Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Publication year range
1.
J Virol ; 98(6): e0046124, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38780247

ABSTRACT

Transmissible gastroenteritis virus (TGEV)-induced enteritis is characterized by watery diarrhea, vomiting, and dehydration, and has high mortality in newborn piglets, resulting in significant economic losses in the pig industry worldwide. Conventional cell lines have been used for many years to investigate inflammation induced by TGEV, but these cell lines may not mimic the actual intestinal environment, making it difficult to obtain accurate results. In this study, apical-out porcine intestinal organoids were employed to study TEGV-induced inflammation. We found that apical-out organoids were susceptible to TGEV infection, and the expression of representative inflammatory cytokines was significantly upregulated upon TGEV infection. In addition, retinoic acid-inducible gene I (RIG-I) and the nuclear factor-kappa B (NF-κB) pathway were responsible for the expression of inflammatory cytokines induced by TGEV infection. We also discovered that the transcription factor hypoxia-inducible factor-1α (HIF-1α) positively regulated TGEV-induced inflammation by activating glycolysis in apical-out organoids, and pig experiments identified the same molecular mechanism as the ex vivo results. Collectively, we unveiled that the inflammatory responses induced by TGEV were modulated via the RIG-I/NF-κB/HIF-1α/glycolysis axis ex vivo and in vivo. This study provides novel insights into TGEV-induced enteritis and verifies intestinal organoids as a reliable model for investigating virus-induced inflammation. IMPORTANCE: Intestinal organoids are a newly developed culture system for investigating immune responses to virus infection. This culture model better represents the physiological environment compared with well-established cell lines. In this study, we discovered that inflammatory responses induced by TGEV infection were regulated by the RIG-I/NF-κB/HIF-1α/glycolysis axis in apical-out porcine organoids and in pigs. Our findings contribute to understanding the mechanism of intestinal inflammation upon viral infection and highlight apical-out organoids as a physiological model to mimic virus-induced inflammation.


Subject(s)
Gastroenteritis, Transmissible, of Swine , Glycolysis , Inflammation , Organoids , Transmissible gastroenteritis virus , Animals , Cytokines/metabolism , DEAD Box Protein 58/metabolism , DEAD Box Protein 58/genetics , Gastroenteritis, Transmissible, of Swine/virology , Gastroenteritis, Transmissible, of Swine/metabolism , Gastroenteritis, Transmissible, of Swine/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Inflammation/metabolism , Inflammation/virology , Intestines/virology , Intestines/pathology , NF-kappa B/metabolism , Organoids/virology , Organoids/metabolism , Organoids/pathology , Signal Transduction , Swine , Transmissible gastroenteritis virus/physiology
2.
bioRxiv ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38260306

ABSTRACT

While breakthroughs with organoids have emerged as next-generation in vitro tools, standardization for drug discovery remains a challenge. This work introduces human airway organoids with reversed biopolarity (AORBs), cultured and analyzed in a high-throughput, single-organoid-per-well format, enabling milestones towards standardization. AORBs exhibit a spatio-temporally stable apical-out morphology, facilitating high-yield direct intact-organoid virus infection. Single-cell RNA sequencing and immunohistochemistry confirm the physiologically relevant recapitulation of differentiated human airway epithelia. The cellular tropism of five severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains along with host response differences between Delta, Washington, and Omicron variants, as observed in transcriptomic profiles, also suggest clinical relevance. Dose-response analysis of three well-studied SARS-CoV-2 antiviral compounds (remdesivir, bemnifosbuvir, and nirmatrelvir) demonstrates that AORBs efficiently predict human efficacy, comparable to gold-standard air-liquid interface cultures, but with higher throughput (~10-fold) and fewer cells (~100-fold). This combination of throughput and relevance allows AORBs to robustly detect false negative results in efficacy, preventing irretrievable loss of promising lead compounds. While this work leverages the SARS-CoV-2 study as a proof-of-concept application, the standardization capacity of AORB holds broader implications in line with regulatory efforts to push alternatives to animal studies.

3.
Tianjin Medical Journal ; (12): 4-10, 2024.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1020961

ABSTRACT

Objective To explore novel methods for efficient respiratory viral infection of organoids by microinjection and polarity inversion techniques.Methods Lung tissue samples were obtained from 8-week-old male C57BL/6 mouse,and respiratory epithelial cells were extracted to establish a transwell organoid culture model.The green fluorescent protein(GFP)labeled influenza virus PR8(GFP-PR8)was quantitatively injected into organoids by improving the traditional microinjection platform,and morphologic changes in organoids and the immunofluorescence staining characteristics of tight junction proteins and microtubule proteins were observed.Polarity inversion apical-out(AO)was induced by suspension culture,and the morphological characteristics of polarity inversion was determined by HE staining.Normal and inverted organoids were infected with PR8,and the infection efficiency and expression differences of key pathway genes under different virus concentrations were observed.Results Ordinary organoids showed a significant increase in volume after microinjection.Following PR8 injection,the efficiency of infection was significantly higher in the apical region of organoids,accompanied by noticeable damage,as evidenced by significant down-regulation of tight junction proteins and microtubule protein expression.After suspension culture of the organoids,the polarity of ciliated cells gradually inverted outward over time,and the proportion of AO organoids stabilized on the 6th day.The efficiency of viral infection significantly increased in the inverted organoids,accompanied by significant cellular damage.After PR8 infection at 0.01 MOI,AO organoids showed significant changes in the inflammatory pathway and differentiation-related genes,with the opposite trend observed after higher concentration of PR8 infection.Conclusion Both polarity inversion and microinjection techniques significantly enhance the efficiency of influenza virus infection in organoids,thereby facilitating organoid widespread application in the field of respiratory tract infections.

4.
Cell Mol Life Sci ; 80(7): 192, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37380797

ABSTRACT

Epithelial ion and fluid secretion determine the physiological functions of a broad range of organs, such as the lung, liver, or pancreas. The molecular mechanism of pancreatic ion secretion is challenging to investigate due to the limited access to functional human ductal epithelia. Patient-derived organoids may overcome these limitations, however direct accessibility of the apical membrane is not solved. In addition, due to the vectorial transport of ions and fluid the intraluminal pressure in the organoids is elevated, which may hinder the study of physiological processes. To overcome these, we developed an advanced culturing method for human pancreatic organoids based on the removal of the extracellular matrix that induced an apical-to-basal polarity switch also leading to reversed localization of proteins with polarized expression. The cells in the apical-out organoids had a cuboidal shape, whereas their resting intracellular Ca2+ concentration was more consistent compared to the cells in the apical-in organoids. Using this advanced model, we demonstrated the expression and function of two novel ion channels, the Ca2+ activated Cl- channel Anoctamin 1 (ANO1) and the epithelial Na+ channel (ENaC), which were not considered in ductal cells yet. Finally, we showed that the available functional assays, such as forskolin-induced swelling, or intracellular Cl- measurement have improved dynamic range when performed with apical-out organoids. Taken together our data suggest that polarity-switched human pancreatic ductal organoids are suitable models to expand our toolset in basic and translational research.


Subject(s)
Epithelial Cells , Pancreas , Humans , Liver , Epithelium , Biological Assay
5.
J Surg Res ; 283: 1106-1116, 2023 03.
Article in English | MEDLINE | ID: mdl-36915002

ABSTRACT

INTRODUCTION: Necrotizing enterocolitis (NEC) is a gastrointestinal disease of premature neonates. We previously validated a NEC enteroid model derived from human infant intestinal tissue. Typical enteroid configuration is basolateral-out (BO) without direct access to the luminal (apical) surface. Apical access is necessary to allow physiologic comparison of pathogen interaction with the intestinal epithelial barrier. We hypothesize that apical-out (AO) enteroids will provide a relevant NEC model to study this relationship. METHODS: Following the institutional review board approval (#11610-11611), neonatal intestinal tissue was collected from surgical specimens. Stem cells were collected; enteroids were generated and grown to maturity in BO conformation then everted to AO. Enteroids were untreated or treated for 24 h with 100 µg/mL lipopolysaccharide and hypoxia. Protein and gene expression were analyzed for inflammatory markers, tight junction (TJ) proteins and permeability characteristic of NEC. RESULTS: Apical TJ protein zonula occludens-1 and basolateral protein ß-catenin immunofluorescence confirmed AO configuration. Treated AO enteroids had significantly increased messenger RNA (P = 0.001) and protein levels (P < 0.0001) of tumor necrosis factor-α compared to controls. Corrected total cell fluorescence of toll-like receptor 4 was significantly increased in treated AO enteroids compared to control (P = 0.002). Occludin was found to have significantly decreased messenger RNA in treated AO enteroids (P = 0.003). Expression of other TJ proteins claudins-1, -4 and zonula occludens-1 was significantly decreased in treated AO enteroids (P < 0.05). CONCLUSIONS: AO enteroids present an innovative model for NEC with increased inflammation and gut barrier restructuring. This model allows for a biologically relevant investigation of the interaction between the pathogen and the intestinal epithelial barrier in NEC.


Subject(s)
Enterocolitis, Necrotizing , Infant, Newborn , Humans , Enterocolitis, Necrotizing/metabolism , Intestinal Mucosa/pathology , Claudins/genetics , Claudins/metabolism , Tight Junctions/metabolism , Tight Junction Proteins/metabolism , RNA, Messenger/metabolism
6.
Vet Res ; 54(1): 12, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36793124

ABSTRACT

Enteroids are miniature self-organising three-dimensional (3D) tissue cultures which replicate much of the complexity of the intestinal epithelium. We recently developed an apical-out leukocyte-containing chicken enteroid model providing a novel physiologically relevant in vitro tool to explore host-pathogen interactions in the avian gut. However, the replicate consistency and culture stability have not yet been fully explored at the transcript level. In addition, causes for the inability to passage apical-out enteroids were not determined. Here we report the transcriptional profiling of chicken embryonic intestinal villi and chicken enteroid cultures using bulk RNA-seq. Comparison of the transcriptomes of biological and technical replicate enteroid cultures confirmed their high level of reproducibility. Detailed analysis of cell subpopulation and function markers revealed that the mature enteroids differentiate from late embryonic intestinal villi to recapitulate many digestive, immune and gut-barrier functions present in the avian intestine. These transcriptomic results demonstrate that the chicken enteroid cultures are highly reproducible, and within the first week of culture they morphologically mature to appear similar to the in vivo intestine, therefore representing a physiologically-relevant in vitro model of the chicken intestine.


Subject(s)
Chickens , Intestinal Mucosa , Animals , Chickens/genetics , Reproducibility of Results , Gene Expression Profiling/veterinary
7.
Animals (Basel) ; 12(3)2022 Feb 03.
Article in English | MEDLINE | ID: mdl-35158695

ABSTRACT

Pig models provide valuable research information on farm animals, veterinary, and biomedical sciences. Experimental pig gut models are used in studies on physiology, nutrition, and diseases. Intestinal organoids are powerful tools for investigating intestinal functions such as nutrient uptake and gut barrier function. However, organoids have a basal-out structure and need to grow in the extracellular matrix, which causes difficulties in research on the intestinal apical membrane. We established porcine intestinal organoids from jejunum tissues and developed basal-out and apical-out organoids using different sub-culture methods. Staining and quantitative real-time PCR showed the difference in axis change of the membrane and gene expression of epithelial cell marker genes. To consider the possibility of using apical-out organoids for intestinal function, studies involving fatty acid uptake and disruption of the epithelial barrier were undertaken. Fluorescence fatty acid was more readily absorbed in apical-out organoids than in basal-out organoids within the same time. To determine whether apical-out organoids form a functional barrier, a fluorescent dextran diffusion assay was performed. Hence, we successfully developed porcine intestinal organoid culture systems and showed that the porcine apical-out organoid model is ideal for the investigation of the intestinal environment. It can be used in future studies related to the intestine across various research fields.

8.
J Anim Sci Technol ; 64(6): 1105-1116, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36812001

ABSTRACT

Recently, we reported the robust in vitro three-dimensional (3D) expansion of intestinal organoids derived from adult bovine (> 24 months) samples. The present study aimed to establish an in vitro 3D system for the cultivation of intestinal organoids derived from growing cattle (12 months old) for practical use as a potential alternative to in vivo systems for various purposes. However, very few studies on the functional characterization and 3D expansion of adult stem cells from livestock species compared to those from other species are available. In this study, intestinal crypts, including intestinal stem cells, from the small intestines (ileum and jejunum) of growing cattle were isolated and long-term 3D cultures were successfully established using a scaffold-based method. Furthermore, we generated an apical-out intestinal organoid derived from growing cattle. Interestingly, intestinal organoids derived from the ileum, but not the jejunum, could be expanded without losing the ability to recapitulate crypts, and these organoids specifically expressed several specific markers of intestinal stem cells and the intestinal epithelium. Furthermore, these organoids exhibited key functionality with regard to high permeability for compounds up to 4 kDa in size (e.g., fluorescein isothiocyanate [FITC]-dextran), indicating that apical-out intestinal organoids are better than other models. Collectively, these results indicate the establishment of growing cattle-derived intestinal organoids and subsequent generation of apical-out intestinal organoids. These organoids may be valuable tools and potential alternatives to in vivo systems for examining host-pathogen interactions involving epithelial cells, such as enteric virus infection and nutrient absorption, and may be used for various purposes.

9.
J Virol ; 94(21)2020 10 14.
Article in English | MEDLINE | ID: mdl-32796075

ABSTRACT

The intestinal organoid culture system is a pathbreaking working model for investigating pathogen-host interactions in the intestines. However, due to the limitations of the first generation of intestinal organoids, basal-out structure and growth in Matrigel, most pathogens can rarely attach to the apical membrane directly and hardly initiate infection. In this study, we first developed a next-generation porcine intestinal organoid culture system, characterized by an apical membrane on the surface, called apical-out. To investigate the infectivity and antiviral immune responses of this apical-out porcine intestinal organoid, a swine enteric virus, transmissible gastroenteritis virus (TGEV), was employed to inoculate the culture system. Both reverse transcription-quantitative PCR (RT-qPCR) and immunofluorescence assay (IFA) analysis demonstrated that TGEV replicated in the apical-out porcine intestinal organoid culture system. Additionally, our results illustrated that TGEV infection significantly upregulated the expression levels of alpha interferon (IFN-α), IFN-λ1, interferon-stimulated gene 15 (ISG15), ISG58, tumor necrosis factor alpha (TNF-α), and interleukin 6 (IL-6) in this culture system. Hence, we successfully developed a porcine intestinal apical-out organoid culture system, which will facilitate the investigation of pathogen-host interactions in pig intestines.IMPORTANCE Intestinal organoids are a newly developed culture system for investigating pathogen-host interactions. Intestinal organoid models have been widely used since their development, because the results obtained from this type of culture model better represent physiological conditions than those from well-established cell lines. The three-dimensional (3D) porcine intestinal organoid model was reported in 2018 and 2019 for the investigation of intestinal pathogens. However, those organoid culture models were basal-out intestinal organoids, which are not suitable for porcine enteric virus research because they invade the intestines via the apical side of epithelial cells on villi. In this study, we developed a porcine apical-out intestinal organoid culture system and verified its infectivity, type I and type III interferon (IFN) antiviral responses, and inflammatory responses following infection by a swine enteric virus. Our results imply that this apical-out porcine intestinal organoid culture system is an ideal model for the investigation of interactions between swine enteric viruses and the intestines.


Subject(s)
Epithelial Cells/immunology , Gastroenteritis, Transmissible, of Swine/immunology , Host-Pathogen Interactions/immunology , Intestinal Mucosa/immunology , Organoids/immunology , Transmissible gastroenteritis virus/immunology , Animals , Biological Assay , Chemokine CXCL10/genetics , Chemokine CXCL10/immunology , Epithelial Cells/pathology , Epithelial Cells/virology , Gastroenteritis, Transmissible, of Swine/genetics , Gastroenteritis, Transmissible, of Swine/virology , Gene Expression Regulation , Host-Pathogen Interactions/genetics , Interferon-alpha/genetics , Interferon-alpha/immunology , Interferons/genetics , Interferons/immunology , Interleukin-6/genetics , Interleukin-6/immunology , Intestinal Mucosa/pathology , Intestinal Mucosa/virology , Organoids/pathology , Organoids/virology , Swine , Transmissible gastroenteritis virus/growth & development , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology , Ubiquitins/genetics , Ubiquitins/immunology , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL