Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 195
Filter
1.
Antimicrob Agents Chemother ; : e0046624, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136468

ABSTRACT

Novel antimalarials are urgently needed to combat rising resistance to available drugs. The imidazolopiperazine ganaplacide is a promising drug candidate, but decreased susceptibility of laboratory strains has been linked to polymorphisms in the Plasmodium falciparum cyclic amine resistance locus (PfCARL), acetyl-CoA transporter (PfACT), and UDP-galactose transporter (PfUGT). To characterize parasites causing disease in Africa, we assessed ex vivo drug susceptibilities to ganaplacide in 750 P. falciparum isolates collected in Uganda from 2017 to 2023. Drug susceptibilities were assessed using a 72-hour SYBR Green growth inhibition assay. The median IC50 for ganaplacide was 13.8 nM, but some isolates had up to 31-fold higher IC50s (31/750 with IC50 > 100 nM). To assess genotype-phenotype associations, we sequenced genes potentially mediating altered ganaplacide susceptibility in the isolates using molecular inversion probe and dideoxy sequencing methods. PfCARL was highly polymorphic, with eight mutations present in >5% of isolates. None of these eight mutations had previously been selected in laboratory strains with in vitro drug pressure and none were found to be significantly associated with decreased ganaplacide susceptibility. Mutations in PfACT and PfUGT were found in ≤5% of isolates, except for two frequent (>20%) mutations in PfACT; one mutation in PfACT (I140V) was associated with a modest decrease in susceptibility. Overall, Ugandan P. falciparum isolates were mostly highly susceptible to ganaplacide. Known resistance mediators were polymorphic, but mutations previously selected with in vitro drug pressure were not seen, and mutations identified in the Ugandan isolates were generally not associated with decreased ganaplacide susceptibility.

2.
Medicina (Kaunas) ; 60(7)2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39064600

ABSTRACT

Background and Objectives: The coronavirus disease of 2019 (COVID-19) pandemic has posed a serious threat to humanity and is considered a global health emergency. Antimalarial drugs (ADs) have been used in the treatment of immuno-inflammatory arthritis (IIA) and coronavirus infection (COVID-19). The aim of this review is to analyze the current knowledge about the immunomodulatory and antiviral mechanisms of action, characteristics of use, and side effects of antimalarial drugs. Material and Methods: A literature search was carried out using PubMed, MEDLINE, SCOPUS, and Google Scholar databases. The inclusion criteria were the results of randomized and cohort studies, meta-analyses, systematic reviews, and original full-text manuscripts in the English language containing statistically confirmed conclusions. The exclusion criteria were summary reports, newspaper articles, and personal messages. Qualitative methods were used for theoretical knowledge on antimalarial drug usage in AIRDs and SARS-CoV-2 such as a summarization of the literature and a comparison of the treatment methods. Results: The ADs were considered a "candidate" for the therapy of a new coronavirus infection due to mechanisms of antiviral activity, such as interactions with endocytic pathways, the prevention of glycosylation of the ACE2 receptors, blocking sialic acid receptors, and reducing the manifestations of cytokine storms. The majority of clinical trials suggest no role of antimalarial drugs in COVID-19 treatment or prevention. These circumstances do not allow for their use in the treatment and prevention of COVID-19. Conclusions: The mechanisms of hydroxychloroquine are related to potential cardiotoxic manifestations and demonstrate potential adverse effects when used for COVID-19. Furthermore, the need for high doses in the treatment of viral infections increases the likelihood of gastrointestinal side effects, the prolongation of QT, and retinopathy. Large randomized clinical trials (RCTs) have refuted the fact that there is a positive effect on the course and results of COVID-19.


Subject(s)
Antimalarials , COVID-19 Drug Treatment , Rheumatic Diseases , SARS-CoV-2 , Humans , Antimalarials/therapeutic use , Antimalarials/adverse effects , Rheumatic Diseases/drug therapy , Rheumatic Diseases/complications , COVID-19 , Antiviral Agents/therapeutic use , Antiviral Agents/adverse effects , Hydroxychloroquine/therapeutic use , Hydroxychloroquine/adverse effects
3.
Microbiol Spectr ; 12(7): e0063024, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38780257

ABSTRACT

Naphthoquine is a promising candidate for antimalarial combination therapy. Its combination with artemisinin has demonstrated excellent efficacy in clinical trials conducted across various malaria-endemic areas. A co-formulated combination of naphthoquine and azithromycin has also shown high clinical efficacy for malaria prophylaxis in Southeast Asia. Developing new combination therapies using naphthoquine will provide additional arsenal responses to the growing threat of artemisinin resistance. Furthermore, due to its long half-life, the possible interaction of naphthoquine with other drugs also needs attention. However, studies on its pharmacodynamic interactions with other drugs are still limited. In this study, the in vitro interactions of naphthoquine with ivermectin, atovaquone, curcumin, and ketotifen were evaluated in the asexual stage of Plasmodium falciparum 3D7. By using the combination index analysis and the SYBR Green I-based fluorescence assay, different interaction patterns of selected drugs with naphthoquine were revealed. Curcumin showed a slight but significant synergistic interaction with naphthoquine at lower effect levels, and no antagonism was observed across the full range of effect levels for all tested ratios. Atovaquone showed a potency decline when combined with naphthoquine. For ivermectin, a significant antagonism with naphthoquine was observed at a broad range of effect levels below 75% inhibition, although no significant interaction was observed at higher effect levels. Ketotifen interacted with naphthoquine similar to ivermectin, but significant antagonism was observed for only one tested ratio. These findings should be helpful to the development of new naphthoquine-based combination therapy and the clinically reasonable application of naphthoquine-containing therapies. IMPORTANCE: Pharmacodynamic interaction between antimalarials is not only crucial for the development of new antimalarial combination therapies but also important for the appropriate clinical use of antimalarials. The significant synergism between curcumin and naphthoquine observed in this study suggests the potential value for further development of new antimalarial combination therapy. The finding of a decline in atovaquone potency in the presence of naphthoquine alerts to a possible risk of treatment or prophylaxis failure for atovaquone-proguanil following naphthoquine-containing therapies. The observation of antagonism between naphthoquine and ivermectin raised a need for concern about the applicability of naphthoquine-containing therapy in malaria-endemic areas with ivermectin mass drug administration deployed. Considering the role of atovaquone-proguanil as a major alternative when first-line artemisinin-based combination therapy is ineffective and the wide implementation of ivermectin mass drug administration in malaria-endemic countries, the above findings will be important for the appropriate clinical application of antimalarials involving naphthoquine-containing therapies.


Subject(s)
Antimalarials , Atovaquone , Curcumin , Drug Interactions , Ivermectin , Ketotifen , Naphthoquinones , Plasmodium falciparum , Plasmodium falciparum/drug effects , Atovaquone/pharmacology , Antimalarials/pharmacology , Naphthoquinones/pharmacology , Humans , Curcumin/pharmacology , Ivermectin/pharmacology , Ketotifen/pharmacology , Drug Synergism , Aminoquinolines/pharmacology , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , 1-Naphthylamine/analogs & derivatives
4.
Bioorg Chem ; 148: 107472, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38788364

ABSTRACT

Patents tend to define a huge chemical space described by the combinatorial nature of Markush structures. However, the optimization of new principal active ingredient is frequently driven by a simple Free Wilson approach. This procedure leads to a highly focused study on the chemical space near a hit compound leaving many unexplored regions that may present highly biological active reservoirs. This study aims to demonstrate that this unveiled chemical space can hide compounds with interesting potential biological activity that would be worth pursuing. This underlines the value and necessity of broadening an approach beyond conventional strategies. Hence, we advocate for an alternative methodology that may be more efficient in the early drug discovery stages. We have selected the case of Tafenoquine, a single-dose treatment for the radical cure of P. vivax malaria approved by the FDA in 2018, as an example to illustrate the process. Through the deep exploration of the Tafenoquine chemical space, seven compounds with potential antimalarial activity have been rationally identified and synthesized. This small set is representative of the chemical diversity unexplored by the 58 analogs reported to date. After biological assessment, results evidence that our approach for rational design has proven to be a very efficient exploratory methodology suitable for the early drug discovery stages.


Subject(s)
Aminoquinolines , Antimalarials , Antimalarials/pharmacology , Antimalarials/chemistry , Antimalarials/chemical synthesis , Aminoquinolines/chemistry , Aminoquinolines/pharmacology , Aminoquinolines/chemical synthesis , Structure-Activity Relationship , Molecular Structure , Dose-Response Relationship, Drug , Humans , Parasitic Sensitivity Tests , Plasmodium vivax/drug effects , Plasmodium falciparum/drug effects
5.
Cell Stress Chaperones ; 29(2): 326-337, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38518861

ABSTRACT

Global efforts to eradicate malaria are threatened by multiple factors, particularly the emergence of antimalarial drug resistant strains of Plasmodium falciparum. Heat shock proteins (HSPs), particularly P. falciparum HSPs (PfHSPs), represent promising drug targets due to their essential roles in parasite survival and virulence across the various life cycle stages. Despite structural similarities between human and malarial HSPs posing challenges, there is substantial evidence for subtle differences that could be exploited for selective drug targeting. This review provides an update on the potential of targeting various PfHSP families (particularly PfHSP40, PfHSP70, and PfHSP90) and their interactions within PfHSP complexes as a strategy to develop new antimalarial drugs. In addition, the need for a deeper understanding of the role of HSP complexes at the host-parasite interface is highlighted, especially heterologous partnerships between human and malarial HSPs, as this opens novel opportunities for targeting protein-protein interactions crucial for malaria parasite survival and pathogenesis.


Subject(s)
Antimalarials , Malaria , Humans , Heat-Shock Proteins/metabolism , Plasmodium falciparum/metabolism , Antimalarials/pharmacology , Antimalarials/therapeutic use , Antimalarials/chemistry , HSP70 Heat-Shock Proteins/metabolism , Protozoan Proteins/metabolism
6.
Article in English | MEDLINE | ID: mdl-38426407

ABSTRACT

Malaria, caused by different species of protists of the genus Plasmodium, remains among the most common causes of death due to parasitic diseases worldwide, mainly for children aged under 5. One of the main obstacles to malaria eradication is the speed with which the pathogen evolves resistance to the drug schemes developed against it. For this reason, it remains urgent to find innovative therapeutic strategies offering sufficient specificity against the parasite to minimize resistance evolution and drug side effects. In this context, nanotechnology-based approaches are now being explored for their use as antimalarial drug delivery platforms due to the wide range of advantages and tuneable properties that they offer. However, major challenges remain to be addressed to provide a cost-efficient and targeted therapeutic strategy contributing to malaria eradication. The present work contains a systematic review of nanotechnology-based antimalarial drug delivery systems generated during the last 10 years. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.


Subject(s)
Antimalarials , Malaria , Nanomedicine , Humans , Antimalarials/therapeutic use , Antimalarials/pharmacology , Drug Delivery Systems , Malaria/drug therapy , Models, Theoretical , Plasmodium
7.
Bioinform Biol Insights ; 18: 11779322241230214, 2024.
Article in English | MEDLINE | ID: mdl-38333003

ABSTRACT

6-Pyruvoyl tetrahydropterin synthase (6-PTPS) is a lyase involved in the synthesis of tetrahydrobiopterin. In Plasmodium species where dihydroneopterin aldolase (DHNA) is absent, it acts in the folate biosynthetic pathway necessary for the growth and survival of the parasite. The 6-pyruvoyl tetrahydropterin synthase of Plasmodium falciparum (PfPTPS) has been identified as a potential antimalarial drug target. This study identified potential inhibitors of PfPTPS using molecular docking techniques. Molecular docking and virtual screening of 62 compounds including the control to the deposited Protein Data Bank (PDB) structure was carried out using AutoDock Vina in PyRx. Five of the compounds, N,N-dimethyl-N'-[4-oxo-6-(2,2,5-trimethyl-1,3-dioxolan-4-yl)-3H-pteridin-2-yl]methanimidamide (140296439), 2-amino-6-[(1R)-3-cyclohexyl-1-hydroxypropyl]-3H-pteridin-4-one (140296495), 2-(2,3-dihydroxypropyl)-8,9-dihydro-6H-pyrimido[2,1-b]pteridine-7,11-dione (144380406), 2-(dimethylamino)-6-[(2,2-dimethyl-1,3-dioxolan-4-yl)-hydroxymethyl]-3H-pteridin-4-one (135573878), and [1-acetyloxy-1-(2-methyl-4-oxo-3H-pteridin-6-yl)propan-2-yl] acetate (136075207), showed better binding affinity than the control ligand, biopterin (135449517), and were selected and screened. Three conformers of 140296439 with the binding energy of -7.2, -7.1, and -7.0 kcal/mol along with 140296495 were better than the control at -5.7 kcal/mol. In silico absorption, distribution, metabolism, excretion, and toxicity (ADMET) studies predicted good pharmacokinetic properties of all the compounds while reporting a high risk of irritant toxicity in 140296439 and 144380406. The study highlights the five compounds, 140296439, 140296495, 144380406, 135573878 and 136075207, as potential inhibitors of PfPTPS and possible compounds for antimalarial drug development.

8.
Antimicrob Agents Chemother ; 68(4): e0153423, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38411062

ABSTRACT

Malaria remains a leading cause of morbidity and mortality in Burkina Faso, which utilizes artemether-lumefantrine as the principal therapy to treat uncomplicated malaria and seasonal malaria chemoprevention with monthly sulfadoxine-pyrimethamine plus amodiaquine in children during the transmission season. Monitoring the activities of available antimalarial drugs is a high priority. We assessed the ex vivo susceptibility of Plasmodium falciparum to 11 drugs in isolates from patients presenting with uncomplicated malaria in Bobo-Dioulasso in 2021 and 2022. IC50 values were derived using a standard 72 h growth inhibition assay. Parasite DNA was sequenced to characterize known drug resistance-mediating polymorphisms. Isolates were generally susceptible, with IC50 values in the low-nM range, to chloroquine (median IC5010 nM, IQR 7.9-24), monodesethylamodiaquine (22, 14-46) piperaquine (6.1, 3.6-9.2), pyronaridine (3.0, 1.3-5.5), quinine (50, 30-75), mefloquine (7.1, 3.7-10), lumefantrine (7.1, 4.5-12), dihydroartemisinin (3.7, 2.2-5.5), and atovaquone (0.2, 0.1-0.3) and mostly resistant to cycloguanil (850, 543-1,290) and pyrimethamine (33,200, 18,400-54,200), although a small number of outliers were seen. Considering genetic markers of resistance to aminoquinolines, most samples had wild-type PfCRT K76T (87%) and PfMDR1 N86Y (95%) sequences. For markers of resistance to antifolates, established PfDHFR and PfDHPS mutations were highly prevalent, the PfDHPS A613S mutation was seen in 19% of samples, and key markers of high-level resistance (PfDHFR I164L; PfDHPS K540E) were absent or rare (A581G). Mutations in the PfK13 propeller domain known to mediate artemisinin partial resistance were not detected. Overall, our results suggest excellent susceptibilities to drugs now used to treat malaria and moderate, but stable, resistance to antifolates used to prevent malaria.


Subject(s)
Antimalarials , Folic Acid Antagonists , Malaria, Falciparum , Malaria , Child , Humans , Antimalarials/pharmacology , Antimalarials/therapeutic use , Plasmodium falciparum , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Artemether, Lumefantrine Drug Combination/therapeutic use , Folic Acid Antagonists/pharmacology , Burkina Faso , Artemether/therapeutic use , Pyrimethamine/pharmacology , Pyrimethamine/therapeutic use , Malaria/drug therapy , Lumefantrine/pharmacology , Lumefantrine/therapeutic use , Drug Combinations , Polymorphism, Genetic/genetics , Drug Resistance/genetics , Protozoan Proteins/genetics , Protozoan Proteins/therapeutic use
9.
Int J Infect Dis ; 139: 41-49, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38016502

ABSTRACT

OBJECTIVES: Partial artemisinin resistance, mediated by Plasmodium falciparum K13 (PfK13) mutations, has been confirmed in certain areas of East Africa that are historically associated with high-level antimalarial resistance. The Democratic Republic of Congo (DRC) borders these areas in the East. This study aimed to determine the prevalence of resistance markers in six National Malaria Control Program surveillance sites; Boende, Kabondo, Kapolowe, Kimpese, Mikalayi, and Rutshuru. METHODS: The single nucleotide polymorphisms (SNPs) in P. falciparum genes PfK13, Pfdhfr, Pfdhps, Pfmdr1, and Pfcrt were assessed using targeted next-generation sequencing of isolates collected at enrollment in therapeutic efficacy studies. RESULTS: PfK13 SNPs were detected in two samples: in Kabondo (R561H) and in Rutshuru (P441L), both areas near Uganda and Rwanda. The Pfdhps ISGEGA haplotype, associated with reduced sulfadoxine-pyrimethamine chemoprevention efficacy, ranged from 0.8% in Mikalayi (central DRC) to 42.2% in Rutshuru (East DRC). CONCLUSIONS: R561H and P441L observed in eastern DRC are a concern, as they are associated with delayed artemisinin-based combination therapies-clearance and candidate marker of resistance, respectively. This is consistent with previous observations of shared drug resistance profiles in parasites of that region with bordering areas of Rwanda and Uganda. The likely circulation of parasites has important implications for the ongoing surveillance of partial artemisinin-resistant P. falciparum and for future efforts to mitigate its dispersal.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Humans , Plasmodium falciparum/genetics , Democratic Republic of the Congo/epidemiology , Antimalarials/pharmacology , Antimalarials/therapeutic use , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Artemisinins/pharmacology , Artemisinins/therapeutic use , Mutation , Uganda , Protozoan Proteins/genetics
10.
Article in English | WPRIM (Western Pacific) | ID: wpr-1012545

ABSTRACT

@#Introduction: Malaria, a life-threatening infectious disease caused by Plasmodium parasites, continues to be a major global health concern, particularly in regions with high transmission rates. This retrospective cohort study aimed to investigate the hematological indicators of G6PD deficiency in individuals infected with malaria. The study utilized medical records and laboratory test results to analyze the hematological parameters and markers in individuals with confirmed malaria and G6PD deficiency. Methods: Data were collected from the laboratory unit of Mosul Teaching Hospitals in Ninevah Province, Iraq, from March 2021 to November 2022. The study population consisted of individuals diagnosed with malaria and with available G6PD deficiency test results. G6PD deficiency was determined by measuring the G6PD enzyme activity in the patient’s blood. Hematological parameters, including complete blood counts, platelet counts, and red blood cell indices, were recorded using a laboratory information system. Results: The study population exhibited a relatively low prevalence of G6PD deficiency, with no significant differences observed in age or gender distribution between individuals with and without G6PD deficiency. The distribution of malaria types did not differ significantly between the two groups. However, patients with G6PD deficiency showed a significantly higher monocyte count, indicating a potential association between G6PD deficiency and altered monocyte response during malaria infection. The clinical significance of this finding requires further investigation. Conclusion: This study sheds light on the hematological indicators of G6PD deficiency in individuals infected with malaria. The findings suggest a potential relationship between G6PD deficiency and altered monocyte response during malaria infection.

11.
Vet Parasitol ; 324: 110055, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37931475

ABSTRACT

BACKGROUND: Babesiosis is an infectious disease caused by protozoa of the apicomplexan phylum, genus Babesia. It is a malaria-like parasitic disease that can be transmitted via tick bites. The apicomplexan phylum of eukaryotic microbial parasites has had detrimental impacts on human and veterinary medicine. There are only a few drugs currently available to treat this disease; however, parasitic strains that are resistant to these commercial drugs are increasing in numbers. Plasmodium and Babesia are closely related as they share similar biological features including mechanisms for host cell invasion and metabolism. Therefore, antimalarial drugs may be useful in the treatment of Babesia infections. In addition to antimalarials, iron chelators also inhibit parasite growth. In this study, we aimed to evaluate the in vitro inhibitory efficacy of iron chelator and different antimalarials in the treatment of Babesia bovis. METHODS: Cytotoxicity of antimalarial drugs; pyrimethamine, artefenomel, chloroquine, primaquine, dihydroarthemisinine, and the iron chelator, 1-(N-acetyl-6-aminohexyl)- 3-hydroxy-2 methylpyridin-4-one (CM1), were evaluated against Madin Darby Bovine Kidney (MDBK) cells and compared to diminazene aceturate, which is the currently available drug for animal babesiosis using an MTT solution. Afterwards, an evaluation of the in vitro growth-inhibitory effects of antimalarial drug concentrations was performed and monitored using a flow cytometer. Half maximal inhibitory concentrations (IC50) of each antimalarial and iron chelator were determined and compared to the antibabesial drug, diminazine aceturate, by interpolation using a curve-fitting technique. Subsequently, the effect of the drug combination was assessed by constructing an isobologram. Values of the sum of fractional inhibitions at 50% inhibition were then estimated. RESULTS: Results indicate that all drugs tested could safely inhibit babesia parasite growth, as high as 2500 µM were non-toxic to mammalian cells. Although no drugs inhibited B. bovis more effectively than diminazine aceturate in this experiment, in vitro growth inhibition results with IC50 values of pyrimethamine 6.25 ± 2.59 µM, artefenomel 2.56 ± 0.67 µM, chloroquine 2.14 ± 0.76 µM, primaquine 22.61 ± 6.72 µM, dihydroarthemisinine 4.65 ± 0.22 µM, 1-(N-acetyl-6-aminohexyl)- 3-hydroxy-2 methylpyridin-4-one (CM1) 9.73 ± 1.90 µM, and diminazine aceturate 0.42 ± 0.01 µM, confirm that all drugs could inhibit B. bovis and could be used as alternative treatments for bovine babesial infection. Furthermore, the efficacy of a combination of the iron chelator, CM1, in combination with artefenomel dihydroarthemisinin or chloroquine, and artefenomel in combination with the iron chelator, CM1, dihydroarthemisinin or chloroquine, exhibited synergism against B. bovis in vitro. CONCLUSION: Our evaluation of the inhibitory efficacy of the iron chelator CM1, antimalarial drugs, and a combination of these drugs against B. bovis could be potentially useful in the development and discovery of a novel drug for the treatment of B. bovis in the future.


Subject(s)
Antimalarials , Babesia , Babesiosis , Cattle Diseases , Animals , Cattle , Humans , Antimalarials/pharmacology , Antimalarials/therapeutic use , Babesiosis/drug therapy , Babesiosis/parasitology , Pyrimethamine/pharmacology , Primaquine/pharmacology , Primaquine/therapeutic use , Iron Chelating Agents/pharmacology , Iron Chelating Agents/therapeutic use , Chloroquine/pharmacology , Chloroquine/therapeutic use , Inhibitory Concentration 50 , Mammals , Cattle Diseases/drug therapy
12.
Bio Protoc ; 13(21): e4863, 2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37969754

ABSTRACT

The mitochondrial electron transport chain (ETC) is a multi-component pathway that mediates the transfer of electrons from metabolic reactions that occur in the mitochondrion to molecular oxygen (O2). The ETC contributes to numerous cellular processes, including the generation of cellular ATP through oxidative phosphorylation, serving as an electron sink for metabolic pathways such as de novo pyrimidine biosynthesis and for maintaining mitochondrial membrane potential. Proper functioning of the mitochondrial ETC is necessary for the growth and survival of apicomplexan parasites including Plasmodium falciparum, a causative agent of malaria. The mitochondrial ETC of P. falciparum is an attractive target for antimalarial drugs, due to its essentiality and its differences from the mammalian ETC. To identify novel P. falciparum ETC inhibitors, we have established a real-time assay to assess ETC function, which we describe here. This approach measures the O2 consumption rate (OCR) of permeabilized P. falciparum parasites using a Seahorse XFe96 flux analyzer and can be used to screen compound libraries for the identification of ETC inhibitors and, in part, to determine the targets of those inhibitors. Key features • With this protocol, the effects of candidate inhibitors on mitochondrial O2 consumption in permeabilized asexual P. falciparum parasites can be tested in real time. • Through the sequential injection of inhibitors and substrates into the assay, the molecular targets of candidate inhibitors in the ETC can, in part, be determined. • The assay is applicable for both drug discovery approaches and enquiries into a fundamental aspect of parasite mitochondrial biology.

14.
Antimicrob Agents Chemother ; 67(7): e0173022, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37338381

ABSTRACT

Ivermectin is an endectocide used widely to treat a variety of internal and external parasites. Field trials of ivermectin mass drug administration for malaria transmission control have demonstrated a reduction of Anopheles mosquito survival and human malaria incidence. Ivermectin will mostly be deployed together with artemisinin-based combination therapies (ACT), the first-line treatment of falciparum malaria. It has not been well established if ivermectin has activity against asexual stage Plasmodium falciparum or if it interacts with the parasiticidal activity of other antimalarial drugs. This study evaluated antimalarial activity of ivermectin and its metabolites in artemisinin-sensitive and artemisinin-resistant P. falciparum isolates and assessed in vitro drug-drug interaction with artemisinins and its partner drugs. The concentration of ivermectin causing half of the maximum inhibitory activity (IC50) on parasite survival was 0.81 µM with no significant difference between artemisinin-sensitive and artemisinin-resistant isolates (P = 0.574). The ivermectin metabolites were 2-fold to 4-fold less active than the ivermectin parent compound (P < 0.001). Potential pharmacodynamic drug-drug interactions of ivermectin with artemisinins, ACT-partner drugs, and atovaquone were studied in vitro using mixture assays providing isobolograms and derived fractional inhibitory concentrations. There were no synergistic or antagonistic pharmacodynamic interactions when combining ivermectin and antimalarial drugs. In conclusion, ivermectin does not have clinically relevant activity against the asexual blood stages of P. falciparum. It also does not affect the in vitro antimalarial activity of artemisinins or ACT-partner drugs against asexual blood stages of P. falciparum.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Malaria , Animals , Humans , Antimalarials/pharmacology , Antimalarials/therapeutic use , Plasmodium falciparum , Ivermectin/pharmacology , Ivermectin/therapeutic use , Artemisinins/pharmacology , Artemisinins/therapeutic use , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Malaria/drug therapy , Drug Combinations , Drug Resistance
15.
Eur J Med Chem ; 258: 115550, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37336067

ABSTRACT

Neglected tropical diseases (NTDs) constitute a group of approximately 20 infectious diseases that mainly affect the impoverished population without basic sanitation in tropical countries. These diseases are responsible for many deaths worldwide, costing billions of dollars in public health investment to treat and control these infections. Among them are the diseases caused by protozoa of the Trypanosomatid family, which constitute Trypanosoma cruzi (Chagas disease), Trypanosoma brucei (sleeping sickness), and Leishmaniasis. In addition, there is a classification of other diseases, called the big three, AIDS, tuberculosis, and malaria, which are endemic in countries with tropical conditions. Despite the high mortality rates, there is still a gap in the treatment. The drugs have a high incidence of side effects and protozoan resistance, justifying the investment in developing new alternatives. In fact, the Target-Based Drug Design (TBDD) approach is responsible for identifying several promising compounds, and among the targets explored through this approach, N-myristoyltransferase (NMT) stands out. It is an enzyme related to the co-translational myristoylation of N-terminal glycine in various peptides. The myristoylation process is a co-translation that occurs after removing the initiator methionine. This process regulates the assembly of protein complexes and stability, which justifies its potential as a drug target. In order to propose NMT as a potential target for parasitic diseases, this review will address the entire structure and function of this enzyme and the primary studies demonstrating its promising potential against Leishmaniasis, T. cruzi, T. brucei, and malaria. We hope our information can help researchers worldwide search for potential drugs against these diseases that have been threatening the health of the world's population.


Subject(s)
Chagas Disease , Leishmaniasis , Malaria , Parasites , Animals , Humans , Acyltransferases , Chagas Disease/drug therapy , Leishmaniasis/drug therapy , Neglected Diseases/drug therapy
16.
Chembiochem ; 24(12): e202300154, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37158666

ABSTRACT

Cladosporin, a unique natural product from the fungus Cladosporium cladosporioides, exhibits nanomolar inhibitory activity against Plasmodium falciparum by targeting its cytosolic lysyl-tRNA synthetase (PfKRS) to inhibit protein biosynthesis. Due to its exquisite selectivity towards pathogenic parasites, cladosporin has become a very promising lead compound for developing antiparasitic drugs to treat drug-resistant malaria and cryptosporidiosis infections. Here we review the recent research progress of cladosporin covering aspects of the chemical synthesis, biosynthesis, bioactivity, cellular target and structure-activity relationship.


Subject(s)
Antimalarials , Lysine-tRNA Ligase , Malaria, Falciparum , Malaria , Humans , Isocoumarins/metabolism , Plasmodium falciparum/metabolism , Antimalarials/pharmacology , Antimalarials/therapeutic use , Antimalarials/metabolism , Malaria, Falciparum/drug therapy
17.
J Mol Graph Model ; 122: 108497, 2023 07.
Article in English | MEDLINE | ID: mdl-37149980

ABSTRACT

Malaria is a life-threatening parasitic disease that affects millions of people worldwide, especially in developing countries. Despite advances in conventional therapies, drug resistance in malaria parasites has become a significant concern. Hence, there is a need for a new therapeutic approach. To combat the disease effectively means eliminating vectors and discovering potent treatments. The nanotechnology research efforts in nanomedicine show promise by exploring the potential use of nanomaterials that can surmount these limitations occurring with antimalarial drugs, which include multidrug resistance or lack of specificity when targeting parasites directly. Utilizing nanomaterials would possess unique advantages over conventional chemotherapy systems by increasing the efficacy levels while reducing side effects significantly by delivering medications precisely within the diseased area. It also provides cheap yet safe measures against Malaria infections worldwide-ultimately improving treatment efficiency holistically without reinventing new methods therapeutically. This review is an effort to provide an overview of the various stages of malaria parasites, pathogenesis, and conventional therapies, as well as the treatment gap existing with available formulations. It explores different types of nanocarriers, such as liposomes, ethosomal cataplasm, solid lipid nanoparticles, nanostructured lipid carriers, polymeric nanocarriers, and metallic nanoparticles, which are frequently employed to boost the efficiency of antimalarial drugs to overcome the challenges and develop effective and safe therapies. The study also highlights the improved pharmacokinetics, enhanced drug bioavailability, and reduced toxicity associated with nanocarriers, making them a promising therapeutic approach for treating malaria.


Subject(s)
Antimalarials , Malaria , Nanostructures , Humans , Antimalarials/pharmacology , Antimalarials/therapeutic use , Malaria/drug therapy , Malaria/parasitology , Nanotechnology , Nanomedicine , Drug Delivery Systems , Drug Carriers/therapeutic use
18.
Pharmgenomics Pers Med ; 16: 449-461, 2023.
Article in English | MEDLINE | ID: mdl-37223718

ABSTRACT

Background: Sub-Saharan Africa (SSA) population is genetically diverse and heterogenous thus variability in drug response among individuals is predicted to be high. Cytochrome P450 (CYP450) polymorphisms is a major source of variability in drug response. This systematic review presents the influence of CYP450 single nucleotide polymorphisms (SNPs), particularly CYP3A4*1B, CYP2B6*6 and CYP3A5*3 on antimalarial drug plasma concentrations, efficacy and safety in SSA populations. Methods: Searching for relevant studies was done through Google Scholar, Cochrane Central Register of controlled trials (CENTRAL), PubMed, Medline, LILACS, and EMBASE online data bases. The Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines were used. Two independent reviewers extracted data from the studies. Results: Thirteen studies reporting the influence of CYP450 SNPs on plasma concentrations, efficacy and safety were included in the final data synthesis. CYP3A4*1B, CYP3A5*5, CYP2B6*6 and CYP2C8*2 did not affect antimalarial drug plasma concentration significantly. There was no difference in treatment outcomes between malaria patients with variant alleles and those with wild type alleles. Conclusion: This review reports lack of influence of CYP3A4*1B, CYP3A5*3, CYP2C8*3 and CYP2B6*6 SNPs on PK profiles, efficacy and safety in SSA among P. falciparum malaria patients.

19.
Curr Top Med Chem ; 23(16): 1477-1488, 2023.
Article in English | MEDLINE | ID: mdl-37073152

ABSTRACT

Malaria has created havoc since time immemorial. It has actually become a major health concern due to its high prevalence in developing countries where poor sanitary conditions facilitate the seasonal breeding of the vector, the female Anopheles mosquito. Even after tremendous advancements in pest control and pharmacology science, managing this disease has not been successful, and the cure for this deadly infection has not proven effective lately. The various conventional drugs used are chloroquine, primaquine, mefloquine, atovaquone, quinine, artemisinin etc. All of these have one or other major disadvantages like multi-drug resistance, high dose requirements, aggravated toxicity, non-specificity of conventional drugs, and the emergence of drug-resistant parasites. Therefore, it is necessary to surpass these limitations and look for an alternative to curb the spread of this disease using an emerging technology platform. Nanomedicine is showing promise as an effective alternative tool for the management of malaria. The idea of this tool resonates well with David J. Triggle's outstanding suggestion "The chemist is as the astronaut, searching for biologically useful space in the chemical universe. This review presents a detailed discussion on various nanocarriers, their mode of action and future perspective in treating malaria. Nanotechnology-based drug delivery methods are highly specific, require a lower dose, offer more bioavailability with prolonged drug release and stay in the body longer. Recent nano drug encapsulation and delivery vehicles comprise nanocarriers like liposomes, and organic and inorganic nanoparticles, emerging as promising alternatives for malaria management.


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria , Animals , Female , Humans , Antimalarials/pharmacology , Antimalarials/therapeutic use , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Nanomedicine , Malaria/parasitology , Primaquine/therapeutic use , Antiparasitic Agents
20.
Pharmaceutics ; 15(3)2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36986890

ABSTRACT

Block copolymer micelles (BCMs) can be used to improve the solubility of lipophilic drugs and increase their circulation half-life. Hence, BCMs assembled from MePEG-b-PCL were evaluated as drug delivery systems of gold(III) bis(dithiolene) complexes (herein AuS and AuSe) to be employed as antiplasmodial drugs. These complexes exhibited remarkable antiplasmodial activity against liver stages of the Plasmodiumberghei parasite, and low toxicity in a model of zebrafish embryos. To improve the complexes' solubility, BCMs were loaded with AuS, AuSe, and the reference drug primaquine (PQ). PQ-BCMs (Dh = 50.9 ± 2.8 nm), AuSe-BCMs (Dh = 87.1 ± 9.7 nm), and AuS-BCMs (Dh = 72.8 ± 3.1 nm) were obtained with a loading efficiency of 82.5%, 55.5%, and 77.4%, respectively. HPLC analysis and UV-Vis spectrophotometry showed that the compounds did not suffer degradation after encapsulation in BCMs. In vitro release studies suggest that AuS/AuSe-BCMs present a more controlled release compared with PQ-loaded BCMs. The antiplasmodial hepatic activity of the drugs was assessed in vitro and results indicate that both complexes present higher inhibitory activity than PQ, although encapsulated AuS and AuSe presented lower activity than their non-encapsulated counterparts. Nevertheless, these results suggest that the use of BCMs as delivery vehicles for lipophilic metallodrugs, particularly AuS and AuSe, could enable the controlled release of complexes and improve their biocompatibility, constituting a promising alternative to conventional antimalarial treatments.

SELECTION OF CITATIONS
SEARCH DETAIL