Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.857
Filter
1.
J Xray Sci Technol ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39093110

ABSTRACT

INTRODUCTION: Intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) are the main radiotherapy techniques for treating and managing rectal cancer. Collimator rotation is one of the crucial parameters in radiotherapy planning, and its alteration can cause dosimetric variations. This study assessed the effect of collimator rotation on the dosimetric results of various IMRT and VMAT plans for rectal cancer. MATERIALS AND METHODS: Computed tomography (CT) images of 20 male patients with rectal cancer were utilized for IMRT and VMAT treatment planning with various collimator angles. Nine different IMRT techniques (5, 7, and 9 coplanar fields with collimator angles of 0°, 45°, and 90°) and six different VMAT techniques (1 and 2 full coplanar arcs with collimator angles of 0°, 45°, and 90°) were planned for each patient. The dosimetric results of various treatment techniques for target tissue (conformity index [CI] and homogeneity index [HI]) and organs at risk (OARs) sparing (parameters obtained from OARs dose-volume histograms [DVH]) as well as radiobiological findings were analyzed and compared. RESULTS: The 7-fields IMRT technique demonstrated lower bladder doses (V40Gy, V45Gy), unaffected by collimator rotation. The 9-fields IMRT and 2-arcs VMAT (excluding the 90-degree collimator) had the lowest V35Gy and V45Gy. A 90-degree collimator rotation in 2-arcs VMAT significantly increased small bowel and bladder V45Gy, femoral head doses, and HI values. Radiobiologically, the 90-degree rotation had adverse effects on small bowel NTCP (normal tissue complication probability). No superiority was found for a 45-degree collimator rotation over 0 or 30 degrees in VMAT techniques. CONCLUSION: Collimator rotation had minimal impact on dosimetric parameters in IMRT planning but is significant in VMAT techniques. A 90-degree rotation in VMAT, particularly in a 2-full arc technique, adversely affects PTV homogeneity index, bladder dose, and small bowel NTCP. Other evaluated collimator angles did not significantly affect VMAT dosimetrical or radiobiological outcomes.

2.
Int J Biol Macromol ; 277(Pt 2): 134349, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39094857

ABSTRACT

This study evaluated the effect of solvent acids on the structure and corrosion resistance performance of chitosan (CS) film on MAO-treated AZ31B magnesium (Mg) alloy. Initially, CS solutions were prepared in four solvent acids: acetic acid (HAc), lactic acid (LA), hydrochloric acid (HCl), and citric acid (CA). The CS films were subsequently deposited on MAO-treated AZ31B Mg alloy via a dip-coating technique. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction analysis (XRD), Fourier-transform infrared spectroscopy (FT-IR), contact angle measurement, and atomic force microscopy (AFM) were employed to characterize the surface and cross-sectional morphology as well as chemical composition. Furthermore, the samples were subjected to potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) tests to assess their resistance against corrosion in simulated body fluid (SBF). These results indicated that the CS film prepared with LA exhibited the lowest surface roughness (Ra = 31.2 nm), the largest contact angle (CA = 98.50°), and the thickest coating (36 µm). Additionally, it demonstrated superior corrosion protection performance, with the lowest corrosion current density (Icorr = 3.343 × 10-7 A/cm2), highest corrosion potential (Ecorr = -1.49 V), and highest polarization resistance (Rp = 5.914 × 104 Ω·cm2) in SBF. These results indicated that solvent acid types significantly influenced their interactions with CS. Thus, the structure and corrosion protection performance of CS films can be optimized by selecting an appropriate solvent acid.

3.
Cureus ; 16(6): e63137, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39055412

ABSTRACT

Hippocampus protection, as an organ at risk in brain radiotherapy, might protect patients' quality of life. Prophylactic cranial irradiation (PCI) has been used traditionally in small cell lung cancer (SCLC) patients as it increases survival. This study aimed to discover the contributing parameters for a successful PCI with simultaneous protection of the hippocampus by using three different treatment machines. For this purpose, treatment plans were generated for 45 SCLC patients using three half-arcs in three linear accelerators (LINACs; Elekta Infinity, Synergy, and Axesse; Elekta Ltd, Stockholm, Sweden) with different radiation field sizes and multileaf collimator (MLC) leaf thickness characteristics. The prescribed dose was 25 Gy in 10 fractions. Thresholds for the hippocampus were calculated based on the Radiation Therapy Oncology Group 0933 dose constraints. The planning and treatment system templates were common to all three LINACs. Plan evaluation was based on the dosimetric target coverage by the 95% isodose, the maximum dose of the plan, the conformity index (CI), the degree of plan modulation (MOD), and the patient-specific quality assurance (QA) pass rate. The mean target coverage was highest for Infinity (97.3%), followed by Axesse (96.6%) and Synergy (95.5%). The mean maximum dose was higher for Synergy (27.5 Gy), followed by Infinity (27.0 Gy) and Axesse (26.9 Gy). Axesse plans had the highest CI (0.93), followed by Infinity (0.91) and Synergy (0.88). Plan MOD was lower for Synergy (2.88) compared with Infinity (3.07) and Axesse (3.69). Finally, patient-specific QA was successful in all Infinity plans, in all but one Synergy plan, and in 17/45 Axesse plans, as was expected from the field size in that treatment unit. Based on overall performance, the most favorable combination of target coverage, hippocampus sparing, and plan deliverability was obtained with the LINAC, which has the largest field opening and thinnest MLC leaves.

4.
Strahlenther Onkol ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39060636

ABSTRACT

BACKGROUND: The effective dose to circulating immune cells (EDIC) is associated with survival in lung and esophageal cancer patients. This study aimed to evaluate the benefit of intensity-modulated proton therapy (IMPT) for EDIC reduction as compared to volumetric modulated arc therapy (VMAT) in patients with locally advanced breast cancer (BC). MATERIALS AND METHODS: Ten BC patients treated with locoregional VMAT after breast-conserving surgery were included. Mean dose to the heart (MHD), lungs (MLD), and liver (MlD), as well as the integral dose to the body (ITD), were retrieved, and we calculated EDIC as 0.12â€¯× MLD + 0.08â€¯× MHD + 0.15â€¯× 0.85â€¯× âˆš(n/45)â€¯× MlD + (0.45 + 0.35â€¯× 0.85â€¯× âˆš(n/45))â€¯× ITD/(62â€¯× 103), where n is the number of fractions. EDIC was compared between VMAT and IMPT plans. RESULTS: Median EDIC was reduced from 3.37 Gy (range: 2.53-5.99) with VMAT to 2.13 Gy (1.31-3.77) with IMPT (p < 0.01). For left-sided BC patients, EDIC was reduced from 3.15 Gy (2.53-3.78) with VMAT to 1.65 Gy (1.31-3.77) with IMPT (p < 0.01). For right-sided BC patients, EDIC was reduced from 5.60 Gy (5.06-5.99) with VMAT to 3.38 Gy (3.10-3.77) with IMPT (p < 0.01). Right-sided BC patients had a higher EDIC irrespective of the technique. Integral dose reduction was the main driver of EDIC reduction with IMPT and was associated with lung sparing for left-sided BC patients or liver sparing for right-sided BC patients. CONCLUSION: IMPT significantly reduced EDIC in BC patients undergoing locoregional adjuvant radiotherapy. Integral total dose reduction, associated with improved lung sparing in left-sided BC patients or liver sparing in right-sided BC patients, mainly drove EDIC reduction with IMPT. The emergence of dynamic models taking into account the circulatory kinetics of immune cells may improve the accuracy of the estimate of the dose received by the immune system compared to calculation of the EDIC, which is based solely on static dosimetric data.

5.
Sensors (Basel) ; 24(13)2024 Jun 23.
Article in English | MEDLINE | ID: mdl-39000854

ABSTRACT

In the shipbuilding industry, welding automation using welding robots often relies on arc-sensing techniques due to spatial limitations. However, the reliability of the feedback current value, core sensing data, is reduced when welding target workpieces have significant curvature or gaps between curved workpieces due to the control of short-circuit transition, leading to seam tracking failure and subsequent damage to the workpieces. To address these problems, this study proposes a new algorithm, MBSC (median-based spatial clustering), based on the DBSCAN (density-based spatial clustering of applications with noise) clustering algorithm. By performing clustering based on the median value of data in each weaving area and considering the characteristics of the feedback current data, the proposed technique utilizes detected outliers to enhance seam tracking accuracy and responsiveness in unstructured and challenging welding environments. The effectiveness of the proposed technique was verified through actual welding experiments in a yard environment.

6.
Sensors (Basel) ; 24(13)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-39001176

ABSTRACT

Several advantages of directed energy deposition-arc (DED-arc) have garnered considerable research attention including high deposition rates and low costs. However, defects such as discontinuity and pores may occur during the manufacturing process. Defect identification is the key to monitoring and quality assessments of the additive manufacturing process. This study proposes a novel acoustic signal-based defect identification method for DED-arc via wavelet time-frequency diagrams. With the continuous wavelet transform, one-dimensional (1D) acoustic signals acquired in situ during manufacturing are converted into two-dimensional (2D) time-frequency diagrams to train, validate, and test the convolutional neural network (CNN) models. In this study, several CNN models were examined and compared, including AlexNet, ResNet-18, VGG-16, and MobileNetV3. The accuracy of the models was 96.35%, 97.92%, 97.01%, and 98.31%, respectively. The findings demonstrate that the energy distribution of normal and abnormal acoustic signals has significant differences in both the time and frequency domains. The proposed method is verified to identify defects effectively in the manufacturing process and advance the identification time.

7.
Sci Rep ; 14(1): 16072, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38992076

ABSTRACT

Aiming at the problem of zero sequence voltage generated by unbalance parameters of line to ground, which affects arc suppression effect of grounding fault of controllable voltage source. By analyzing the influence of ground unbalance parameters on the arc suppression effect of controllable voltage source under different grounding modes, the mechanism of full compensation arc suppression based on zero sequence voltage of neutral point is revealed, and on this basis, a fully compensated arc suppression model of controllable voltage source controlled by double closed loop PI is established, and the deviation control is carried out by using the neutral voltage of distribution network and the voltage of fault phase supply. The residual voltage ring adopts the ground fault phase residual voltage for closed loop control. The simulation results show that the dual-closed-loop PI control algorithm can continuously stabilize the output waveform of the controllable voltage source. When the transition resistance is 0.1 ~ 10 kΩ, the residual voltage stabilization time of the independent controllable voltage source grounding method is 43 ms ~ 2.4 s, and the parallel arc suppression coil grounding method is 43 ms ~ 4.7 s. The proposed dual closed-loop PI control method for neutral point voltage deviation and fault residual voltage can stabilize the residual voltage of the grounded fault phase to below 10 V, forcing reliable arc extinction at the grounded fault point, exhibiting good stability. Low-voltage simulation tests have also proved the feasibility of the algorithm.

8.
Front Oncol ; 14: 1415471, 2024.
Article in English | MEDLINE | ID: mdl-38993636

ABSTRACT

Purpose: In the field of radiation therapy for brain metastases, whole-brain hippocampus-avoidance treatment is commonly employed. this study aims to examine the impact of different head tilt angles on the dose distribution in the whole-brain target area and organs at risk. It also aims to determine the head tilt angle to achieve optimal radiation therapy outcomes. Methods: CT images were collected from 8 brain metastases patients at 5 different groups of head tilt angle. The treatment plans were designed using the volumetric modulated arc therapy (VMAT) technique. The 5 groups of tilt angle were as follows: [0°,10°), [10°,20°), [20°,30°), [30°,40°), and [40°,45°]. The analysis involved assessing parameters such as the uniformity index, conformity index, average dose delivered to the target, dose coverage of the target, hot spots within the target area, maximum dose, and average dose received by organs at risk. Additionally, the study evaluated the correlation between hippocampal dose and other factors, and established linear regression models. Results: Significant differences in dosimetric results were observed between the [40°,45°] and [0°,10°) head tilt angles. The [40°,45°] angle showed significant differences compared to the [0°,10°) angle in the average dose in the target area (31.49 ± 0.29 Gy vs. 31.99 ± 0.29 Gy, p=0.016), dose uniformity (1.20 ± 0.03 vs. 1.24 ± 0.03, p=0.016), hotspots in the target area (33.64 ± 0.35 Gy vs. 34.42 ± 0.49 Gy, p=0.016), maximum hippocampal dose (10.73 ± 0.36 Gy vs. 11.66 ± 0.59 Gy, p=0.008), maximum dose in the lens (2.82 ± 1.10 Gy vs. 4.99 ± 0.16 Gy, p=0.016), and average dose in the lens (1.93 ± 0.29 Gy vs. 4.22 ± 0.26 Gy, p=0.008). There is a moderate correlation between the maximum dose in the hippocampi and the PTV length (r=0.49, p=0.001). Likewise, the mean dose in the hippocampi is significantly correlated with the hippocampi length (r=0.34, p=0.04). Conclusion: The VMAT plan with a head tilt angle of [40°,45°] met all dose constraints and demonstrated improved uniformity of the target area while reducing the dose to organs at risk. Furthermore, the linear regression models suggest that increasing the head tilt angle within the current range of [0°,45°] is likely to lead to a decrease in the average hippocampal dose.

9.
Materials (Basel) ; 17(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38998148

ABSTRACT

Additive manufacturing (AM) has been fully incorporated into both the academic and the industrial world. This technology has been shown to lower costs and environmental impacts. Moreover, AM-based technologies, such as wire arc additive manufacturing (WAAM), have been proven suitable for the manufacturing of large products with significant mechanical requirements. This study examines the manufacture of two aeronautical toolings: first, using conventional techniques, and second, using a big area additive manufacturing (BAAM) process, specifically WAAM technology, followed by second-stage hybrid machining. Both toolings can be considered interchangeable in terms of design and performance. Energy and material consumption were analysed and compared throughout both tooling procedures. The results show the important optimisation of both procedures in manufacturing WAAM tooling, encompassing the additive process and second-stage hybrid machining. Nevertheless, the time required for WAAM tooling manufacturing increased significantly compared to conventional manufacturing tooling. Moreover, based on metrology data from the AM process, a theoretical study was conducted to assess different design optimisations for WAAM tooling manufacturing and determine their influence on material and energy consumption. These theoretical results improve those already obtained regarding energy and raw material savings.

10.
Materials (Basel) ; 17(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38998189

ABSTRACT

This study investigated lignin as a reducing agent instead of fossil carbon for the reduction of zinc oxide and zinc ferrite contained in steelmaking dusts. Three types of dusts from different steelmaking processes were considered: ferrochrome converter (CRC), electric arc furnace stainless steel (EAFSS) and electric arc furnace carbon steel (EAFCS). Zinc is primarily found in zincite phases within CRC dust, while EAFSS and EAFCS dusts contain franklinite and zincite phases as Zn-bearing minerals. The proximate analysis of lignin showed that the fixed carbon content is 28.9%. Thermogravimetric (TG) analysis coupled with differential scanning calorimetry (DSC) and mass spectrometry (MS) was used to study the reduction behavior of different mixtures of lignin and steel dusts under inert and air atmospheres. Simultaneously, the minimum ratio of lignin out of three different proportions required to achieve a complete reduction of franklinite and zincite phases into metallic zinc was identified. The results indicated that a 1.1 stoichiometric amount of lignin is sufficient for the complete reduction of zinc-bearing minerals into metallic zinc. In conclusion, lignin can be used efficiently for processing steelmaking dusts.

11.
Materials (Basel) ; 17(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38998247

ABSTRACT

The micro-arc oxidation (MAO) technique was used to grow in situ oxidation coating on the surface of R60705 zirconium alloy in Na2SiO3, Na2EDTA, and NaOH electrolytes. The thickness, surface morphology, cross-section morphology, wear resistance, composition, and structure of the micro-arc oxidation coating were analyzed by an eddy current thickness measuring instrument, XPS, XRD, scanning electron microscopy, energy spectrometer, and wear testing machine. The corrosion resistance of the coating was characterized by a polarization curve and electrochemical impedance spectroscopy (EIS). The results show that, with the increase in frequency, the single-pulse discharge energy decreases continuously, and the coating thickness shows a decreasing trend, from the highest value of 152 µm at 400 Hz to the lowest value of 87.5 µm at 1000 Hz. The discharge pore size on the surface of the coating gradually decreases, and the wear resistance and corrosion resistance of the coating first increase and then decrease. The corrosion resistance is the best when the frequency is 400 Hz. At this time, the corrosion potential is -0.215 V, and the corrosion current density is 2.546 × 10-8 A·cm-2. The micro-arc oxidation coating of zirconium alloy is mainly composed of monoclinic zirconia (m-ZrO2) and tetragonal zirconia (t-ZrO2), in which the content of monoclinic zirconia is significantly more than that of tetragonal zirconia.

12.
Materials (Basel) ; 17(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38998259

ABSTRACT

Composite materials made from aluminum foam are increasingly used in aerospace and automotive industries due to their low density, high energy absorption capacity, and corrosion resistance. Additive manufacturing processes offer several advantages over conventional manufacturing methods, such as the ability to produce significantly more geometrically complex components without the need for expensive tooling. Direct Energy Deposition processes like Wire Arc Additive Manufacturing (WAAM) enable the additive production of near-net-shape components at high build rates. This paper presents a technology for producing aluminum foam structures using WAAM. This paper's focus is on the development of welding wires that are mixed with a foaming agent (TiH2) and produce a foamed weld metal as well as their processing using MIG welding technology.

13.
Materials (Basel) ; 17(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38998261

ABSTRACT

This paper proposes a novel welding process for ultrahigh-strength steel. The effects of welding parameters on the welding process and weld formation were studied to obtain the optimal parameter window. It was found that the metal transfer modes of solid wires were primarily determined by electrical parameters, while flux-cored wires consistently exhibited multiple droplets per pulse. The one droplet per pulse possessed better welding stability and weld formation, whereas the short-circuiting transfer or one droplet multiple pulses easily caused abnormal arc ignition that decreased welding stability, which could easily lead to a "sawtooth-shaped" weld formation or weld offset towards one side with more spatters. Thus, the electrical parameters corresponding to one droplet per pulse were identified as the optimal parameter window. Furthermore, the weld zone (WZ) was predominantly composed of AF, and the heat-affected zone (HAZ) primarily consisted of TM and LM. Consequently, the welded joint still exhibited excellent mechanical properties, particularly toughness, despite higher welding heat input. The average tensile strength reached 928 MPa, and the impact absorbed energy at -40 °C for the WZ and HAZ were 54 J and 126 J, respectively. In addition, the application of triple-wire welding for ultrahigh-strength steel (UHSS) demonstrated a significant enhancement in post-weld deposition rate, with increases of 106% and 38% compared to single-wire and twin-wire welding techniques, respectively. This process not only utilized flux-cored wire to enhance the mechanical properties of joints but also achieved high deposition rate welding.

14.
Materials (Basel) ; 17(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38998407

ABSTRACT

The main objective of this work was to propose and evaluate a methodology for shielding-gas selection in additive manufacturing assisted by wire arc additive manufacturing (WAAM) with an austenitic stainless steel as feedstock. To validate the proposed methodology, the impact of multi-component gases was valued using three different Ar-based blends recommended as shielding gas for GMA (gas metal arc) of the target material, using CMT (cold metal transfer) as the process version. This assessment considered features that potentially affect the building of the case study of thin walls, such as metal transfer regularity, deposition time, and geometrical and metallurgical characteristics. Different settings of wire-feed speeds were conceived to maintain a similar mean current (first constraint for comparison's sake) among the three gas blends. This approach implied different mean wire-feed speeds and simultaneously forced a change in the deposition speed to maintain the same amount of material deposited per unit of length (second comparison constraint). The composition of the gases affects the operational performance of the shielding gases. It was concluded that by following this methodology, shielding-gas selection decision-making is possible based on the perceived characteristics of the different commercial blends.

15.
Mol Clin Oncol ; 21(2): 57, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39006473

ABSTRACT

The purpose of the present retrospective study was to evaluate whether dosimetric differences existed in nodal clinical target volume (CTV) using options for geometric expansion and lymph node (LN) stations based on the European Society for Radiotherapy and Oncology guideline for locally advanced non-small cell lung cancer (NSCLC). In the treatment planning computed tomographic images of 17 patients with cT4N2M0 NSCLC, nodal CTVs were contoured based on the guideline options of: i) Geometric expansion, with CTV including the nodal gross tumor volume plus 5 mm margin; and ii) LN stations, with CTV including the affected LN stations. Treatment planning of 60 Gy in 30 fractions was performed using volumetric modulated arc therapy; Dmean was the mean irradiated dose to the structure; and VnGy was the volume of the structure receiving ≥n Gy. Dose-volume parameters were compared between the two options. Consequently, the option of geometric expansion was associated with a significantly lower V60Gy and Dmean of the esophagus, V20Gy, V5Gy and Dmean of the lungs, and Dmean of the heart than the option of LN stations in all patients (P=0.017, P<0.001, P<0.001, P<0.001, P<0.001 and P=0.029, respectively). For the V20Gy of the lungs, the 8 patients (47%) with LN metastases in stations 2 or 3 had significantly larger differences in the values between the two options than the 9 patients (53%) without those metastases; the median values of the difference of V20Gy of the lungs between the two options were 2.8% (range, 0.2 to 9.6%) with LN metastases in stations 2 or 3 and 0.5% (range, -0.2 to 5.0%) without these metastases (P=0.027). In conclusion, using the option for geometric expansion might help reduce the V60Gy and Dmean of the esophagus, V20Gy, V5Gy and Dmean of the lungs, and Dmean of the heart in all patients, and the V20Gy of the lungs in patients with LN metastases in stations 2 or 3.

16.
Cureus ; 16(6): e62784, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39036259

ABSTRACT

Introduction In stereotactic radiosurgery (SRS) for brain metastasis (BM), volumetric-modulated arcs (VMA) can provide a suitable dose distribution and efficient delivery, even with a widely available 5-mm leaf-width multileaf collimator (MLC). The planning optimization with affirmatively accepting internal high doses of a gross tumor volume (GTV) enhances the steepness of the dose gradient outside the GTV. However, an excessively steep dose falloff outside a GTV is susceptible to insufficient coverage of inherent irradiation uncertainties with the dose attenuation margin. This study was conducted to examine the appropriateness of dose attenuation margin outside a GTV in 5-mm MLC VMA-based SRS with a steep dose gradient and dose prescription with a biologically effective dose (BED) 80 Gy in various fractions to the GTV margin. Materials and methods This was a planning study for the clinical scenario of a single BM and targeted 28 GTVs, including nine sphere-shaped models with diameters of 5-45 mm and 19 clinical BMs (GTV 0.08-44.33 cc). SRS plans were generated for each GTV using 5-mm MLC VMA with an optimization that prioritized the steepness of dose falloff outside the GTV boundary without any internal dose constraints. A prescribed dose with the BED 80 Gy in 1-10 fraction(s) was assigned to the GTV D V-0.01 cc, a minimum dose of GTV minus 0.01 cc (D >95% for GTV >0.20 cc, D 95% for GTV ≤0.20 cc). The BED was based on the linear-quadratic formula with an alpha/beta ratio of 10 (BED10). Two planning systems were compared for the GTV + 2 mm structures that were generated by adding an isotropic 2-mm margin to the GTV. Results The GTV + 2 mm volumes differed significantly between the systems and further varied on the dose-volume histograms. The D V-0.05 cc, D 98%, and D 95% of the GTV + 2 mm were associated with substantial over- or under-coverages of the GTV + 2 mm, although the irradiated isodose volumes (IIVs) of the D 98% were closest to the GTV + 2 mm in general. The coverage values of the GTV + 2 mm with the minimum dose of the IIV equivalent to the GTV + 2 mm, D eIIV, were 93.3%-98.7% (≥95% in 26 cases). The GTV + 2 mm D eIIV relative to the GTV D V-0.01 cc was ≥81.9% (BED10 ≥60 Gy in ≤5 fractions) in 13 cases, while those were <69.8% (BED10 <48 Gy in ≤5 fractions) in four cases with the GTV of 0.33-1.77 cc. Conclusions A dose attenuation margin outside a GTV can be excessively steep for some small GTVs in 5-mm MLC VMA-based SRS with a steepest dose gradient and a BED10 80 Gy in ≤5 fractions to the GTV D V-0.01 cc, for which an adjustment of the too precipitous dose gradient is preferred to sufficiently cover relevant uncertainties. A GTV + 2 mm D eIIV with ≥95% coverage is more suitable for evaluating the appropriateness of dose attenuation outside the GTV than other common metrics with a fixed % coverage or D V-≤0.05 cc. Given the substantial variability in margin addition functions among planning systems, dose prescription to a margin-added GTV is unsuitable for ensuring uniform dose prescription.

17.
Am J Bot ; 111(7): e16374, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39001581

ABSTRACT

PREMISE: Bracken (Pteridium, Dennstaedtiaceae) is a cosmopolitan genus of aggressive disturbance colonizers that are toxic to agricultural livestock. The taxonomy of Pteridium has been treated in multiple schemes, ranging from one to six species worldwide, with numerous subspecies and varieties. Recent work has focused on the worldwide distribution and systematics of the bracken fern, but South America has been poorly represented. We present the first continent-wide sampling and analysis of Pteridium esculentum, a Southern Hemisphere diploid species. METHODS: Within South America, P. esculentum has several morphotypes, distinguished into subspecies by variation in indument and lamina architecture. We used double digest restriction site-associated DNA sequencing (ddRADSeq) to assess the phylogenetic relationships of P. esculentum subspecies. RESULTS: We found a striking genetic homogeneity in the species, being able to support only two morphotypes from molecular data: P. e. arachnoideum and P. e. campestre. We had high confidence for shallow and deep phylogenetic relationships, but less support for relationships among crown groups. CONCLUSIONS: We describe an east-west geographic pattern that would explain the relationships between populations; and, in contrast to previous studies, we detected differences with P. esculentum from Australia. These results will lay the foundations for studying variations in this species' behavior as a weed, as well as its impact on the production of agricultural livestock in South America.


Subject(s)
Phylogeny , Pteridium , South America , Pteridium/genetics , Genetic Variation , Sequence Analysis, DNA
18.
Radiat Oncol ; 19(1): 88, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978062

ABSTRACT

PURPOSE: This study aimed to develop an automated Tomotherapy (TOMO) planning method for cervical cancer treatment, and to validate its feasibility and effectiveness. MATERIALS AND METHODS: The study enrolled 30 cervical cancer patients treated with TOMO at our center. Utilizing scripting and Python environment within the RayStation (RaySearch Labs, Sweden) treatment planning system (TPS), we developed automated planning methods for TOMO and volumetric modulated arc therapy (VMAT) techniques. The clinical manual TOMO (M-TOMO) plans for the 30 patients were re-optimized using automated planning scripts for both TOMO and VMAT, creating automated TOMO (A-TOMO) and automated VMAT (A-VMAT) plans. We compared A-TOMO with M-TOMO and A-VMAT plans. The primary evaluated relevant dosimetric parameters and treatment plan efficiency were assessed using the two-sided Wilcoxon signed-rank test for statistical analysis, with a P-value < 0.05 indicating statistical significance. RESULTS: A-TOMO plans maintained similar target dose uniformity compared to M-TOMO plans, with improvements in target conformity and faster dose drop-off outside the target, and demonstrated significant statistical differences (P+ < 0.01). A-TOMO plans also significantly outperformed M-TOMO plans in reducing V50Gy, V40Gy and Dmean for the bladder and rectum, as well as Dmean for the bowel bag, femoral heads, and kidneys (all P+ < 0.05). Additionally, A-TOMO plans demonstrated better consistency in plan quality. Furthermore, the quality of A-TOMO plans was comparable to or superior than A-VMAT plans. In terms of efficiency, A-TOMO significantly reduced the time required for treatment planning to approximately 20 min. CONCLUSION: We have successfully developed an A-TOMO planning method for cervical cancer. Compared to M-TOMO plans, A-TOMO plans improved target conformity and reduced radiation dose to OARs. Additionally, the quality of A-TOMO plans was on par with or surpasses that of A-VMAT plans. The A-TOMO planning method significantly improved the efficiency of treatment planning.


Subject(s)
Organs at Risk , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Uterine Cervical Neoplasms , Humans , Uterine Cervical Neoplasms/radiotherapy , Female , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Organs at Risk/radiation effects
19.
Heliyon ; 10(12): e33239, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39022080

ABSTRACT

Refractory metals that can withstand at high temperatures and harsh conditions are of utmost importance for solar-thermal and energy storage applications. Thin films of TiN have been deposited using cathodic vacuum arc deposition at relatively low temperatures ∼300 °C using the substrate bias âˆ¼ -60 V. The nanomechanical properties of these films were investigated using nanoindentation and the spatial fluctuations were observed. The nanoindentation results were simulated using finite element method through Johnson-Cook model. A parametric study was conducted, and 16 different models were simulated to predict the hardening modulus, hardening exponent, and yield stress of the deposited film. The predicted values of elastic modulus, yield stress, hardening modulus and hardening exponent as 246 GPa, 2500 MPa, 25000 MPa and 0.1 respectively are found to satisfactorily explain the experimental load-indentation curves. We have found the local nitridation plays an important role on nanomechanical properties of TiN thin films and confirms that the nitrogen deficient regions are ductile with low yield stress and hardening modulus. This study further opens the opportunities of modelling the nanoscale system using FEM analysis.

20.
Article in English | MEDLINE | ID: mdl-38963553

ABSTRACT

RATIONALE: Our study aimed to unravel the unknown mechanisms behind the exceptional efficacy of Psilocybin (PSI) in treating treatment-resistant depression (TRD). Focusing on Wistar-Kyoto (WKY) rats with a TRD phenotype and Wistar (WIS) rats as a normative comparison, we investigated behavioral and neuroplasticity-related responses to PSI, striving to shed light on the distinctive features of its antidepressant effects. OBJECTIVES: We set out to assess the behavioral impact of acute and prolonged PSI administration on WKY and WIS rats, employing Novel Object Recognition (NORT), Social Interaction (SI), and Forced Swimming Test (FST). Our secondary objectives involved exploring strain-specific alterations in neuroplasticity-related parameters, including brain-derived neurotrophic factor (BDNF) and activity-regulated cytoskeleton-associated protein (Arc). METHODS: Conducting post-acute and extended assessments after a single PSI administration, we applied behavioral tests and biochemical analyses to measure serum BDNF levels and neuroplasticity-related parameters in the prefrontal cortex. Statistical analyses were deployed to discern significant differences between the rat strains and assess the impact of PSI on behavioral and biochemical outcomes. RESULTS: Our findings uncovered significant behavioral disparities between WKY and WIS rats, indicating passive behavior and social withdrawal in the former. PSI demonstrated pronounced pro-social and antidepressant effects in both strains, each with its distinctive temporal trajectory. Notably, we identified strain-specific variations in BDNF-related signaling and observed the modulation of Arc expression in WKY rats. CONCLUSIONS: Our study delineated mood-related behavioral nuances between WKY and WIS rat strains, underscoring the antidepressant and pro-social properties of PSI in both groups. The distinct temporal patterns of observed changes and the identified strain-specific neuroplasticity alterations provide valuable insights into the TRD phenotype and the mechanisms underpinning the efficacy of PSI.

SELECTION OF CITATIONS
SEARCH DETAIL