substituent allenes were really accessible under the present reaction conditions. The visible-light photoredox activation of the carbon nucleophile to generate its radical species, allowing the addition with un-activated enynes. The synthetic utility for the present protocol was demonstrated by a large-scale reaction, as well as the derivatization of the allene product.

20.
Angew Chem Int Ed Engl ; 62(20): e202300309, 2023 May 08.
Article in English | MEDLINE | ID: mdl-36896746

ABSTRACT

The palladium-catalyzed asymmetric carboamination reaction is one of the most significant transformations in organic chemistry. Herein, we report the first palladium-catalyzed asymmetric alleneamination of ß,γ-unsaturated hydrazones with propargylic acetates. This protocol enables the efficient installation of various multisubstituted allene groups onto dihydropyrazoles in good yields with excellent enantioselectivities. The chiral sulfinamide phosphine ligand Xu-5 exhibits highly efficient stereoselective control in this protocol. The salient features of this reaction include the readily available starting materials, a broad substrate scope, an easy scale-up, mild reaction conditions and versatile transformations.

SELECTION OF CITATIONS
SEARCH DETAIL