Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Glia ; 72(5): 982-998, 2024 05.
Article in English | MEDLINE | ID: mdl-38363040

ABSTRACT

The glymphatic system transports cerebrospinal fluid (CSF) into the brain via arterial perivascular spaces and removes interstitial fluid from the brain along perivenous spaces and white matter tracts. This directional fluid flow supports the clearance of metabolic wastes produced by the brain. Glymphatic fluid transport is facilitated by aquaporin-4 (AQP4) water channels, which are enriched in the astrocytic vascular endfeet comprising the outer boundary of the perivascular space. Yet, prior studies of AQP4 function have relied on genetic models, or correlated altered AQP4 expression with glymphatic flow in disease states. Herein, we sought to pharmacologically manipulate AQP4 function with the inhibitor AER-271 to assess the contribution of AQP4 to glymphatic fluid transport in mouse brain. Administration of AER-271 inhibited glymphatic influx as measured by CSF tracer infused into the cisterna magna and inhibited increases in the interstitial fluid volume as measured by diffusion-weighted MRI. Furthermore, AER-271 inhibited glymphatic efflux as assessed by an in vivo clearance assay. Importantly, AER-271 did not affect AQP4 localization to the astrocytic endfeet, nor have any effect in AQP4 deficient mice. Since acute pharmacological inhibition of AQP4 directly decreased glymphatic flow in wild-type but not in AQP4 deficient mice, we foresee AER-271 as a new tool for manipulation of the glymphatic system in rodent brain.


Subject(s)
Chlorophenols , Glymphatic System , Mice , Animals , Brain/diagnostic imaging , Brain/metabolism , Glymphatic System/metabolism , Chlorophenols/metabolism , Aquaporin 4/genetics , Aquaporin 4/metabolism
2.
Eur J Neurosci ; 59(3): 323-332, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38123136

ABSTRACT

Neurovascular coupling (NVC) refers to a local increase in cerebral blood flow in response to increased neuronal activity. Mechanisms of communication between neurons and blood vessels remain unclear. Astrocyte endfeet almost completely cover cerebral capillaries, suggesting that astrocytes play a role in NVC by releasing vasoactive substances near capillaries. An alternative hypothesis is that direct diffusion through the extracellular space of potassium ions (K+ ) released by neurons contributes to NVC. Here, the goal is to determine whether astrocyte endfeet present a barrier to K+ diffusion from neurons to capillaries. Two simplified 2D geometries of extracellular space, clefts between endfeet, and perivascular space are used: (i) a source 1 µm from a capillary; (ii) a neuron 15 µm from a capillary. K+ release is modelled as a step increase in [K+ ] at the outer boundary of the extracellular space. The time-dependent diffusion equation is solved numerically. In the first geometry, perivascular [K+ ] approaches its final value within 0.05 s. Decreasing endfeet cleft width or increasing perivascular space width slows the rise in [K+ ]. In the second geometry, the increase in perivascular [K+ ] occurs within 0.5 s and is insensitive to changes in cleft width or perivascular space width. Predicted levels of perivascular [K+ ] are sufficient to cause vasodilation, and the rise time is within the time for flow increase in NVC. These results suggest that direct diffusion of K+ through the extracellular space is a possible NVC signalling mechanism.


Subject(s)
Astrocytes , Capillaries , Astrocytes/physiology , Potassium , Cerebrovascular Circulation , Neurons
3.
J Neuroinflammation ; 20(1): 199, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37658433

ABSTRACT

BACKGROUND: Epidemiological data suggests statins could reduce the risk of dementia, and more specifically, Alzheimer's disease (AD). Pre-clinical data suggests statins reduce the risk of dementia through their pleiotropic effects rather than their cholesterol lowering effects. While AD is a leading cause of dementia, it is frequently found co-morbidly with cerebral small vessel disease and other vascular contributions to cognitive impairment and dementia (VCID), which are another leading cause of dementia. In this study, we determined if atorvastatin ameliorated hyperhomocysteinemia (HHcy)-induced VCID. METHODS: Wild-type (C57Bl6/J) mice were placed on a diet to induce HHcy or a control diet each with or without atorvastatin for 14 weeks. Mice underwent novel object recognition testing before tissue collection. Plasma total cholesterol and total homocysteine as well as related metabolites were measured. Using qPCR and NanoString technology, we profiled glial cell-associated gene expression changes. Finally, microglial morphology, astrocyte end feet, and microhemorrhages were analyzed using histological methods. RESULTS: Atorvastatin treatment of HHcy in mice led to no changes in total cholesterol but decreases in total homocysteine in plasma. While HHcy decreased expression of many glial genes, atorvastatin rescued these gene changes, which mostly occurred in oligodendrocytes and microglia. Microglia in HHcy mice with atorvastatin were trending towards fewer processes compared to control with atorvastatin, but there were no atorvastatin effects on astrocyte end feet. While atorvastatin treatment was trending towards increasing the area of microhemorrhages in HHcy mice in the frontal cortex, it only slightly (non-significantly) reduced the number of microhemorrhages. Finally, atorvastatin treatment in HHcy mice led to improved cognition on the novel object recognition task. CONCLUSIONS: These data suggest that atorvastatin rescued cognitive changes induced by HHcy most likely through lowering plasma total homocysteine and rescuing gene expression changes rather than impacts on vascular integrity or microglial changes.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Dementia, Vascular , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Hyperhomocysteinemia , Animals , Mice , Atorvastatin/pharmacology , Atorvastatin/therapeutic use , Hyperhomocysteinemia/complications , Hyperhomocysteinemia/drug therapy , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Cognition , Homocysteine/toxicity
4.
Int J Mol Sci ; 23(9)2022 May 03.
Article in English | MEDLINE | ID: mdl-35563487

ABSTRACT

Neuronal loss (death) occurs selectively in vulnerable brain regions after ischemic insults. Astrogliosis is accompanied by neuronal death. It can change the molecular expression and morphology of astrocytes following ischemic insults. However, little is known about cerebral ischemia and reperfusion injury that can variously lead to damage of astrocytes according to the degree of ischemic injury, which is related to neuronal damage/death. Thus, the purpose of this study was to examine the relationship between damage to cortical neurons and astrocytes using gerbil models of mild and severe transient forebrain ischemia induced by blocking the blood supply to the forebrain for five or 15 min. Significant ischemia tFI-induced neuronal death occurred in the deep layers (layers V and VI) of the motor cortex: neuronal death occurred earlier and more severely in gerbils with severe ischemia than in gerbils with mild ischemia. Distinct astrogliosis was detected in layers V and VI. It gradually increased with time after both ischemiae. The astrogliosis was significantly higher in severe ischemia than in mild ischemia. The ischemia-induced increase of glial fibrillary acidic protein (GFAP; a maker of astrocyte) expression in severe ischemia was significantly higher than that in mild ischemia. However, GFAP-immunoreactive astrocytes were apparently damaged two days after both ischemiae. At five days after ischemiae, astrocyte endfeet around capillary endothelial cells were severely ruptured. They were more severely ruptured by severe ischemia than by mild ischemia. However, the number of astrocytes stained with S100 was significantly higher in severe ischemia than in mild ischemia. These results indicate that the degree of astrogliosis, including the disruption (loss) of astrocyte endfeet following ischemia and reperfusion in the forebrain, might depend on the severity of ischemia and that the degree of ischemia-induced neuronal damage may be associated with the degree of astrogliosis.


Subject(s)
Ischemic Attack, Transient , Motor Cortex , Reperfusion Injury , Animals , Astrocytes/metabolism , Endothelial Cells/metabolism , Gerbillinae/metabolism , Glial Fibrillary Acidic Protein/metabolism , Gliosis/metabolism , Ischemia/metabolism , Ischemic Attack, Transient/metabolism , Motor Cortex/metabolism , Prosencephalon/metabolism , Reperfusion Injury/metabolism
5.
Front Cell Dev Biol ; 10: 849469, 2022.
Article in English | MEDLINE | ID: mdl-35450291

ABSTRACT

Electron microscopy is the primary approach to study ultrastructural features of the cerebrovasculature. However, 2D snapshots of a vascular bed capture only a small fraction of its complexity. Recent efforts to synaptically map neuronal circuitry using volume electron microscopy have also sampled the brain microvasculature in 3D. Here, we perform a meta-analysis of 7 data sets spanning different species and brain regions, including two data sets from the MICrONS consortium that have made efforts to segment vasculature in addition to all parenchymal cell types in mouse visual cortex. Exploration of these data have revealed rich information for detailed investigation of the cerebrovasculature. Neurovascular unit cell types (including, but not limited to, endothelial cells, mural cells, perivascular fibroblasts, microglia, and astrocytes) could be discerned across broad microvascular zones. Image contrast was sufficient to identify subcellular details, including endothelial junctions, caveolae, peg-and-socket interactions, mitochondria, Golgi cisternae, microvilli and other cellular protrusions of potential significance to vascular signaling. Additionally, non-cellular structures including the basement membrane and perivascular spaces were visible and could be traced between arterio-venous zones along the vascular wall. These explorations revealed structural features that may be important for vascular functions, such as blood-brain barrier integrity, blood flow control, brain clearance, and bioenergetics. They also identified limitations where accuracy and consistency of segmentation could be further honed by future efforts. The purpose of this article is to introduce these valuable community resources within the framework of cerebrovascular research. We do so by providing an assessment of their vascular contents, identifying features of significance for further study, and discussing next step ideas for refining vascular segmentation and analysis.

6.
Molecules ; 26(18)2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34576901

ABSTRACT

Transient ischemia in brains causes neuronal damage, gliosis, and blood-brain barrier (BBB) breakdown, which is related to ischemia-induced brain dysfunction. Populus species have various pharmacological properties including antioxidant and anti-inflammatory activities. In this study, we found that phenolic compounds were rich in Populus tomentiglandulosa extract and examined the effects of Populus tomentiglandulosa extract on neuronal damage/death, astrogliosis, and BBB breakdown in the striatum, which is related to motor behavior, following 15-min transient ischemia in the forebrain in gerbils. The gerbils were pre-treated with 50, 100, and 200 mg/kg of the extract. The latter showed significant effects against ischemia-reperfusion injury. Ischemia-induced hyperactivity using spontaneous motor activity test was significantly attenuated by the treatment. Striatal cells (neurons) were dead at five days after the ischemia; however, pre-treatment with the extract protected the striatal cells from ischemia/reperfusion injury. Ischemia-induced reactive astrogliosis was significantly alleviated, in particular, astrocyte end feet, which are a component of BBB, were significantly preserved. Immunoglobulin G, which is not found in intact brain parenchyma, was apparently shown (an indicator of extravasation) in striatal parenchyma at five days after the ischemia, but IgG leakage was dramatically attenuated in the parenchyma by the pre-treatment. Based on these findings, we suggest that Populus tomentiglandulosa extract rich in phenolic compounds can be employed as a pharmaceutical composition to develop a preventive material against brain ischemic injury.


Subject(s)
Astrocytes , Blood-Brain Barrier , Gerbillinae , Polyphenols , Populus , Animals , Cell Death/drug effects , Hippocampus/metabolism , Neurons/drug effects , Reperfusion Injury/drug therapy
7.
Molecules ; 26(8)2021 Apr 09.
Article in English | MEDLINE | ID: mdl-33918660

ABSTRACT

Angelica gigas Nakai root contains decursin which exerts beneficial properties such as anti-amnesic and anti-inflammatory activities. Until now, however, the neuroprotective effects of decursin against transient ischemic injury in the forebrain have been insufficiently investigated. Here, we revealed that post-treatment with decursin and the root extract saved pyramidal neurons in the hippocampus following transient ischemia for 5 min in gerbil forebrain. Through high-performance liquid chromatography, we defined that decursin was contained in the extract as 7.3 ± 0.2%. Based on this, we post-treated with 350 mg/kg of extract, which is the corresponding dosage of 25 mg/kg of decursin that exerted neuroprotection in gerbil hippocampus against the ischemia. In addition, behavioral tests were conducted to evaluate ischemia-induced dysfunctions via tests of spatial memory (by the 8-arm radial maze test) and learning memory (by the passive avoidance test), and post-treatment with the extract and decursin attenuated ischemia-induced memory impairments. Furthermore, we carried out histochemistry, immunohistochemistry, and double immunohistofluorescence. Pyramidal neurons located in the subfield cornu ammonis 1 (CA1) among the hippocampal subfields were dead at 5 days after the ischemia; however, treatment with the extract and decursin saved the pyramidal neurons after ischemia. Immunoglobulin G (IgG, an indicator of extravasation), which is not found in the parenchyma in normal brain tissue, was apparently shown in CA1 parenchyma from 2 days after the ischemia, but IgG leakage was dramatically attenuated in the CA1 parenchyma treated with the extract and decursin. Furthermore, astrocyte endfeet, which are a component of the blood-brain barrier (BBB), were severely damaged at 5 days after the ischemia; however, post-treatment with the extract and decursin dramatically attenuated the damage of the endfeet. In brief, therapeutic treatment of the extract of Angelica gigas Nakai root and decursin after 5 min transient forebrain ischemia protected hippocampal neurons from the ischemia, showing that ischemia-induced BBB leakage and damage of astrocyte endfeet was significantly attenuated by the extract and decursin. Based on these findings, we suggest that Angelica gigas Nakai root containing decursin can be employed as a pharmaceutical composition to develop a therapeutic strategy for brain ischemic injury.


Subject(s)
Angelica/chemistry , Astrocytes/pathology , Benzopyrans/therapeutic use , Blood-Brain Barrier/pathology , Butyrates/therapeutic use , Ischemic Attack, Transient/pathology , Plant Extracts/therapeutic use , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Benzopyrans/chemistry , Benzopyrans/pharmacology , Blood-Brain Barrier/drug effects , Butyrates/chemistry , Butyrates/pharmacology , Gerbillinae , Glial Fibrillary Acidic Protein/metabolism , Glucose Transporter Type 1/metabolism , Immunoglobulin G/metabolism , Male , Neuraminidase/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Plant Extracts/pharmacology , Reference Standards , Spatial Memory/drug effects
8.
Glia ; 69(3): 715-728, 2021 03.
Article in English | MEDLINE | ID: mdl-33075175

ABSTRACT

The glymphatic system is a recently defined brain-wide network of perivascular spaces along which cerebrospinal fluid (CSF) and interstitial solutes exchange. Astrocyte endfeet encircling the perivascular space form a physical barrier in between these two compartments, and fluid and solutes that are not taken up by astrocytes move out of the perivascular space through the junctions in between astrocyte endfeet. However, little is known about the anatomical structure and the physiological roles of the astrocyte endfeet in regulating the local perivascular exchange. Here, visualizing astrocyte endfoot-endfoot junctions with immunofluorescent labeling against the protein megalencephalic leukoencephalopathy with subcortical cysts-1 (MLC1), we characterized endfoot dimensions along the mouse cerebrovascular tree. We observed marked heterogeneity in endfoot dimensions along vessels of different sizes, and of different types. Specifically, endfoot size was positively correlated with the vessel diameters, with large vessel segments surrounded by large endfeet and small vessel segments surrounded by small endfeet. This association was most pronounced along arterial, rather than venous segments. Computational modeling simulating vascular trees with uniform or varying endfeet dimensions demonstrates that varying endfoot dimensions maintain near constant perivascular-interstitial flux despite correspondingly declining perivascular pressures along the cerebrovascular tree through the cortical depth. These results describe a novel anatomical feature of perivascular astroglial endfeet and suggest that endfoot heterogeneity may be an evolutionary adaptation to maintain perivascular CSF-interstitial fluid exchange through deep brain structures.


Subject(s)
Astrocytes , Brain , Animals , Astrocytes/metabolism , Brain/metabolism , Membrane Proteins/metabolism , Mice
9.
Chinese Pharmacological Bulletin ; (12): 892-896, 2021.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1014454

ABSTRACT

The destruction of the blood-brain barrier, one of the main pathological processes of ischemic stroke, has become a new target for the treatment of ischemic stroke. miRNAs are versatile regulatory molecules that influence almost every aspect of BBB structure and function. This review summarizes the recent progress in studies on the role of miRNAs in BBB dysfunction in hypoxic/ischemic brain injury, and highlights the specific and key role of miRNAs in the regulation of BBB structure and function in ischemic stroke.

10.
J Mol Med (Berl) ; 98(6): 875-886, 2020 06.
Article in English | MEDLINE | ID: mdl-32415357

ABSTRACT

Cerebral ischemia, or stroke, is widespread leading cause of death and disability. Surgical and pharmacological interventions that recover blood flow are the most effective treatment strategies for stroke patients. However, restoring the blood supply is accompanied by severe reperfusion injury, with edema and astrocyte end-feet disruption. Here, we report that the oral administration of CU06-1004 (previously Sac-1004), immediately after onset of ischemia/reperfusion (I/R), ameliorated cerebral damage. CU06-1004 stabilized blood­brain barrier by inhibiting the disruption of the tight junction-related protein zona occludens-1 and the cortical actin ring in endothelial cells (ECs) after I/R. Interestingly, CU06-1004 significantly suppressed astrocyte end-feet swelling following I/R, by reducing aquaporin 4 and connexin 43 levels, which mediates swelling. Furthermore, the degradation of ß1-integrin and ß-dystroglycan, which anchors to the cortical actin ring in ECs, was inhibited by CU06-1004 administration after I/R. Consistently, CU06-1004 administration following I/R also suppressed the loss of laminin and collagen type IV, which bind to the cortical actin ring anchoring proteins. Unlike the protective effects of CU06-1004 in ECs, astrocyte viability and proliferation were not directly affected. Taken together, our observations suggest that CU06-1004 inhibits I/R-induced cerebral edema and astrocyte end-feet swelling by maintaining EC junction stability. KEY MESSAGES: • CU06-1004 ameliorates I/R-induced cerebral injury. • EC junction integrity was stabilized by CU06-1004 treatment after I/R. • CU06-1004 reduces astrocyte end-feet swelling following I/R. • EC junction stability affects astrocyte end-feet structure maintenance after I/R.


Subject(s)
Astrocytes/drug effects , Astrocytes/metabolism , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Neuroprotective Agents/pharmacology , Reperfusion Injury/etiology , Reperfusion Injury/metabolism , Administration, Oral , Animals , Aquaporin 4/genetics , Aquaporin 4/metabolism , Biomarkers , Brain Ischemia/drug therapy , Brain Ischemia/etiology , Brain Ischemia/metabolism , Brain Ischemia/pathology , Connexin 43/genetics , Connexin 43/metabolism , Disease Models, Animal , Disease Susceptibility , Extracellular Matrix , Gene Expression , Glucose/metabolism , Male , Mice , Neuroprotective Agents/administration & dosage , Oxygen Consumption , Reperfusion Injury/drug therapy , Reperfusion Injury/pathology
11.
Int J Mol Sci ; 21(4)2020 Feb 24.
Article in English | MEDLINE | ID: mdl-32102323

ABSTRACT

Translational readthrough (TRT) of aquaporin-4 (AQP4) has remarkably expanded the importance of this new post-transcriptional mechanism, as well as the regulation potential of AQP4. The TRT isoform of AQP4, named AQP4ex, is central for both AQP4 polarization and water channel activity in the central nervous system (CNS). Here we evaluate the relevance of the TRT mechanism by analyzing whether AQP4ex is also expressed in peripheral tissues and whether the expression of AQP4ex is necessary for its polarized expression as it occurs in perivascular astrocyte processes. To this purpose, AQP4ex null mice were used, and analysis was performed by immunolocalization and immunoblot. The results demonstrate that AQP4ex is expressed in kidney, stomach, trachea and skeletal muscle with the same localization pattern as the canonical AQP4 isoforms. AQP4ex protein levels vary from 6% to about 13% of the total AQP4 protein levels in peripheral tissues. Immunogold electron microscopy experiments demonstrated the localization of AQP4ex at the astrocytic endfeet, and experiments conducted on AQP4ex null mice CNS confirmed that the expression of AQP4ex is necessary for anchoring of the perivascular AQP4. Without the readthrough isoform, AQP4 assemblies are mis-localized, being uniformly distributed on the astrocyte processes facing the neuropile. No alteration of AQP4 polarization was found in AQP4ex null kidney, stomach, trachea or skeletal muscle, suggesting that AQP4ex does not have a role for proper membrane localization of AQP4 in peripheral tissues. We conclude that a dual role for AQP4ex is limited to the CNS.


Subject(s)
Aquaporin 4/genetics , Astrocytes/metabolism , Central Nervous System/metabolism , Gene Expression Regulation , Animals , Aquaporin 4/metabolism , Astrocytes/ultrastructure , Central Nervous System/ultrastructure , Immunoblotting , Kidney/metabolism , Mice , Mice, Knockout , Microscopy, Immunoelectron , Muscle, Skeletal/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Stomach/chemistry , Trachea/metabolism , Tumor Protein, Translationally-Controlled 1
12.
Glia ; 66(1): 126-144, 2018 01.
Article in English | MEDLINE | ID: mdl-28925083

ABSTRACT

Stimulation of Na+ /H+ exchanger isoform 1 (NHE1) in astrocytes causes ionic dysregulation under ischemic conditions. In this study, we created a Nhe1flox/flox (Nhe1f/f ) mouse line with exon 5 of Nhe1 flanked with two loxP sites and selective ablation of Nhe1 in astrocytes was achieved by crossing Nhe1f/f mice with Gfap-CreERT2 Cre-recombinase mice. Gfap-CreERT2+/- ;Nhe1f/f mice at postnatal day 60-90 were treated with either corn oil or tamoxifen (Tam, 75 mg/kg/day, i.p.) for 5 days. After 30 days post-injection, mice underwent transient middle cerebral artery occlusion (tMCAO) to induce ischemic stroke. Compared with the oil-vehicle group (control), Tam-treated Gfap-CreERT2+/- ;Nhe1f/f (Nhe1 KO) mice developed significantly smaller ischemic infarction, less edema, and less neurological function deficits at 1-5 days after tMCAO. Immunocytochemical analysis revealed less astrocytic proliferation, less cellular hypertrophy, and less peri-lesion gliosis in Nhe1 KO mouse brains. Selective deletion of Nhe1 in astrocytes also reduced cerebral microvessel damage and blood-brain barrier (BBB) injury in ischemic brains. The BBB microvessels of the control brains show swollen endothelial cells, opened tight junctions, increased expression of proinflammatory protease MMP-9, and significant loss of tight junction protein occludin. In contrast, the Nhe1 KO mice exhibited reduced BBB breakdown and normal tight junction structure, with increased expression of occludin and reduced MMP-9. Most importantly, deletion of astrocytic Nhe1 gene significantly increased regional cerebral blood flow in the ischemic hemisphere at 24 hr post-MCAO. Taken together, our study provides the first line of evidence for a causative role of astrocytic NHE1 protein in reactive astrogliosis and ischemic neurovascular damage.


Subject(s)
Astrocytes/metabolism , Blood-Brain Barrier/pathology , Gliosis/pathology , Infarction, Middle Cerebral Artery/complications , Sodium-Hydrogen Exchanger 1/deficiency , Animals , Astrocytes/ultrastructure , Blood-Brain Barrier/ultrastructure , Brain Infarction/diagnosis , Brain Infarction/etiology , Brain Infarction/genetics , Cerebrovascular Circulation/genetics , Cerebrovascular Circulation/physiology , Disease Models, Animal , Gene Expression Regulation/genetics , Glial Fibrillary Acidic Protein/genetics , Glial Fibrillary Acidic Protein/metabolism , Gliosis/etiology , Gliosis/genetics , Gliosis/metabolism , Infarction, Middle Cerebral Artery/pathology , Male , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microscopy, Electron, Transmission , Motor Activity/genetics , Neurologic Examination , Reperfusion , Sodium-Hydrogen Exchanger 1/genetics
13.
Glia ; 66(2): 348-358, 2018 02.
Article in English | MEDLINE | ID: mdl-29058353

ABSTRACT

Cerebral blood flow (CBF) is regulated by the activity of neurons and astrocytes. Understanding how these cells control activity-dependent increases in CBF is crucial to interpreting functional neuroimaging signals. The relative importance of neurons and astrocytes is debated, as are the functional implications of fast Ca2+ changes in astrocytes versus neurons. Here, we used two-photon microscopy to assess Ca2+ changes in neuropil, astrocyte processes, and astrocyte end-feet in response to whisker pad stimulation in mice. We also developed a pixel-based analysis to improve the detection of rapid Ca2+ signals in the subcellular compartments of astrocytes. Fast Ca2+ responses were observed using both chemical and genetically encoded Ca2+ indicators in astrocyte end-feet prior to dilation of arterioles and capillaries. A low dose of the NMDA receptor antagonist (5R,10s)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine-hydrogen-maleate (MK801) attenuated fast Ca2+ responses in the neuropil and astrocyte processes, but not in astrocyte end-feet, and the evoked CBF response was preserved. In addition, a low dose of 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP), an agonist for the extrasynaptic GABAA receptor (GABAA R), increased CBF responses and the fast Ca2+ response in astrocyte end-feet but did not affect Ca2+ responses in astrocyte processes and neuropil. These results suggest that fast Ca2+ increases in the neuropil and astrocyte processes are not necessary for an evoked CBF response. In contrast, as local fast Ca2+ responses in astrocyte end-feet are unaffected by MK801 but increase via GABAA R-dependent mechanisms that also increased CBF responses, we hypothesize that the fast Ca2+ increases in end-feet adjust CBF during synaptic activity.


Subject(s)
Astrocytes/metabolism , Calcium/metabolism , Cerebrovascular Circulation/physiology , Neurovascular Coupling/physiology , Animals , Astrocytes/chemistry , Astrocytes/drug effects , Calcium/analysis , Cerebrovascular Circulation/drug effects , Excitatory Amino Acid Antagonists/pharmacology , Hemodynamics/drug effects , Hemodynamics/physiology , Male , Mice , Microscopy, Fluorescence, Multiphoton/methods , Neurovascular Coupling/drug effects , Time Factors
14.
Brain Sci ; 7(7)2017 Jul 06.
Article in English | MEDLINE | ID: mdl-28684673

ABSTRACT

Besides causing neuronal damage, traumatic brain injury (TBI) is involved in memory reduction, which can be a result of alterations in vasculo-neuronal interactions. Inflammation following TBI is involved in elevation of blood content of fibrinogen (Fg), which is known to enhance cerebrovascular permeability, and thus, enhance its deposition in extravascular space. However, the localization of Fg in the extravascular space and its possible interaction with nonvascular cells are not clear. The localization of Fg deposition in the extravascular space was defined in brain samples of mice after cortical contusion injury (CCI) and sham-operation (control) using immunohistochemistry and laser-scanning confocal microscopy. Memory changes were assessed with new object recognition and Y-maze tests. Data showed a greater deposition of Fg in the vascular and astrocyte endfeet interface in mice with CCI than in control animals. This effect was accompanied by enhanced neuronal degeneration and reduction in short-term memory in mice with CCI. Thus, our results suggest that CCI induces increased deposition of Fg in the vasculo-astrocyte interface, and is accompanied by neuronal degeneration, which may result in reduction of short-term memory.

15.
J Cereb Blood Flow Metab ; 37(2): 456-470, 2017 Feb.
Article in English | MEDLINE | ID: mdl-26823471

ABSTRACT

Blood-brain barrier breakdown worsens ischaemic damage, but it is unclear how molecules breach the blood-brain barrier in vivo. Using the obese ob/ob mouse as a model of enhanced blood-brain barrier breakdown, we investigated how stroke-induced structural changes to the microvasculature related to blood-brain barrier permeability. Ob/ob mice underwent middle cerebral artery occlusion, followed by 4 or 24 h reperfusion. Blood-brain barrier integrity was assessed using IgG and horseradish peroxidase staining, and blood-brain barrier structure by two-dimensional and three-dimensional electron microscopy. At 4 and 24 h post-stroke, ob/ob mice had increased ischaemic damage and blood-brain barrier breakdown compared to ob/- controls, and vessels from both genotypes showed astrocyte end-foot swelling and increased endothelial vesicles. Ob/ob mice had significantly more endothelial vesicles at 4 h in the striatum, where blood-brain barrier breakdown was most severe. Both stroke and genotype had no effect on tight junction structure visualised by electron microscopy, or protein expression in isolated microvessels. Astrocyte swelling severity did not correlate with tissue outcome, being unaffected by genotype or reperfusion times. However, the rare instances of vessel lumen collapse were always associated with severe astrocyte swelling in two-dimensional and three-dimensional electron microscopy. Endothelial vesicles were therefore the best spatial and temporal indicators of blood-brain barrier breakdown after cerebral ischaemia.


Subject(s)
Blood-Brain Barrier/ultrastructure , Endothelium, Vascular/pathology , Stroke/physiopathology , Animals , Blood-Brain Barrier/metabolism , Brain Ischemia , Endothelium, Vascular/ultrastructure , Mice , Mice, Obese , Microscopy, Electron , Microvessels , Models, Animal , Permeability , Stroke/pathology
16.
Fluids Barriers CNS ; 13(1): 19, 2016 Oct 31.
Article in English | MEDLINE | ID: mdl-27799072

ABSTRACT

The two major interfaces separating brain and blood have different primary roles. The choroid plexuses secrete cerebrospinal fluid into the ventricles, accounting for most net fluid entry to the brain. Aquaporin, AQP1, allows water transfer across the apical surface of the choroid epithelium; another protein, perhaps GLUT1, is important on the basolateral surface. Fluid secretion is driven by apical Na+-pumps. K+ secretion occurs via net paracellular influx through relatively leaky tight junctions partially offset by transcellular efflux. The blood-brain barrier lining brain microvasculature, allows passage of O2, CO2, and glucose as required for brain cell metabolism. Because of high resistance tight junctions between microvascular endothelial cells transport of most polar solutes is greatly restricted. Because solute permeability is low, hydrostatic pressure differences cannot account for net fluid movement; however, water permeability is sufficient for fluid secretion with water following net solute transport. The endothelial cells have ion transporters that, if appropriately arranged, could support fluid secretion. Evidence favours a rate smaller than, but not much smaller than, that of the choroid plexuses. At the blood-brain barrier Na+ tracer influx into the brain substantially exceeds any possible net flux. The tracer flux may occur primarily by a paracellular route. The blood-brain barrier is the most important interface for maintaining interstitial fluid (ISF) K+ concentration within tight limits. This is most likely because Na+-pumps vary the rate at which K+ is transported out of ISF in response to small changes in K+ concentration. There is also evidence for functional regulation of K+ transporters with chronic changes in plasma concentration. The blood-brain barrier is also important in regulating HCO3- and pH in ISF: the principles of this regulation are reviewed. Whether the rate of blood-brain barrier HCO3- transport is slow or fast is discussed critically: a slow transport rate comparable to those of other ions is favoured. In metabolic acidosis and alkalosis variations in HCO3- concentration and pH are much smaller in ISF than in plasma whereas in respiratory acidosis variations in pHISF and pHplasma are similar. The key similarities and differences of the two interfaces are summarized.


Subject(s)
Blood-Brain Barrier/metabolism , Brain/metabolism , Cerebrospinal Fluid/metabolism , Animals , Humans , Ion Transport/physiology
17.
J Cereb Blood Flow Metab ; 36(11): 1901-1912, 2016 11.
Article in English | MEDLINE | ID: mdl-27207166

ABSTRACT

Neurovascular coupling supports brain metabolism by matching focal increases in neuronal activity with local arteriolar dilation. Previously, we demonstrated that an emergence of spontaneous endfoot high-amplitude Ca2+ signals (eHACSs) caused a pathologic shift in neurovascular coupling from vasodilation to vasoconstriction in brain slices obtained from subarachnoid hemorrhage model animals. Extracellular purine nucleotides (e.g., ATP) can trigger astrocyte Ca2+ oscillations and may be elevated following subarachnoid hemorrhage. Here, the role of purinergic signaling in subarachnoid hemorrhage-induced eHACSs and inversion of neurovascular coupling was examined by imaging parenchymal arteriolar diameter and astrocyte Ca2+ signals in rat brain slices using two-photon fluorescent and infrared-differential interference contrast microscopy. We report that broad-spectrum inhibition of purinergic (P2) receptors using suramin blocked eHACSs and restored vasodilatory neurovascular coupling after subarachnoid hemorrhage. Importantly, eHACSs were also abolished using a cocktail of inhibitors targeting Gq-coupled P2Y receptors. Further, activation of P2Y receptors in brain slices from un-operated animals triggered high-amplitude Ca2+ events resembling eHACSs and disrupted neurovascular coupling. Neither tetrodotoxin nor bafilomycin A1 affected eHACSs suggesting that purine nucleotides are not released by ongoing neurotransmission and/or vesicular release after subarachnoid hemorrhage. These results indicate that purinergic signaling via P2Y receptors contributes to subarachnoid hemorrhage-induced eHACSs and inversion of neurovascular coupling.


Subject(s)
Astrocytes/metabolism , Calcium Signaling/physiology , Neurovascular Coupling/physiology , Receptors, Purinergic P2Y/metabolism , Subarachnoid Hemorrhage/metabolism , Animals , Astrocytes/drug effects , Astrocytes/pathology , Calcium Signaling/drug effects , Disease Models, Animal , Male , Microcirculation/physiology , Microscopy, Fluorescence, Multiphoton , Purinergic P2Y Receptor Antagonists/pharmacology , Rats, Sprague-Dawley , Signal Transduction/drug effects , Subarachnoid Hemorrhage/pathology , Subarachnoid Hemorrhage/physiopathology , Suramin/pharmacology , Vasodilation/drug effects
18.
J Neurosci ; 36(11): 3184-98, 2016 Mar 16.
Article in English | MEDLINE | ID: mdl-26985029

ABSTRACT

The endoplasmic reticulum (ER) is at the epicenter of astrocyte Ca(2+) signaling. We sought to identify the molecular mechanism underlying store-operated calcium entry that replenishes ER stores in mouse Müller cells. Store depletion, induced through blockade of sequestration transporters in Ca(2+)-free saline, induced synergistic activation of canonical transient receptor potential 1 (TRPC1) and Orai channels. Store-operated TRPC1 channels were identified by their electrophysiological properties, pharmacological blockers, and ablation of the Trpc1 gene. Ca(2+) release-activated currents (ICRAC) were identified by ion permeability, voltage dependence, and sensitivity to selective Orai antagonists Synta66 and GSK7975A. Depletion-evoked calcium influx was initiated at the Müller end-foot and apical process, triggering centrifugal propagation of Ca(2+) waves into the cell body. EM analysis of the end-foot compartment showed high-density ER cisternae that shadow retinal ganglion cell (RGC) somata and axons, protoplasmic astrocytes, vascular endothelial cells, and ER-mitochondrial contacts at the vitreal surface of the end-foot. The mouse retina expresses transcripts encoding both Stim and all known Orai genes; Müller glia predominantly express stromal interacting molecule 1 (STIM1), whereas STIM2 is mainly confined to the outer plexiform and RGC layers. Elimination of TRPC1 facilitated Müller gliosis induced by the elevation of intraocular pressure, suggesting that TRPC channels might play a neuroprotective role during mechanical stress. By characterizing the properties of store-operated signaling pathways in Müller cells, these studies expand the current knowledge about the functional roles these cells play in retinal physiology and pathology while also providing further evidence for the complexity of calcium signaling mechanisms in CNS astroglia. SIGNIFICANCE STATEMENT: Store-operated Ca(2+) signaling represents a major signaling pathway and source of cytosolic Ca(2+) in astrocytes. Here, we show that the store-operated response in Müller cells, radial glia that perform key structural, signaling, osmoregulatory, and mechanosensory functions within the retina, is mediated through synergistic activation of transient receptor potential and Orai channels. The end-foot disproportionately expresses the depletion sensor stromal interacting molecule 1, which contains an extraordinarily high density of endoplasmic reticulum cisternae that shadow neuronal, astrocytic, vascular, and axonal structures; interface with mitochondria; but also originate store-operated Ca(2+) entry-induced transcellular Ca(2+) waves that propagate glial excitation into the proximal retina. These results identify a molecular mechanism that underlies complex interactions between the plasma membrane and calcium stores, and contributes to astroglial function, regulation, and response to mechanical stress.


Subject(s)
Calcium Channels/metabolism , Calcium/metabolism , Ependymoglial Cells/metabolism , TRPC Cation Channels/metabolism , Animals , Benzamides/pharmacology , Calcium Channel Blockers/pharmacology , Calcium Channels/genetics , Disease Models, Animal , Endoplasmic Reticulum/metabolism , Ependymoglial Cells/drug effects , Ependymoglial Cells/ultrastructure , Female , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Glial Fibrillary Acidic Protein/metabolism , Male , Membrane Glycoproteins/metabolism , Membrane Potentials/drug effects , Membrane Potentials/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Ocular Hypertension/chemically induced , Ocular Hypertension/pathology , Pyrazoles/pharmacology , Retina/cytology , Stromal Interaction Molecule 1 , Stromal Interaction Molecule 2 , TRPC Cation Channels/genetics
19.
J Neurosci ; 35(39): 13375-84, 2015 Sep 30.
Article in English | MEDLINE | ID: mdl-26424885

ABSTRACT

Physiologically, neurovascular coupling (NVC) matches focal increases in neuronal activity with local arteriolar dilation. Astrocytes participate in NVC by sensing increased neurotransmission and releasing vasoactive agents (e.g., K(+)) from perivascular endfeet surrounding parenchymal arterioles. Previously, we demonstrated an increase in the amplitude of spontaneous Ca(2+) events in astrocyte endfeet and inversion of NVC from vasodilation to vasoconstriction in brain slices obtained from subarachnoid hemorrhage (SAH) model rats. However, the role of spontaneous astrocyte Ca(2+) signaling in determining the polarity of the NVC response remains unclear. Here, we used two-photon imaging of Fluo-4-loaded rat brain slices to determine whether altered endfoot Ca(2+) signaling underlies SAH-induced inversion of NVC. We report a time-dependent emergence of endfoot high-amplitude Ca(2+) signals (eHACSs) after SAH that were not observed in endfeet from unoperated animals. Furthermore, the percentage of endfeet with eHACSs varied with time and paralleled the development of inversion of NVC. Endfeet with eHACSs were present only around arterioles exhibiting inversion of NVC. Importantly, depletion of intracellular Ca(2+) stores using cyclopiazonic acid abolished SAH-induced eHACSs and restored arteriolar dilation in SAH brain slices to two mediators of NVC (a rise in endfoot Ca(2+) and elevation of extracellular K(+)). These data indicate a causal link between SAH-induced eHACSs and inversion of NVC. Ultrastructural examination using transmission electron microscopy indicated that a similar proportion of endfeet exhibiting eHACSs also exhibited asymmetrical enlargement. Our results demonstrate that subarachnoid blood causes a delayed increase in the amplitude of spontaneous intracellular Ca(2+) release events leading to inversion of NVC. Significance statement: Aneurysmal subarachnoid hemorrhage (SAH)--strokes involving cerebral aneurysm rupture and release of blood onto the brain surface--are associated with high rates of morbidity and mortality. A common complication observed after SAH is the development of delayed cerebral ischemia at sites often remote from the site of rupture. Here, we provide evidence that SAH-induced changes in astrocyte Ca(2+) signaling lead to a switch in the polarity of the neurovascular coupling response from vasodilation to vasoconstriction. Thus, after SAH, signaling events that normally lead to vasodilation and enhanced delivery of blood to active brain regions cause vasoconstriction that would limit cerebral blood flow. These findings identify astrocytes as a key player in SAH-induced decreased cortical blood flow.


Subject(s)
Astrocytes/pathology , Calcium Signaling , Neurovascular Coupling , Subarachnoid Hemorrhage/pathology , Animals , Arterioles/pathology , Astrocytes/ultrastructure , Cerebrovascular Circulation , Male , Rats , Rats, Sprague-Dawley , Subarachnoid Hemorrhage/physiopathology , Vasoconstriction , Vasodilation
20.
Acta Histochem Cytochem ; 43(4): 99-105, 2010 Aug 27.
Article in English | MEDLINE | ID: mdl-20824120

ABSTRACT

One of the most important physiological roles of brain astrocytes is the maintenance of extracellular K(+) concentration by adjusting the K(+) influx and K(+) efflux. The inwardly rectifying K(+) channel Kir4.1 has been identified as an important member of K(+) channels and is highly concentrated in glial endfeet membranes. Aquaporin (AQP) 4 is another abundantly expressed molecule in astrocyte endfeet membranes. We examined the ultrastructural localization of Kir4.1, AQP4, α1-syntrophin, and ß-spectrin molecules to understand the functional role(s) of Kir4.1 and AQP4. Immunogold electron microscopy of these molecules showed that the signals of these molecules were present along the plasma membranes of astrocyte endfeet. Double immunogold electron microscopy showed frequent co-localization in the combination of molecules of Kir4.1 and AQP4, Kir4.1 and α1-syntrophin, and AQP4 and α1-syntrophin, but not those of AQP4 and ß-spectrin. Our results support biochemical evidence that both Kir4.1 and AQP4 are associated with α1-syntrophin by way of postsynaptic density-95, Drosophila disc large protein, and the Zona occludens protein I protein-interaction domain. Co-localization of AQP4 and Kir4.1 may indicate that water flux mediated by AQP4 is associated with K(+) siphoning.

SELECTION OF CITATIONS
SEARCH DETAIL