Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Main subject
Language
Publication year range
1.
Sensors (Basel) ; 24(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-39000838

ABSTRACT

Array pattern synthesis with low sidelobe levels is widely used in practice. An effective way to incorporate sensor patterns in the design procedure is to use numerical optimization methods. However, the dimension of the optimization variables is very high for large-scale arrays, leading to high computational complexity. Fortunately, sensor arrays used in practice usually have symmetric structures that can be utilized to accelerate the optimization algorithms. This paper studies a fast pattern synthesis method by using the symmetry of array geometry. In this method, the problem of amplitude weighting is formulated as a second-order cone programming (SOCP) problem, in which the dynamic range of the weighting coefficients can also be taken into account. Then, by utilizing the symmetric property of array geometry, the dimension of the optimization problem as well as the number of constraints can be reduced significantly. As a consequence, the computational efficiency is greatly improved. Numerical experiments show that, for a uniform rectangular array (URA) with 1024 sensors, the computational efficiency is improved by a factor of 158, while for a uniform hexagonal array (UHA) with 1261 sensors, the improvement factor is 284.

2.
Sensors (Basel) ; 22(15)2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35898046

ABSTRACT

Array pattern synthesis (APS) aims to create the desired array pattern as closely as possible to the prescribed mask template by varying the element excitations of the array. Herein, an efficient approach for the APS to control the sidelobe level is proposed. After designing the mask template to meet the prescribed sidelobe requirements and the waveform pattern, a set of element excitations is calculated through the Fourier transform performed on the projection the waveform pattern onto the mask template. Then, a desired array pattern can be synthesized from this updated set of excitation coefficients. The proposed APS approach directly presents a mathematical formulation of the exact set of excitations without any iterative optimization process. The proposed method is particularly suited for many array elements in linear antenna array. Thus, the proposed APS achieves substantial improvements in terms of computation complexity, performance, and ease of implementation in the algorithm when compared with conventional methods. Several simulation results are provided to verify the efficacy and effectiveness of the proposed method.


Subject(s)
Algorithms , Computer Simulation , Fourier Analysis
3.
Sensors (Basel) ; 22(3)2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35161787

ABSTRACT

Due to the introduction of frequency offsets, the pattern synthesis problem of sparse Frequency diverse array (FDA) becomes more complicated than that of the phased array. A typical way to solve this problem is to use a global optimization algorithm, but this is usually time-consuming. In this paper, we propose an efficient non-iterative beampattern synthesis approach for sparse FDA. For a given reference pattern, which can be generated by other synthesis methods, we first sample it uniformly and construct the Hankel matrix with the sampled data. By low-rank processing, a low-rank approximation version of the Hankel matrix can then be obtained. Finally, the matrix enhancement and matrix pencil (MEMP) and matrix pencil (MP) methods are applied to estimate the antenna positions, frequency offsets, and excitations of the obtained array from the approximated matrix. Besides this, two typical FDA frameworks including multi-carrier FDA (MCFDA) and standard FDA (SFDA) are considered. Numerical simulation results prove that the proposed method outperforms the existing methods in terms of synthesis error, average runtime, and percentage of saving elements.


Subject(s)
Algorithms , Computer Simulation
SELECTION OF CITATIONS
SEARCH DETAIL