Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37829657

ABSTRACT

The role of glia, particularly astrocytes, in mediating the central nervous system's response to injury and neurodegenerative disease is an increasingly well studied topic. These cells perform myriad support functions under physiological conditions but undergo behavioral changes - collectively referred to as 'reactivity' - in response to the disruption of neuronal homeostasis from insults, including glaucoma. However, much remains unknown about how reactivity alters disease progression - both beneficially and detrimentally - and whether these changes can be therapeutically modulated to improve outcomes. Historically, the heterogeneity of astrocyte behavior has been insufficiently addressed under both physiological and pathological conditions, resulting in a fragmented and often contradictory understanding of their contributions to health and disease. Thanks to increased focus in recent years, we now know this heterogeneity encompasses both intrinsic variation in physiological function and insult-specific changes that vary between pathologies. Although previous studies demonstrate astrocytic alterations in glaucoma, both in human disease and animal models, generally these findings do not conclusively link astrocytes to causative roles in neuroprotection or degeneration, rather than a subsequent response. Efforts to bolster our understanding by drawing on knowledge of brain astrocytes has been constrained by the primacy in the literature of findings from peri-synaptic 'gray matter' astrocytes, whereas much early degeneration in glaucoma occurs in axonal regions populated by fibrous 'white matter' astrocytes. However, by focusing on findings from astrocytes of the anterior visual pathway - those of the retina, unmyelinated optic nerve head, and myelinated optic nerve regions - we aim to highlight aspects of their behavior that may contribute to axonal vulnerability and glaucoma progression, including roles in mitochondrial turnover and energy provisioning. Furthermore, we posit that astrocytes of the retina, optic nerve head and myelinated optic nerve, although sharing developmental origins and linked by a network of gap junctions, may be best understood as distinct populations residing in markedly different niches with accompanying functional specializations. A closer investigation of their behavioral repertoires may elucidate not only their role in glaucoma, but also mechanisms to induce protective behaviors that can impede the progressive axonal damage and retinal ganglion cell death that drive vision loss in this devastating condition.

2.
Brain Res ; 1732: 146702, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32032612

ABSTRACT

In the brain, glucose enters astrocytes through glucose transporter (GLUT1) and either enters glycolysis or the glycogen shunt. Astrocytes meet the energy needs of neurons by building up and breaking down their glycogen supply. High glucose exposure causes astrocyte dysregulation, but its effects on glucose metabolism are relatively unknown. We hypothesized that high glucose conditioning induces a glycogenic state in the astrocyte, resulting in an inefficient mobilization of substrates when challenged with glucose deprivation. Using neonatal rat astrocytes, we used normal glucose (NG, 5.5 mM) vs. high glucose (HG, 25 mM) feeding media and measured cell membrane GLUT1 expression, glucose analog uptake, glycogen content, and cellular bioenergetics. This study demonstrates that HG conditioning causes increased glucose analog uptake (p < 0.05) without affecting GLUT1 membrane expression when compared to NG conditioned astrocytes. Increased glucose uptake in HG astrocytes is associated with higher baseline glycogen content compared to NG exposed astrocytes (p < 0.05). When challenged with glucose deprivation, HG astrocytes break down more than double the amount of glycogen molecules compared to NG astrocytes, although they break down a similar percentage of the starting glycogen stores (NG = 62%, HG = 55%). Additionally, HG conditioning negatively impacts astrocyte maximal respiration and glycolytic reserve capacity assessed by the Seahorse mitochondrial stress test and glycolytic stress test, respectively (p < 0.05). These results suggest that HG conditioning shifts astrocytes towards glycogen storage at baseline. Despite increased glycogen storage, HG astrocytes demonstrate decreased metabolic efficiency and capacity putting them at higher risk during extended periods of glucose deprivation.


Subject(s)
Astrocytes/metabolism , Brain/metabolism , Glucose Transporter Type 1/metabolism , Glucose/metabolism , Glycolysis/physiology , Animals , Astrocytes/drug effects , Brain/drug effects , Energy Metabolism/drug effects , Energy Metabolism/physiology , Glucose/pharmacology , Glycolysis/drug effects , Rats , Rats, Sprague-Dawley
3.
J Cereb Blood Flow Metab ; 39(3): 513-523, 2019 03.
Article in English | MEDLINE | ID: mdl-29083247

ABSTRACT

The potassium ion, K+, a neuronal signal that is released during excitatory synaptic activity, produces acute activation of glucose consumption in cultured astrocytes, a phenomenon mediated by the sodium bicarbonate cotransporter NBCe1 ( SLC4A4). We have explored here the relevance of this mechanism in brain tissue by imaging the effect of neuronal activity on pH, glucose, pyruvate and lactate dynamics in hippocampal astrocytes using BCECF and FRET nanosensors. Electrical stimulation of Schaffer collaterals produced fast activation of glucose consumption in astrocytes with a parallel increase in intracellular pyruvate and biphasic changes in lactate . These responses were blocked by TTX and were absent in tissue slices prepared from NBCe1-KO mice. Direct depolarization of astrocytes with elevated extracellular K+ or Ba2+ mimicked the metabolic effects of electrical stimulation. We conclude that the glycolytic pathway of astrocytes in situ is acutely sensitive to neuronal activity, and that extracellular K+ and the NBCe1 cotransporter are involved in metabolic crosstalk between neurons and astrocytes. Glycolytic activation of astrocytes in response to neuronal K+ helps to provide an adequate supply of lactate, a metabolite that is released by astrocytes and which acts as neuronal fuel and an intercellular signal.


Subject(s)
Astrocytes/metabolism , Energy Metabolism , Hippocampus/metabolism , Synaptic Transmission , Animals , Biosensing Techniques , Fluorescence Resonance Energy Transfer , Glucose/metabolism , Mice , Mice, Inbred C57BL , Neurons/metabolism , Potassium/metabolism , Sodium-Bicarbonate Symporters/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...