Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.541
Filter
1.
Sci Rep ; 14(1): 23466, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39379510

ABSTRACT

In recent years, industrial gas flow has been obtained from the bauxite gas reservoir in the southwestern Ordos Basin, which has made the identification of aluminium-bearing rock reservoirs a popular topic. To accelerate the exploration and development of this type of gas reservoir, major element testing, rock thin section identification and principal component analysis (PCA) were conducted, and a method for rapid and accurate identification of bauxite reservoirs via conventional logging was established. The test results clearly revealed the vertical stratification of major elements and three lithologies in the aluminium (Al)-bearing rock series in the study area. The log response characteristics of effective gas reservoirs were summarized, providing a basis for subsequent research on identifying effective bauxite reservoirs via mathematical dimensionality reduction of logging curves. The porosity comparison of strata with different lithologies suggests that dissolution pores are more developed in Al-rich layers, providing insight for identifying effective reservoirs by Al2O3 content. On the basis of the above findings, a lithological identification chart of Al-bearing rock series was established via principal component analysis (PCA), and an effective bauxite reservoir logging identification model based on Al2O3 content prediction was developed. The results show that using the dimensionality reduction method for principal component analysis of logging curves with overlapping information can avoid model distortion caused by multicollinearity. The research results can be used to identify bauxite reservoirs quickly and accurately without other test data.

2.
Surg Neurol Int ; 15: 315, 2024.
Article in English | MEDLINE | ID: mdl-39372975

ABSTRACT

Background: Herniated nucleus pulposus (HNP), without causing significant neurological deficit, is a more frequently occurring disease of the spine affecting the activities of daily living with chronic back pain and sometimes progressing to produce significant functional deficit. Trans-sacral epiduroscopic laser decompression (SELD) is being increasingly used as a treatment modality for these conditions and has been shown to give effective results. We present the clinical outcomes of the patients undergoing SELD in our institute for HNP. Methods: A retrospective study of 411 patients who underwent SELD for lumbar disc herniation was done, analyzing the clinical outcomes by measuring visual analog scale (VAS) scores for leg pain and back pain, Oswestry Disability Index (ODI) score, and Short form health survey (SF -36) scores and followed up for 6 months. Results: A total of 195 males and 216 females underwent SELD, with a mean age of 33.2 ± 0.9 years and a mean follow-up period of 7 ± 1.6 months. VAS scores for back pain and leg pain improved significantly from 6.9 ± 0.5 and 6.6 ± 0.6 preoperatively to 1.1 ± 0.5 (P > 0.05) and 0.4 ± 0.5 (P > 0.05) at 6 months. ODI score decreased from 28.2 ± 1.7 to 9.4 ± 1.7 at 6 months from the intervention (P < 0.05). SF-36 showed significant improvement in overall categories through 6 months of follow-up. Twenty-four patients had dural punctures, and four patients needed blood patches but recovered without any complications. One patient had aggravation of the disc herniation post-procedure, and was managed by endoscopic discectomy. Conclusion: SELD is a safe, accurate, and effective procedure in treating symptomatic lumbar disc herniation with excellent clinical outcomes and effective pain relief with minimal damage to paraspinal muscles with an easier learning curve, reproducible results, and high safety index.

3.
Int J Biol Macromol ; 281(Pt 1): 135914, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39370063

ABSTRACT

Due to their safety and efficacy, aluminium salts (Alum) are considered the most important adjuvants in human vaccines. However, Alum adjuvants are unable to elicit a cellular immune response, which is vital for the prevention of various chronic infectious diseases and cancers. Herein, we isolated and purified a water-soluble polysaccharide from Chinese yam, named CYP, which was primarily composed of →4)-α-D-Glcp-(1→, →4,6)-α-D-Glcp-(1→, and α-D-Glcp-(1→. Meanwhile, we prepared aluminium hydroxide nanoparticles (Al NPs) with a nanometer-scale size and thin stick-like shape. Being an immunostimulant, the CYP was then loaded onto the Al NPs to obtain a novel adjuvant delivery system (CYP-Al NPs) that enhances the immunostimulatory activity of CYP. Our findings showed that the CYP-Al NPs facilitated macrophages activation and promoted the antigen uptake by macrophages. The in vivo experiment showed that the CYP-Al NPs, as the adjuvant to ovalbumin, promoted the activation of dendritic cells and germinal center B cells in draining lymph nodes, induced a durable and strong antibody response, especially the Th1-type IgG2a antibody response, and improved the cytotoxic T lymphocytes response. These results demonstrated that the CYP-Al NPs could generate robust humoral and cellular responses, and has the great potential to serve as an adjuvant delivery system.

4.
Micromachines (Basel) ; 15(9)2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39337781

ABSTRACT

High-strength aluminium alloys are prone to porosity and cracking during laser-based powder bed fusion of metals (PBF-LB/M) due to the complex solidification behaviour, thus limiting the preparation of high-quality aluminium alloys. In order to effectively reduce the defect formation, this study investigated the influence mechanism of different process parameters on the formation of porosity and cracks in Al-Zn-Mg-Cu alloys in the PBF-LB/M process by combining experimental and numerical simulation. The degree of influence of the process parameters on the temperature field and the temperature field on the defect formation was also quantified using path analysis. The results show that modulation of the process parameters can effectively reduce the formation of cracks and pores, although it is difficult to eliminate them. The melt pool temperature has a significant effect on the formation of porosity, and the temperature gradient has a significant effect on the formation of cracks. The degree of influence of laser power on the melt pool temperature and temperature gradient was greater than that of scanning speed, with values of 0.980 and 0.989, respectively. Therefore, the priority of modulating the laser power is higher than that of scanning speed in order to reduce the formation of defects more effectively.

5.
Front Plant Sci ; 15: 1412189, 2024.
Article in English | MEDLINE | ID: mdl-39290728

ABSTRACT

Hydrangea serrata, also knowen as the Japanese tea hortensia, is known for its sweet taste and health properties of bevarages produced from this plant. The H. serrata 3,4-dihydroisocoumarins, hydrangenol and phyllodulcin harbour a variety of biological activities and pharmacological properties. Therefore, a detailed understanding of dihydroisocoumarin biosynthesis in H. serrata is of major interest. Their biosynthesis is assumed to be enhanced by elicitors and mediated by polyketide synthases like in cases of phenylpropanoid derived phytoalexins. A de-novo transcriptome assembly of leaves and roots from the aluminium chloride treatment group versus the control group alongside with annotation was generated. Secondary plant metabolites were analysed by LC-MS. It revealed that a terpene synthase and a triterpenoid synthase gene as well as lignin biosynthesis encoding genes were upregulated in roots. Many genes for transporters, glycosyl, and other transferases as well as glycosylases were found to be differentially expressed in both organs. As no differentially expressed polyketide synthase gene homolog was found, the relative leaf and root 3,4-dihydroisocoumarin content was analysed by LC-MS measurement. Although Hydrangea species are known for their aluminium detoxification using phenylpropanoid-derived compounds, the levels of 3,4- dihydroisocoumarins were not enhanced. In this metabolite analysis, an organ- specific accumulation profile of hydrangenol, phyllodulcin, hydrangeic acid and their mono- and di-glycosides was figured out.

6.
Photoacoustics ; 39: 100643, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39309020

ABSTRACT

Vaccine development requires high-resolution, in situ, and visual adjuvant technology. To address this need, this work proposed a novel adjuvant labeling that involved indocyanine green (ICG) and bovine serum albumin (BSA) with self-assembled aluminium adjuvant (Alum), which was called BSA@ICG@Alum. This compound exhibited excellent photoacoustic properties and has been confirmed its safety, biocompatibility, high antigen binding efficiency, and superior induction of immune response. Photoacoustic tomography (PAT) tracked the distribution of Alum in lymph nodes (LNs) and lymphatic vessels in real time after diverse injection modalities. The non-invasive imaging approach revealed that BSA@ICG@Alum was transported to the draining LNs 60 min after intramuscular injection and to distal LNs within 30 min after lymph node injection. In conclusion, PAT enabled real-time three-dimensional and quantitative visualization, thus offering a powerful tool for advancing vaccine design by providing critical insights into adjuvant transport and immune system activation.

7.
Adv Mater ; : e2403155, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39285850

ABSTRACT

High-quality factor (Qm) mechanical resonators are crucial for applications where low noise and long coherence time are required, as mirror suspensions, quantum cavity optomechanical devices, or nanomechanical sensors. Tensile strain in the material enables the use of dissipation dilution and strain engineering techniques, which increase the mechanical quality factor. These techniques have been employed for high-Qm mechanical resonators made from amorphous materials and, recently, from crystalline materials such as InGaP, SiC, and Si. A strained crystalline film exhibiting substantial piezoelectricity expands the capability of high-Qm nanomechanical resonators to directly utilize electronic degrees of freedom. In this work, nanomechanical resonators with Qm up to 2.9 × 107 made from tensile-strained 290 nm-thick AlN are realized. AlN is an epitaxially-grown crystalline material offering strong piezoelectricity. Nanomechanical resonators that exploit dissipation dilution and strain engineering to reach a Qm × fm-product approaching 1013 Hz at room temperature are demonstrated. A novel resonator geometry is realized, triangline, whose shape follows the Al-N bonds and offers a central pad patterned with a photonic crystal. This allows to reach an optical reflectivity above 80% for efficient coupling to out-of-plane light. The presented results pave the way for quantum optoelectromechanical devices at room temperature based on tensile-strained AlN.

8.
Environ Pollut ; 362: 124973, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39307336

ABSTRACT

Aluminium exposure has been found to impair learning and memory abilities; however, the underlying molecular mechanisms remain unclear. In this study we conducted a double luciferase reporter assay to determine whether miR-351-5p regulates cytoplasmic polyadenylation element binding protein (CPEB) 3 mRNA. To this end, we overexpressed and inhibited miR-351-5p via stereotaxic microinjections of adeno-associated virus (AAV) into the hippocampus of Sprague Dawley rats in a sub-chronic aluminium exposure model to examine learning and memory ability using Morris water maze. Ultrastructural electron microscopy and Golgi staining were used to examine morphological changes in hippocampal neurons. In addition, we examined the levels of synaptic plasticity-related proteins (PRPs) and CPEB3 to determine the involvement of the miR-351-5P/CPEB3/PRPs pathway in aluminium neurotoxicity. Sub-chronic aluminium exposure reduced the spatial learning and memory ability of rats. Overexpression of AAV-miR-351-5P in the hippocampus aggravated the impairment of spatial learning and memory abilities of aluminium-treated rats, whereas inhibition of AAV-miR-351-5p expression alleviated it. Western blotting suggested that sub-chronic aluminium exposure increased miR-351-5p levels and reduced the expression of CPEB3 and PRPs in the hippocampus. Treatment with an AAV-miR-351-5p inhibitor partially recovered CPEB3 and PRPs. Double luciferase reporter assay results showed that CPEB3 was a direct target of miR-351-5p, while electron microscopy suggested that aluminium could damage mitochondria and synapses in the CA1 of the hippocampus. Golgi staining results indicated that aluminium could reduce the number of dendritic spines in hippocampal neurons. Inhibition of miR-351-5p restored the synaptic structure and growth of dendritic spines in the hippocampus. The involvement of the miR-351-5P/CPEB3/RPPs pathway in aluminium neurotoxicity was confirmed. Our findings suggest that inhibition of miR-351-5p can alleviate learning and memory impairments by increasing CPEB3 and PRPs.

9.
Behav Brain Res ; 476: 115270, 2024 Sep 22.
Article in English | MEDLINE | ID: mdl-39317263

ABSTRACT

Alzheimer's disease (AD), a chronic neurodegenerative disease, presents a substantial global health challenge. This study explored the potential therapeutic role of famotidine, a histamine (H2) receptor antagonist, as a glycogen synthase kinase-3ß (GSK-3ß) inhibitor in the context of AD induced by aluminium chloride (AlCl3) in a rat model. The intricate relationship between GSK-3ß dysregulation and AD pathogenesis, particularly in amyloid-ß (Aß) production, formed the basis for investigating famotidine's efficacy. Molecular modelling revealed famotidine's efficient binding to GSK-3ß, suggesting inhibitory potential. In behavioural assessments, famotidine-treated groups exhibited dose-dependent improvements in Morris Water Maze, Novel Object Recognition, and Y-Maze tests, comparable to the standard Rivastigmine tartrate group. Biochemical analyses showed that famotidine inhibits acetylcholinesterase, decreases lipid peroxidation, increases antioxidant activity, and mitigates oxidative stress. Moreover, famotidine significantly lowered the levels of GSK-3ß, IL-6, and Aß(1-42). The neuroprotective effects of famotidine were further supported by histopathological analysis. This comprehensive investigation underscores famotidine's potential as a GSK-3ß inhibitor, providing insights into its therapeutic impact on AD induced by AlCl3. The study offers a promising avenue for repurposing famotidine due to its established safety profile and widespread availability, highlighting its potential in addressing the formidable challenge of AD.

10.
Cancer Med ; 13(18): e70255, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39315735

ABSTRACT

The Breast Cancer UK-Breast Cancer Prevention Conference addressed risk from environmental pollutants and health behaviour-related breast-cancer risk. Epidemiological studies examining individual chemicals and breast cancer risk have produced inconclusive results including endocrine disrupting chemicals (EDCs) Bisphenol A, per- and polyfluorinated alkyl substances as well as aluminium. However, laboratory studies have shown that multiple EDCs, can work together to exhibit effects, even when combined at levels that alone are ineffective. The TEXB-α/ß assay measures total estrogenic load, and studies have provided evidence of a link between multiple-chemical exposures and breast cancer. However, prospective studies using TEXB-α/ß are needed to establish a causative link. There is also a need to assess real-life exposure to environmental-chemical mixtures during pregnancy, and their potential involvement in programming adverse foetal health outcomes in later life. Higher rates of breast cancer have occurred alongside increases in potentially-modifiable risk factors such as obesity. Increasing body-mass index is associated with increased risk of developing postmenopausal breast cancer, but with decreased risk of premenopausal breast cancer. In contrast, lower rates of breast cancer in Asian compared to Western populations have been linked to soya/isoflavone consumption. Risk is decreased by breastfeeding, which is in addition to the decrease in risk observed for each birth and a young first-birth. Risk is lower in those with higher levels of self-reported physical activity. Current evidence suggests breast-cancer survivors should also avoid weight gain, be physically active, and eat a healthy diet for overall health. A broad scientific perspective on breast cancer risk requires focus on both environmental exposure to chemicals and health behaviour-related risk. Research into chemical exposure needs to focus on chemical mixtures and prospective epidemiological studies in order to test the effects on breast cancer risk. Behaviour-related research needs to focus on implementation as well as deeper understanding of the mechanisms of cancer prevention.


Subject(s)
Breast Neoplasms , Humans , Breast Neoplasms/prevention & control , Breast Neoplasms/epidemiology , Female , Risk Factors , United Kingdom/epidemiology , Environmental Exposure/adverse effects , Endocrine Disruptors/adverse effects , Environmental Pollutants/adverse effects
11.
Materials (Basel) ; 17(18)2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39336380

ABSTRACT

The influence of notches and fatigue on the ultimate tensile strength and elongation at break of aluminium alloys (2024-T3, 6061-T4, 6061-T4 uncoated, 6061-T6 uncoated, 7075-T0, and 7076-T6) is presented in this study. A total of 120 specimens were used. On all specimens, notches were made using a CNC machine, with 60 of them subjected to low-cycle fatigue (LCF) before undergoing the tensile test. Based on the statistical examination of the measured data, mathematical prediction models have been established. Compared to their unscratched counterparts, the results indicate a significant decrease in the UTS and elongation at break for both notched and notched-fatigued specimens. The LCF pre-treatment contributes to the negative impacts of the notches, resulting in reduced values for the UTS and elongation at break, thus concluding that surface integrity is critical for maintaining the structural strength of aircraft components.

12.
Sensors (Basel) ; 24(17)2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39275420

ABSTRACT

The current study aims to evaluate the performance of the ultrasonic vibration-assisted milling (USVAM) process when machining two different materials with high deviations in mechanical properties, specifically 7075 aluminium alloy and Ti-6Al-4V titanium alloy. Additionally, this study seeks to develop an AI-based model to predict the process performance based on experimental data for the different workpiece characteristics. In this regard, an ultrasonic vibratory setup was designed to provide vibration oscillations at 28 kHz frequency and 8 µm amplitude in the cutting feed direction for the two characterised materials of 7075 aluminium alloy (150 BHN) and Ti-6Al-4V titanium alloy (350 BHN) workpieces. A series of slotting experiments were conducted using both conventional milling (CM) and USVAM techniques. The axial cutting force and machined slot surface roughness were evaluated for each method. Subsequently, Support Vector Regression (SVR) and artificial neural network (ANN) models were built, tested and compared. AI-based models were developed to analyse the experimental results and predict the process performance for both workpieces. The experiments demonstrated a significant reduction in cutting force by up to 30% and an improvement in surface roughness by approximately four times when using USVAM compared to CM for both materials. Validated by the experimental findings, the ANN model accurately and better predicted the performance metrics with RMSE = 0.11 µm and 0.12 N for Al surface roughness and cutting force. Regarding Ti, surface roughness and cutting force were predicted with RMSE of 0.12 µm and 0.14 N, respectively. The results indicate that USVAM significantly enhances milling performance in terms of a reduced cutting force and improved surface roughness for both 7075 aluminium alloy and Ti-6Al-4V titanium alloy. The ANN model proved to be an effective tool for predicting the outcomes of the USVAM process, offering valuable insights for optimising milling operations across different materials.

13.
Materials (Basel) ; 17(16)2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39203144

ABSTRACT

This paper presents the results of a study on the effect of the dispersed phase on the lubricating and rheological properties of selected lubricant compositions. A vegetable oil base (rapeseed oil) was used to prepare vegetable lubricants, which were then thickened with lithium stearate, calcium stearate, aluminum stearate, amorphous silica, and montmorillonite. Based on the results of the tribological tests of selected lubricating compositions, it was found that calcium stearate and montmorillonite have the most beneficial effect on the anti-wear properties of the tested lubricating greases, while silica thickeners (amorphous silica and montmorillonite) provide the effective anti-wear protection in compared to the lubricants produced on lithium and aluminum stearate. The lowest structural viscosity was found for grease thickened with montmorillonite. Much higher values of this parameter were observed for composition, where aluminum stearate was the dispersed phase, while the highest value of structural viscosity was observed for composition, where aerosol-amorphous silica was the thickener. The composition thickened with amorphous silica had the highest yield point value, while the composition in which montmorillonite was the dispersed phase had the lowest value. Dynamic viscosity decreases with temperature, which is characteristic of lubricants. No significant differences in dynamic viscosity were found for the lubricating compositions tested at temperatures above 50 [°C]. The most favorable rheological properties were observed for composition, which was produced using calcium stearate, as it allows the lowest dynamic viscosity at -20 [°C]. Lubricants produced with lithium stearate or aluminum stearate were characterized by higher viscosity at low temperatures. For grease, in which the lithium stearate was used as a thickener, the value of the elasticity index determines the weak viscoelastic properties of tested grease and a greater tendency to change structure under the influence of applied forces. For vegetable grease thickened with aluminum stearate, more than 15 times lower values of the MSD function were observed, and the calculated elasticity index value proves the stronger viscoelastic properties of the aluminum stearate grease in relation to grease thickened with the lithium stearate. The elasticity index value for grease thickened with amorphous silica was lower than for greases thickened with lithium and aluminum stearate, indicating its stronger viscoelastic properties in relation to these two greases. For grease composition prepared on the vegetable oil base and thickened with montmorillonite. The value of the elasticity index was lower than most of the tested grease compositions, without the composition, in which the calcium stearate was used as a thickener. Such results testify to moderately strong viscoelastic properties, which leads to the conclusion that the produced lubricant was a stable substance on changes in chemical structure under the influence of variable conditions prevailing during work in tribological joints.

14.
Plants (Basel) ; 13(16)2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39204704

ABSTRACT

Lotus pedunculatus (lotus) and Lupinus polyphyllus (Russell lupin) persist in the upland grasslands of New Zealand, where soil acidity and associated aluminium (Al) toxicity impede conventional pasture legumes. This experiment investigated the response of lotus and Russell lupin to soil acidity and Al. The species were sown in 20 cm tall 1.2 L pots of acidic upland soil. A mass of 4.5 or 6.7 g lime (CaCO3)/L was added to either the top or bottom or both soil horizons (0-9 cm and 9-18 cm), resulting in six treatments across six randomised blocks in a glasshouse. The soil pH was 4.4, 4.9, and 5.4; the exchangeable Al concentrations were 24, 2.5, and 1.5 mg/kg for 0, 4.5, and 6.7 g lime/L. At 16 weeks post-sowing, the plants were divided into shoots and roots at 0-9 cm and 9-18 cm. Root morphology, shoot and root dry matter (DM), shoot nitrogen (N), and nodulation were measured. The total plant DM and shoot-to-root DM ratio were higher, and the shoot %N was lower for the lotus plants than the Russell lupin plants for the various lime rates (13.2 vs. 2.9 g plant-1, 5.6 vs. 1.6, and 2.4 vs. 3.3%, p < 0.05). No response to lime in terms of total DM or total root morphology parameters was exhibited in either species (p > 0.05). Root morphology adjustments in response to acidity between soil horizons were not observed. The results indicated that lotus and Russell lupin are tolerant to high soil acidity (pH 4.4-5.4) and exchangeable Al (1.5-24 mg kg-1), highlighting their considerable adaptation to grasslands with acidic soils.

15.
J Fluoresc ; 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39215912

ABSTRACT

ZnO nanoparticles (NPs) were prepared and characterized by different analytical methods and then they were used to decorate with N, N´-bis(salicylidene)ethylenediamine (salen) in order to perform as receptor for the metal ions in an aqueous medium. The results show that ZnO-salen selectively detects Al3+ ions in aqueous medium since the intensity of fluorescence has been enhanced significantly. However, the presence of K+ in the medium further intensified the fluorescence emission for the [ZnO-salen-Al3+] system. The above system has been applied to recognize Al3+ and K+ in cells by developing the cell images, for which, the fluorescence image is brightened if a human glioblastoma U251 cell contains [ZnO-salen-Al3+] + K+ ions, consisting of the fluorescence titration. The binding global constant for Al3+ and the subsequent recognition of K+ by ZnO-salen resulted in ß2(Al3+) = 6.61 × 103 and ß2(K+) = 3.71 × 103 with a detection limit of 36.51 µM for Al3+ and 17.39 µM for K+. In the cell toxicity analysis, the cell viability was over 85% for the ZnO-salen even in the concentration as high as 100 mM.

16.
Waste Manag ; 189: 103-113, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39182276

ABSTRACT

The growing demand for aluminium worldwide makes aluminium recycling critical to realising a circular economy and increasing the sustainability of our world. One effective way to improve the impact of aluminium recycling is to develop cost-efficient automated sorting technologies for obtaining pre-defined high-quality aluminium scrap products, thus reducing undesirable downcycling and increasing environmental/economic benefits. In this work, an innovative facility, which includes singulation, sensor scanning, and ejection, is optimised for the automated sorting of aluminium scraps. The sorting facility is computationally studied by a virtual experiment model based on the discrete element method. The model considers particle-scale dynamics of complex-shaped scraps and mimics the automated operation of the facility. Based on virtual experiment modelling, the flow of scrap is optimized by computation, with the feasible operation of the sorting facility being proposed. Accordingly, the sorting facility has been built and model predictions are confirmed in actual operation.


Subject(s)
Aluminum , Models, Theoretical , Recycling , Aluminum/chemistry , Recycling/methods , Automation , Waste Management/methods
17.
Water Res ; 264: 122242, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39154535

ABSTRACT

Coastal areas often suffer from eutrophication, causing ecosystem degradation and oxygen deficiencies. In hundreds of lakes, aluminium (Al) treatment has been a successful method to bind phosphorous in the sediments, reducing lake productivity. In this study we follow up a successful Al treatment of the sediment of Björnöfjärden, which was the first full-scale coastal remediation project using a geo-engineering method, that substantially reduced P concentrations in the water column. We evaluate the long-term development of Al in the water and aquatic life using 10 years data from before, during and after the aluminium treatment. Still after ten years, the treatment is successful with low P concentrations in the Bay. After a temporal increase of Al in water and biota (fish and algae) in connection with the Al treatment, the concentration decreased rapidly to pre-treatment levels. A risk assessment for biota and humans consuming fish and water from the bay showed that the risk for negative effects were negligible, also during the treatment year.


Subject(s)
Aluminum , Bays , Water Pollutants, Chemical , Aluminum/toxicity , Water Pollutants, Chemical/toxicity , Animals , Geologic Sediments/chemistry , Phosphorus , Fishes , Eutrophication , Humans , Environmental Restoration and Remediation , Risk Assessment
18.
Chemphyschem ; : e202400493, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136933

ABSTRACT

Aluminum (Al) is one of the most promising active materials for producing next-generation negative electrodes for lithium (Li)-ion batteries. It features low density, high specific capacity, and low working potential, making it ideal for producing energy-dense cells. However, this material loses its electrochemical activity within 100 cycles, making it practically unusable. Several claims in the literature support the idea that a dual degradation mechanism is at play. First, the slow diffusion of Li in the Al matrix causes the electrochemical reactions to be partly irreversible, making the initial capacity of the cell drop. Second, the stress caused by cycling make the active material pulverize and lose activity. Recent work shows that shortening the diffusion path of Li by 3D structuring is an effective way to mitigate the first capacity loss mechanism, while alloying Al with other elements effectively mitigates the second one. In this work, we demonstrate that the benefits of 3D structuring and alloying are cumulative and that a mesh made of an Al-magnesium alloy performs better than both a pure Al foil and a foil of an Al-Mg alloy.

19.
Toxicol Ind Health ; 40(11): 581-595, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39138847

ABSTRACT

Aluminium, a ubiquitous environmental toxicant, is distinguished for eliciting a broad range of physiological, biochemical, and behavioural alterations in laboratory animals and humans. The present work was conducted to study the functional and structural changes induced by aluminium in rat liver. Twenty five adult male Wistar rats (150-200 g) were randomly divided into five groups; control group and four Al-treated groups viz: Al 1 (25 mg AlCl3/kg b.wt), Al 2 (35 mg AlCl3/kg b.wt), Al 3 (45 mg AlCl3/kg b.wt), and Al 4 (55 mg AlCl3/kg b.wt). Rats in the aluminium-treated groups were administered AlCl3 for 30 days through oral gavage. Aluminium significantly increased the serum levels of liver function markers (ALT, AST, and ALP), phospholipids, and cholesterol. The activities of hepatocyte membrane (ALP, GGT, and LAP) and carbohydrate metabolic (G6P, F16BP, HK, LDH, MDH, ME, and G6PDH) enzymes were significantly altered by AlCl3 administration. Prolonged Al exposure induced oxidative stress in the liver, as evident by significant hepatocellular DNA damage, increased lipid peroxidation, and decreased non-enzymatic and enzymatic antioxidants. The toxic effects observed in this study were AlCl3 dose-dependent. Histopathological examination of liver sections revealed enlargement of sinusoidal spaces, derangement of the hepatic chord, loss of discrete hepatic cell boundaries, congestion of hepatic sinusoids, and degeneration of hepatocytes in Al-intoxicated rats. In conclusion, aluminium causes severe hepatotoxicity by inhibiting the hepatocyte membrane enzymes and disrupting the liver's energy metabolism and antioxidant defence.


Subject(s)
Aluminum Chloride , DNA Damage , Liver , Oxidative Stress , Rats, Wistar , Animals , Aluminum Chloride/toxicity , Male , Liver/drug effects , Liver/pathology , DNA Damage/drug effects , Rats , Oxidative Stress/drug effects , Oxidation-Reduction/drug effects , Aluminum Compounds/toxicity , Lipid Peroxidation/drug effects , Chlorides/toxicity , Chemical and Drug Induced Liver Injury/pathology , Dose-Response Relationship, Drug
20.
J Ethnopharmacol ; 335: 118653, 2024 Dec 05.
Article in English | MEDLINE | ID: mdl-39094753

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Alzheimer's disease is the most common neurodegenerative disease with therapeutic limitations. Insulin resistance plays a role in the progression of Alzheimer's disease. Therapies that modulate insulin secretion and signaling, as well as oxidative stress in the brain are now being investigated for their potential role in the prevention of Alzheimer's disease (AD). Terminalia macroptera (Combretaceae) is a plant that different parts have been used traditionally for the treatment of metabolic and neurological conditions. Previous study has indicated that the crude extract exhibit anti-diabetic property. In addition, the plant is a rich source of tannins, phenolic acids, flavonoids, triterpenes. However, there is no study on its protective effect against biochemical alterations of AD in diabetic rats. AIM OF THE STUDY: The present research study investigated the neuroprotective effects of TeMac™ on Alzheimer-like pathology induced by aluminum chloride (AlCl3) in diabetic rats. METHODS: A phytochemical analysis of TeMac™ was carried out to quantify tannins. The potential effect of the tannins-enriched fraction (TEF) of TeMac™ to prevent the formation of senile plaques was conducted by its ability to inhibit the activities of ß-secretase (EC 3.4.23.46), monoamine oxidase A (EC 1.4.3.4) and the fibrillation of Aß. A diabetic model was induced from female Wistar rats by a single intraperitoneal injection of streptozotocin (STZ, 35 mg/kg BW). After that, the blood glucose level was measured to confirm the induction of diabetes. Three days after induction, animals received AlCl3 (75 mg/kg BW) alone (AD control) or concomitantly with 400 mg/kg BW of TEF of TeMac™ or 5 mg/kg BW Daonil by daily gavage for 42 days. At the end of the experiment, rats were sacrificed, blood and brains were collected. The levels of amyloid fibrils, glucose, albumin and the activities of DPP4, ß-secretase and phosphatase, and markers of oxidative stress in the brain were assessed. RESULTS: TEF of TeMac™ displays a potential ability to inhibit the activities of ß-secretase, monoamine oxidase, and Aß fibrillation. Treatment with TEF of TeMac™ significantly inhibited DPP4 and BACE1 activities and reduced brain glucose and amyloid fibril levels, and improved cerebral albumin levels and modulated oxidative stress markers. CONCLUSION: Our findings indicate that TEF of TeMac™ prevents Alzheimer's-type pathology linked to insulin resistance in rats. TEF of TeMac™ may be a potential drug candidate for the treatment of diabetes-associated cognitive impairment.


Subject(s)
Aluminum Chloride , Alzheimer Disease , Diabetes Mellitus, Experimental , Insulin Resistance , Oxidative Stress , Plant Extracts , Rats, Wistar , Tannins , Animals , Oxidative Stress/drug effects , Tannins/pharmacology , Aluminum Chloride/toxicity , Alzheimer Disease/chemically induced , Alzheimer Disease/drug therapy , Alzheimer Disease/prevention & control , Alzheimer Disease/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/chemically induced , Plant Extracts/pharmacology , Rats , Neuroprotective Agents/pharmacology , Male , Brain/drug effects , Brain/metabolism , Brain/pathology , Amyloid Precursor Protein Secretases/metabolism , Blood Glucose/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL