Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 765
Filter
1.
RNA Biol ; 21(1): 1-7, 2024 Jan.
Article in English | MEDLINE | ID: mdl-39219231

ABSTRACT

Argonaute proteins (Agos) represent a highly conserved family of proteins prevalent in all domains of life and have been implicated in various biological processes. Based on the domain architecture, Agos can be divided into long Agos and short Agos. While long Agos have been extensively studied over the past two decades, short Agos, found exclusively in prokaryotes, have recently gained attention for their roles in prokaryotic immune defence against mobile genetic elements, such as plasmids and phages. Notable functional and structural studies provide invaluable insights into the underlying molecular mechanisms of representative short Ago systems. Despite the diverse domain arrangements, short Agos generally form heterodimeric complexes with their associated effector proteins, activating the effector's enzymatic activities upon target detection. The activation of effector proteins in the short Ago systems leads to bacterial cell death, a mechanism of sacrificing individuals to protect the community.


Subject(s)
Argonaute Proteins , Argonaute Proteins/metabolism , Argonaute Proteins/genetics , Argonaute Proteins/chemistry , Bacteria/metabolism , Bacteria/genetics , Structure-Activity Relationship , Protein Conformation , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Humans , Models, Molecular
2.
Front Cell Infect Microbiol ; 14: 1407064, 2024.
Article in English | MEDLINE | ID: mdl-39119295

ABSTRACT

Background & aims: HBV infection initiates autoimmune responses, leading to autoantibody generation. This research explores the role of autoantibodies in HBV-related Acute-on-Chronic Liver Failure (ACLF), offering novel perspectives for clinical management. Method: We applied immunoprecipitation and iTRAQ techniques to screen for autoantibodies in serum from HBV-related cirrhosis patients and conducted detection with conformation- stabilizing ELISA in a cohort of 238 HBV-infected individuals and 49 health controls. Our results were validated in a retrospective cohort comprising 106 ACLF patients and further assessed through immunohistochemical analysis in liver tissues from an additional 10 ACLF cases. Results: Utilizing iTRAQ, we identified Argonaute1-3 autoantibodies (AGO-Abs) in this research. AGO2-Abs notably increased in cirrhosis, decompensation, and further in ACLF, unlike AGO1-Abs and AGO3-Abs. This reflects disease severity correlation. Logistic regression and COX models confirmed AGO2-Abs as independent prognostic indicators for decompensated liver cirrhosis (DLC) and ACLF. In the ROC analysis, AGO2-Abs showed significant diagnostic value for predicting 28- and 90-day mortality (AUROC = 0.853 and 0.854, respectively). Furthermore, combining AGO2-Abs with the Child-Pugh, MELD, and AARC scores significantly improved their predictive accuracy (P < 0.05). Kaplan-Meier analysis showed poorer survival for AGO2-Abs levels above 99.14µg/ml. These findings were supported by a retrospective validation cohort. Additionally, immunohistochemistry revealed band-like AGO2 expression in periportal liver areas, with AGO2-Abs levels correlating with total bilirubin, indicating a potential role in exacerbating liver damage through periportal functions. Conclusions: AGO2-Abs is a robust biomarker for predicting the mortality of patients with HBV-related ACLF.


Subject(s)
Acute-On-Chronic Liver Failure , Argonaute Proteins , Autoantibodies , Biomarkers , Liver Cirrhosis , Adult , Female , Humans , Male , Middle Aged , Acute-On-Chronic Liver Failure/mortality , Acute-On-Chronic Liver Failure/immunology , Autoantibodies/blood , Autoantibodies/immunology , Biomarkers/blood , Hepatitis B, Chronic/complications , Hepatitis B, Chronic/mortality , Hepatitis B, Chronic/immunology , Liver/pathology , Liver Cirrhosis/mortality , Liver Cirrhosis/immunology , Prognosis , Retrospective Studies , ROC Curve
3.
Cell ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39173632

ABSTRACT

Horizontal gene transfer is a key driver of bacterial evolution, but it also presents severe risks to bacteria by introducing invasive mobile genetic elements. To counter these threats, bacteria have developed various defense systems, including prokaryotic Argonautes (pAgos) and the DNA defense module DdmDE system. Through biochemical analysis, structural determination, and in vivo plasmid clearance assays, we elucidate the assembly and activation mechanisms of DdmDE, which eliminates small, multicopy plasmids. We demonstrate that DdmE, a pAgo-like protein, acts as a catalytically inactive, DNA-guided, DNA-targeting defense module. In the presence of guide DNA, DdmE targets plasmids and recruits a dimeric DdmD, which contains nuclease and helicase domains. Upon binding to DNA substrates, DdmD transitions from an autoinhibited dimer to an active monomer, which then translocates along and cleaves the plasmids. Together, our findings reveal the intricate mechanisms underlying DdmDE-mediated plasmid clearance, offering fundamental insights into bacterial defense systems against plasmid invasions.

4.
Int J Biol Macromol ; 278(Pt 2): 134755, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39147338

ABSTRACT

With the attributes of high sensitivity, single-base resolution, multiplex detection capability, and programmability upon nucleic acid recognition, Argonaute (Ago)-based biosensing assays are increasingly recognized as one of the most promising tools for precise identification and quantification of target analytes. Employed as highly specific sequence recognition elements of these robust diagnostic methods, Agos are revolutionizing how nucleic acid targets are detected. A systematic and comprehensive summary of this emerging and rapid-advancing technology is necessary to give play to the potential of Ago-based biosensing assays. The structure and function of Agos were briefly overviewed at the beginning of the work, followed by a review of the recent advancements in employing Agos sensing for detecting various targets with a comprehensive analysis such as viruses, tumor biomarkers, pathogens, mycoplasma, and parasite. The significance and benefits of these platforms were then deliberated. In addition, the authors shared subjective viewpoints on the existing challenges and offered relevant guidance for the future progress of Agos assays. Finally, the future research outlook regarding Ago-based sensing in this field was also outlined. As such, this review is expected to offer valuable information and fresh perspectives for a broader group of researchers.

5.
Front Cell Infect Microbiol ; 14: 1419949, 2024.
Article in English | MEDLINE | ID: mdl-39119294

ABSTRACT

Human respiratory syncytial virus (HRSV) is the most prevalent pathogen contributing to acute respiratory tract infections (ARTI) in infants and young children and can lead to significant financial and medical costs. Here, we developed a simultaneous, dual-gene and ultrasensitive detection system for typing HRSV within 60 minutes that needs only minimum laboratory support. Briefly, multiplex integrating reverse transcription-recombinase polymerase amplification (RT-RPA) was performed with viral RNA extracted from nasopharyngeal swabs as a template for the amplification of the specific regions of subtypes A (HRSVA) and B (HRSVB) of HRSV. Next, the Pyrococcus furiosus Argonaute (PfAgo) protein utilizes small 5'-phosphorylated DNA guides to cleave target sequences and produce fluorophore signals (FAM and ROX). Compared with the traditional gold standard (RT-qPCR) and direct immunofluorescence assay (DFA), this method has the additional advantages of easy operation, efficiency and sensitivity, with a limit of detection (LOD) of 1 copy/µL. In terms of clinical sample validation, the diagnostic accuracy of the method for determining the HRSVA and HRSVB infection was greater than 95%. This technique provides a reliable point-of-care (POC) testing for the diagnosis of HRSV-induced ARTI in children and for outbreak management, especially in resource-limited settings.


Subject(s)
RNA, Viral , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Sensitivity and Specificity , Humans , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus, Human/isolation & purification , Respiratory Syncytial Virus Infections/diagnosis , Respiratory Syncytial Virus Infections/virology , RNA, Viral/genetics , Infant , Pyrococcus furiosus/genetics , Pyrococcus furiosus/isolation & purification , Argonaute Proteins/genetics , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Limit of Detection , Nasopharynx/virology , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/virology , Child, Preschool
6.
Biosens Bioelectron ; 265: 116692, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39208510

ABSTRACT

Foodborne hazardous factors pose a significant risk to public health, emphasizing the need for the development of sensitive and user-friendly detection strategies to effectively manage and control these risks in the food supply chain. Pyrococcus furiosus argonaute (PfAgo)-based biosensing approaches have been extensively explored due to its built-in signal amplification. However, the property that PfAgo is a DNA-guided DNA endonuclease has enabled almost all the existing PfAgo-based reports to be used for the detection of nucleic acids. To lend PfAgo toolbox to extended non-nucleic acid detection, we systematically investigated the mechanism characteristic of PfAgo' preference for guide DNA (gDNA) and proposed a gDNA dephosphorylation-modulated PfAgo sensor for the detection of non-nucleic acid targets. Our results indicated that PfAgo exhibits preference for 5'-phosphorylated gDNA at a specific ratio of PfAgo to gDNA concentration. Leveraging this PfAgo' preference and the dephosphorylation activity of alkaline phosphatase (ALP), ALP could be detected as low as 2.7 U/L. Furthermore, the PfAgo was coupled with immunolabelled ALP to develop a PfAgo-based fluorescence immunosensor, which achieves aflatoxins B1 detection with a detection limit of 29.89 pg/mL and exhibits satisfactory recoveries in wheat and maize samples. The developed method broadens the application scope of PfAgo toolbox, and provides a simple, sensitive, and universal detection platform for a variety targets.


Subject(s)
Aflatoxin B1 , Alkaline Phosphatase , Biosensing Techniques , Pyrococcus furiosus , Biosensing Techniques/methods , Pyrococcus furiosus/enzymology , Aflatoxin B1/analysis , Alkaline Phosphatase/metabolism , Alkaline Phosphatase/chemistry , Argonaute Proteins/metabolism , Limit of Detection , DNA/chemistry , Phosphorylation , Fluorescence , Food Contamination/analysis
7.
Genes (Basel) ; 15(8)2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39202383

ABSTRACT

MicroRNAs (miRNAs) are a class of small regulatory RNA that are generated via core protein machinery. The miRNAs direct gene-silencing mechanisms to mediate an essential role in gene expression regulation. In mollusks, miRNAs have been demonstrated to be required to regulate gene expression in various biological processes, including normal development, immune responses, reproduction, and stress adaptation. In this study, we aimed to establishment the requirement of the miRNA pathway as part of the molecular response of exposure of Biomphalaria glabrata (snail host) to Schistosoma mansoni (trematode parasite). Initially, the core pieces of miRNA pathway protein machinery, i.e., Drosha, DGCR8, Exportin-5, Ran, and Dicer, together with the central RNA-induced silencing complex (RISC) effector protein Argonaute2 (Ago2) were elucidated from the B. glabrata genome. Following exposure of B. glabrata to S. mansoni miracidia, we identified significant expression up-regulation of all identified pieces of miRNA pathway protein machinery, except for Exportin-5, at 16 h post exposure. For Ago2, we went on to show that the Bgl-Ago2 protein was localized to regions surrounding the sporocysts in the digestive gland of infected snails 20 days post parasite exposure. In addition to documenting elevated miRNA pathway protein machinery expression at the early post-exposure time point, a total of 13 known B. glabrata miRNAs were significantly differentially expressed. Of these thirteen B. glabrata miRNAs responsive to S. mansoni miracidia exposure, five were significantly reduced in their abundance, and correspondingly, these five miRNAs were determined to putatively target six genes with significantly elevated expression and that have been previously associated with immune responses in other animal species, including humans. In conclusion, this study demonstrates the central importance of a functional miRNA pathway in snails, which potentially forms a critical component of the immune response of snails to parasite exposure. Further, the data reported in this study provide additional evidence of the complexity of the molecular response of B. glabrata to S. mansoni infection: a molecular response that could be targeted in the future to overcome parasite infection and, in turn, human schistosomiasis.


Subject(s)
Argonaute Proteins , Biomphalaria , MicroRNAs , Schistosoma mansoni , Animals , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Biomphalaria/parasitology , Biomphalaria/genetics , Biomphalaria/metabolism , Biomphalaria/immunology , MicroRNAs/genetics , MicroRNAs/metabolism , Schistosoma mansoni/genetics , Oocysts/metabolism , Host-Parasite Interactions/genetics
8.
Poult Sci ; 103(10): 104141, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39137501

ABSTRACT

Rapid and accurate detection of goose parvovirus (GPV) is crucial for controlling outbreaks and mitigating their economic impact on the poultry industry. This study introduces recombinase polymerase amplification combined with the Pyrococcus furiosus argonaute (RPA-PfAgo) system, a novel diagnostic platform designed to address the limitations of traditional GPV detection methods. Capitalizing on the rapid DNA amplification of RPA and stringent nucleic acid cleavage by the PfAgo protein, the RPA-PfAgo system offers high specificity and sensitivity in detecting GPV. Our optimization efforts included primer and probe configurations, reaction parameters, and guided DNA selection, culminating in a detection threshold of 102 GPV DNA copies per microlitre. The specificity of the proposed method was rigorously validated against a spectrum of avian pathogens. Clinical application to lung tissues from GPV-infected geese yielded a detection concordance of 100%, surpassing that of qPCR and PCR in both rapidity and operational simplicity. The RPA-PfAgo system has emerged as a revolutionary diagnostic modality for managing this disease, as it is a promising rapid, economical, and onsite GPV detection method amenable to integration into broad-scale disease surveillance frameworks. Future explorations will extend the applicability of this method to diverse avian diseases and assess its field utility across various epidemiological landscapes.

9.
Food Chem ; 460(Pt 3): 140615, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39126941

ABSTRACT

Molecular diagnosis of foodborne methicillin-resistant Staphylococcus aureus (MRSA) is crucial for controlling its dissemination and ensuring food safety. However, existing genetic methods are limited by susceptibility to aerosol contamination and restricted to single-gene detection. Herein, a fluorescent biosensor employing fluorescence-encoded microspheres and Argonaute-mediated decoding is developed, enabling ultrasensitive, accurate, and duplex detection of MRSA genes. This assay utilizes a target-triggered polymerization/nicking reaction to cyclically produce specific guide DNA, guiding Argonaute protein to site-specifically cleave the molecular beacon on the microsphere, thereby decoding a fluorescent signal. Notably, the fluorescence-encoded microsphere, designed via on-tetrahedron rolling circle amplification, achieves high fluorescence loadings in a unit area. This biosensor demonstrates simultaneous detection of two unamplified MRSA genes, mecA and femA, at concentrations as low as 0.63 fM and 0.48 fM, respectively. Moreover, the method exhibited excellent recoveries in milk, egg, and pork samples ranging from 73% to 112%, highlighting its practicability in real scenarios.


Subject(s)
Biosensing Techniques , Methicillin-Resistant Staphylococcus aureus , Microspheres , Milk , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Methicillin-Resistant Staphylococcus aureus/genetics , Milk/microbiology , Milk/chemistry , Biosensing Techniques/methods , Animals , Fluorescence , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Argonaute Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Food Contamination/analysis , Swine , Eggs/analysis , Eggs/microbiology , Staphylococcal Infections/microbiology , Food Microbiology , Penicillin-Binding Proteins
10.
Plant Cell Physiol ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38988198

ABSTRACT

As a model plant for bryophytes, Marchantia polymorpha offers insights into the role of RNA silencing in aiding early land plants navigate the challenges posed by high-temperature environments. Genomic analysis revealed unique ARGONAUTE1 ortholog gene (MpAGO1) in M. polymorpha that is regulated by two species-specific microRNAs (miRNAs), miR11707.1 and miR11707.2. Comparative studies of small RNA profiles from M. polymorpha cellular and MpAGO1 immunoprecipitation (MpAGO1-IP) profiles at various temperatures, along with analyses of Arabidopsis AGO1 (AtAGO1), revealed that MpAGO1 has a low-selectivity for a diverse range of small RNA species than AtAGO1. Protein structural comparisons revealed no discernible differences in the MID domains of MpAGO1 and AtAGO1, suggesting the complexity of miRNA species specificity and necessitating further exploration. Small RNA profiling and size exclusion chromatography have pinpointed a subset of M. polymorpha miRNAs, notably miR11707, that remain in free form within the cell at 22°C but are loaded into MpAGO1 at 28°C to engage in RNA silencing. Investigations into the mir11707 gene editing (mir11707ge) mutants provided evidence of the regulation of miR11707 in MpAGO1. Notably, while MpAGO1 mRNA expression decreases at 28°C, the stability of the MpAGO1 protein and its associated miRNAs is essential for enhancing the RISC activity, revealing the importance of RNA silencing in enabling M. polymorpha to survive thermal stress. This study advances our understanding of RNA silencing in bryophytes and provides groundbreaking insights into the evolutionary resilience of land plants to climatic adversities.

11.
Investig Clin Urol ; 65(4): 400-410, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38978220

ABSTRACT

PURPOSE: To determine whether the overexpression of the Argonaute RNA-induced silencing complex catalytic component 2 (Ago2) improves erectile function in mice after cavernous nerve injury (CNI). MATERIALS AND METHODS: Lentiviruses containing Ago2 open reading frame (ORF) mouse clone (Ago2 O/E) were used to overexpress Ago2, and lentiviruses ORF negative control particles (NC) were used as a negative control. Three days before preparing the CNI model, we injected lentiviruses into the penises of 8-week-old male C57BL/6 mice. Animals were then divided into four groups: the sham operation control group and the CNI+phosphate-buffered saline, CNI+NC, and CNI+Ago2 O/E groups. One week later, erectile function was assessed by electrically stimulating cavernous nerves bilaterally and obtaining intracavernous pressure parameters. Penile tissue was also collected for molecular mechanism studies. RESULTS: Ago2 overexpression improved erectile function in mice after CNI-induced erectile dysfunction (ED). Immunofluorescence staining and Western blot analysis showed that under Ago2 overexpressing conditions, the contents of endothelial cells, pericytes, and neuronal cells increased in the penile tissues of CNI mice, and this was attributed to reduced apoptosis and ROS production. In addition, we also found that Ago2 overexpression could restore penile mitochondrial function, thereby improving erectile function in CNI-induced ED mice. CONCLUSIONS: Our findings demonstrate that Ago2 overexpression can reduce penile cell apoptosis, restore penile mitochondrial function, and improve erectile function in CNI-induced ED mice.


Subject(s)
Apoptosis , Argonaute Proteins , Disease Models, Animal , Erectile Dysfunction , Mice, Inbred C57BL , Mitochondria , Penile Erection , Penis , Animals , Male , Penis/innervation , Erectile Dysfunction/etiology , Mice , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Mitochondria/metabolism , Penile Erection/physiology , Peripheral Nerve Injuries/complications
12.
Virus Res ; 348: 199436, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38996815

ABSTRACT

RNA silencing is a prominent antiviral defense mechanism in plants. When infected with a virus, RNA silencing-deficient plants tend to show exacerbated symptoms along with increased virus accumulation. However, how symptoms are exacerbated is little understood. Here, we investigated the role of the copper chaperon for superoxide dismutase (CCS) 1, in systemic necrosis observed in Argonaute (AGO)2-silenced tomato plants infected with potato virus X (PVX). While infection with the UK3 strain of PVX induced mosaic symptoms in tomato plants, systemic necrosis occurred when AGO2 was silenced. The CCS1 mRNA level was reduced and micro RNA398 (miR398), which potentially target CCS1, was increased in AGO2-knockdown tomato plants infected with PVX-UK3. Ectopic expression of CCS1 using recombinant PVX attenuated necrosis, suggesting that CCS1 alleviates systemic necrosis by activating superoxide dismutases to scavenge reactive oxygen species. Previous reports have indicated a decrease in the levels of CCS1 and superoxide dismutases along with an increased level of miR398 in plants infected with other viruses and viroids, and thus might represent shared regulatory mechanisms that exacerbate symptoms in these plants.


Subject(s)
Argonaute Proteins , Plant Diseases , Potexvirus , Solanum lycopersicum , Superoxide Dismutase , Solanum lycopersicum/virology , Solanum lycopersicum/genetics , Potexvirus/genetics , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Plant Diseases/virology , Plant Proteins/genetics , Plant Proteins/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Silencing , Gene Expression Regulation, Plant , RNA Interference
13.
Epigenomes ; 8(3)2024 Jun 22.
Article in English | MEDLINE | ID: mdl-39051182

ABSTRACT

Human tumors progress in part by accumulating epigenetic alterations, which include gains and losses of DNA methylation in different parts of the cancer cell genome. Recent work has revealed a link between these two opposite alterations by showing that DNA hypomethylation in tumors can induce the expression of transcripts that overlap downstream gene promoters and thereby induce their hypermethylation. Preliminary in silico evidence prompted us to investigate if this mechanism applies to the locus harboring AGO1, a gene that plays a central role in miRNA biogenesis and RNA interference. Inspection of public RNA-Seq datasets and RT-qPCR experiments show that an alternative transcript starting 13.4 kb upstream of AGO1 (AGO1-V2) is expressed specifically in testicular germ cells, and becomes aberrantly activated in different types of tumors, particularly in tumors of the esophagus, stomach, and lung. This expression pattern classifies AGO1-V2 into the group of "Cancer-Germline" (CG) genes. Analysis of transcriptomic and methylomic datasets provided evidence that transcriptional activation of AGO1-V2 depends on DNA demethylation of its promoter region. Western blot experiments revealed that AGO1-V2 encodes a shortened isoform of AGO1, corresponding to a truncation of 75 aa in the N-terminal domain, and which we therefore referred to as "∆NAGO1". Interestingly, significant correlations between hypomethylation/activation of AGO1-V2 and hypermethylation/repression of AGO1 were observed upon examination of tumor cell lines and tissue datasets. Overall, our study reveals the existence of a process of interdependent epigenetic alterations in the AGO1 locus, which promotes swapping between two AGO1 protein-coding mRNA isoforms in tumors.

14.
Plant Sci ; 347: 112176, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38971466

ABSTRACT

RNA silencing, a conserved gene regulatory mechanism, is critical for host resistance to viruses. Liquid-liquid phase separation (LLPS) is an important mechanism in regulating various biological processes. Emerging studies suggest RNA helicases play important roles in microRNA (miRNA) production through LLPS. In this study, we investigated the functional role of RNA helicase 20 (RH20), a DDX5 homolog in Arabidopsis thaliana, in RNA silencing and plant resistance to viruses. Our findings reveal that RH20 localizes in both the cytoplasm and nucleus, with puncta formation in the cytoplasm exhibiting liquid-liquid phase separation behavior. We demonstrate that RH20 plays positive roles in plant immunity against viruses. Further study showed that RH20 interacts with Argonaute 2 (AGO2), a key component of the RNA silencing pathway. Moreover, RH20 promotes the accumulation of both endogenous and exogenous small RNAs (sRNAs). Overall, our study identifies RH20 as a novel phase separation protein that interacting with AGO2, influencing sRNAs accumulation, and enhancing plant resistance to viruses.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Argonaute Proteins , Disease Resistance , Plant Diseases , Arabidopsis/genetics , Arabidopsis/virology , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Plant Diseases/virology , Disease Resistance/genetics , Argonaute Proteins/metabolism , Argonaute Proteins/genetics , RNA Helicases/metabolism , RNA Helicases/genetics , Plant Immunity/genetics , RNA Interference , Gene Expression Regulation, Plant , MicroRNAs/genetics , MicroRNAs/metabolism
15.
Mol Cell ; 84(15): 2918-2934.e11, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39025072

ABSTRACT

The RNA-induced silencing complex (RISC), which powers RNA interference (RNAi), consists of a guide RNA and an Argonaute protein that slices target RNAs complementary to the guide. We find that, for different guide-RNA sequences, slicing rates of perfectly complementary bound targets can be surprisingly different (>250-fold range), and that faster slicing confers better knockdown in cells. Nucleotide sequence identities at guide-RNA positions 7, 10, and 17 underlie much of this variation in slicing rates. Analysis of one of these determinants implicates a structural distortion at guide nucleotides 6-7 in promoting slicing. Moreover, slicing directed by different guide sequences has an unanticipated, 600-fold range in 3'-mismatch tolerance, attributable to guides with weak (AU-rich) central pairing requiring extensive 3' complementarity (pairing beyond position 16) to more fully populate the slicing-competent conformation. Together, our analyses identify sequence determinants of RISC activity and provide biochemical and conformational rationale for their action.


Subject(s)
Argonaute Proteins , Nucleic Acid Conformation , RNA, Guide, CRISPR-Cas Systems , RNA-Induced Silencing Complex , Argonaute Proteins/metabolism , Argonaute Proteins/genetics , Argonaute Proteins/chemistry , Humans , RNA-Induced Silencing Complex/metabolism , RNA-Induced Silencing Complex/genetics , RNA-Induced Silencing Complex/chemistry , Kinetics , RNA, Guide, CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems/metabolism , RNA Interference , Base Sequence , HEK293 Cells
16.
Trends Biotechnol ; 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39034177

ABSTRACT

CRISPR/Cas and Argonaute (Ago) proteins, which target specific nucleic acid sequences, can be applied as diagnostic tools. Despite high specificity and efficiency, achieving sensitive detection often necessitates a preamplification step that involves opening the lid and multistep operation, which may elevate the risk of contamination and prove inadequate for point-of-care testing. Hence, various one-pot detection strategies have been developed that enable preamplification and sensing in a single operation. We outline the challenges of one-pot detection with Cas and Ago proteins, present several main implementation strategies, and discuss future prospects. This review offers comprehensive insights into this vital field and explores potential improvements to detection methods that will be beneficial for human health.

17.
Proc Natl Acad Sci U S A ; 121(25): e2322765121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38865263

ABSTRACT

Antiviral RNA interference (RNAi) is conserved from yeasts to mammals. Dicer recognizes and cleaves virus-derived double-stranded RNA (dsRNA) and/or structured single-stranded RNA (ssRNA) into small-interfering RNAs, which guide effector Argonaute to homologous viral RNAs for digestion and inhibit virus replication. Thus, Argonaute is believed to be essential for antiviral RNAi. Here, we show Argonaute-independent, Dicer-dependent antiviral defense against dsRNA viruses using Cryphonectria parasitica (chestnut blight fungus), which is a model filamentous ascomycetous fungus and hosts a variety of viruses. The fungus has two dicer-like genes (dcl1 and dcl2) and four argonaute-like genes (agl1 to agl4). We prepared a suite of single to quadruple agl knockout mutants with or without dcl disruption. We tested these mutants for antiviral activities against diverse dsRNA viruses and ssRNA viruses. Although both DCL2 and AGL2 worked as antiviral players against some RNA viruses, DCL2 without argonaute was sufficient to block the replication of other RNA viruses. Overall, these results indicate the existence of a Dicer-alone defense and different degrees of susceptibility to it among RNA viruses. We discuss what determines the great difference in susceptibility to the Dicer-only defense.


Subject(s)
RNA Viruses , Ribonuclease III , Ribonuclease III/metabolism , Ribonuclease III/genetics , RNA Viruses/immunology , RNA Viruses/genetics , Argonaute Proteins/metabolism , Argonaute Proteins/genetics , Ascomycota/virology , RNA Interference , Virus Replication/genetics , RNA, Viral/metabolism , RNA, Viral/genetics , Fungal Proteins/metabolism , Fungal Proteins/genetics , RNA, Double-Stranded/metabolism
18.
Fish Shellfish Immunol ; 151: 109693, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38878913

ABSTRACT

Argonaute proteins are key constituents of small RNA-guided regulatory pathways. In crustaceans, members of the AGO subfamily of Argonaute proteins that play vital roles in immune defense are well studied, while proteins of the PIWI subfamily are less established. PmAgo4 of the black tiger shrimp, Penaeus monodon, though phylogenetically clustered with the AGO subfamily, has distinctive roles of the PIWI subfamily in safeguarding the genome from transposon invasion and controlling germ cell development. This study explored a molecular mechanism by which PmAgo4 regulates transposon expression in the shrimp germline. PmAgo4-associated small RNAs were co-immunoprecipitated from shrimp testis lysate using a PmAgo4-specific polyclonal antibody. RNA-seq revealed a majority of 26-27 nt long small RNAs in the PmAgo4-IP fraction suggesting that PmAgo4 is predominantly associated with piRNAs. Mapping of these piRNAs on nucleotide sequences of two gypsy and a mariner-like transposons of P. monodon suggested that most piRNAs were originated from the antisense strand of transposons. Suppression of PmAgo4 expression by a specific dsRNA elevated the expression levels of the three transposons while decreasing the levels of transposon-related piRNAs. Taken together, these results imply that PmAgo4 exerts its suppressive function on transposons by controlling the biogenesis of transposon-related piRNAs and thus, provides a defense mechanism against transposon invasion in shrimp germline cells.


Subject(s)
Argonaute Proteins , DNA Transposable Elements , Penaeidae , RNA, Small Interfering , Animals , Penaeidae/immunology , Penaeidae/genetics , DNA Transposable Elements/genetics , RNA, Small Interfering/genetics , Argonaute Proteins/genetics , Argonaute Proteins/immunology , Argonaute Proteins/metabolism , Arthropod Proteins/genetics , Arthropod Proteins/immunology , Arthropod Proteins/chemistry , Immunity, Innate/genetics , Gene Expression Regulation/immunology , Piwi-Interacting RNA
19.
Front Immunol ; 15: 1366531, 2024.
Article in English | MEDLINE | ID: mdl-38887290

ABSTRACT

Aquaporin-4 antibodies (AQP4-Abs) are a diagnostic marker for patients with a demyelinating disease called neuromyelitis optica spectrum disorder (NMOSD). Anti-Argonaute antibodies (AGO-Abs) present as potential biomarkers of the overlap syndrome between NMOSD and other autoimmune diseases. In this paper, we present the case of an adult woman with numbness, tingling, and burning sensations in her arms and subsequent bilateral internuclear ophthalmoplegia. Brain-cervical-thoracic magnetic resonance imaging (MRI) showed T2 hyperintensities in the dorsal brainstem and around the midbrain aqueduct and longitudinally transverse myelitis with homogeneous enhancement on gadolinium-enhanced MRI. The contemporaneous detection of AQP4- and AGO-Abs led to a definite diagnosis of overlap syndrome of NMOSD with AGO-Abs. The patient was treated with immunosuppressive agents, including corticosteroids and immunoglobulins, and achieved remission. This case highlights a novel phenotype of NMOSD with AGO-Abs overlap syndrome, which presents with relapsing brainstem syndrome and longitudinally extensive myelitis with acute severe neurological involvement. The promising prognosis of the disease could serve as a distinct clinical profile. Broad screening for antibodies against central nervous system autoimmune antigens is recommended in suspected patients with limited or atypical clinical manifestations.


Subject(s)
Autoantibodies , Neuromyelitis Optica , Humans , Neuromyelitis Optica/immunology , Neuromyelitis Optica/diagnosis , Neuromyelitis Optica/drug therapy , Female , Autoantibodies/immunology , Autoantibodies/blood , Aquaporin 4/immunology , Adult , Biomarkers , Magnetic Resonance Imaging , Middle Aged , Immunosuppressive Agents/therapeutic use
20.
Cell Rep ; 43(7): 114391, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38923459

ABSTRACT

Inhibition of nucleic acid targets is mediated by Argonaute (Ago) proteins guided by RNA or DNA. Although the mechanisms underpinning the functions of eukaryotic and "long" prokaryotic Ago proteins (pAgos) are well understood, those for short pAgos remain enigmatic. Here, we determine two cryoelectron microscopy structures of short pAgos in association with the NADase-domain-containing protein Sir2-APAZ from Geobacter sulfurreducens (GsSir2/Ago): the guide RNA-target DNA-loaded GsSir2/Ago quaternary complex (2.58 Å) and the dimer of the quaternary complex (2.93Å). These structures show that the nucleic acid binding causes profound conformational changes that result in disorder or partial dissociation of the Sir2 domain, suggesting that it adopts a NADase-active conformation. Subsequently, two RNA-/DNA-loaded GsSir2/Ago complexes form a dimer through their MID domains, further enhancing NADase activity through synergistic effects. The findings provide a structural basis for short-pAgo-mediated defense against invading nucleic acids.


Subject(s)
Argonaute Proteins , Argonaute Proteins/metabolism , Argonaute Proteins/chemistry , Geobacter/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Sirtuin 2/metabolism , Protein Multimerization , Protein Binding , Cryoelectron Microscopy , Enzyme Activation , Models, Molecular , Nucleic Acids/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL