Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Mol Sci ; 24(21)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37958558

ABSTRACT

It is well known that X-ray crystallography is based on X-ray diffraction (XRD) for atoms and molecules. The diffraction pattern arises as a result of scattering of incident radiation, which makes it possible to determine the structure of the scattering substance. With the advent of ultrashort radiation sources, the theory and interpretation of X-ray diffraction analysis have remained the same. This work shows that when an attosecond laser pulse is scattered on a DNA molecule, including during its nicking and bending, the pulse duration is an important characteristic of the scattering. In this case, the diffraction pattern changes significantly compared to the previously known scattering theory. The results obtained must be used in XRD theory to study DNA structures, their mutations and damage, since the previously known theory can produce large errors and, therefore, the DNA structure can be "decoding" incorrectly.


Subject(s)
Lasers , Light , X-Ray Diffraction , Crystallography, X-Ray , DNA
2.
Proc Natl Acad Sci U S A ; 116(11): 4779-4787, 2019 03 12.
Article in English | MEDLINE | ID: mdl-30824594

ABSTRACT

The shortest light pulses produced to date are of the order of a few tens of attoseconds, with central frequencies in the extreme UV range and bandwidths exceeding tens of electronvolts. They are often produced as a train of pulses separated by half the driving laser period, leading in the frequency domain to a spectrum of high, odd-order harmonics. As light pulses become shorter and more spectrally wide, the widely used approximation consisting of writing the optical waveform as a product of temporal and spatial amplitudes does not apply anymore. Here, we investigate the interplay of temporal and spatial properties of attosecond pulses. We show that the divergence and focus position of the generated harmonics often strongly depend on their frequency, leading to strong chromatic aberrations of the broadband attosecond pulses. Our argument uses a simple analytical model based on Gaussian optics, numerical propagation calculations, and experimental harmonic divergence measurements. This effect needs to be considered for future applications requiring high-quality focusing while retaining the broadband/ultrashort characteristics of the radiation.

3.
Appl Phys B ; 123(1): 17, 2017.
Article in English | MEDLINE | ID: mdl-32214687

ABSTRACT

We present a high-power, MHz-repetition-rate, phase-stable femtosecond laser system based on a phase-stabilized Ti:Sa oscillator and a multi-stage Yb-fiber chirped-pulse power amplifier. A 10-nm band around 1030 nm is split from the 7-fs oscillator output and serves as the seed for subsequent amplification by 54 dB to 80 W of average power. The µJ-level output is spectrally broadened in a solid-core fiber and compressed to ~30 fs with chirped mirrors. A pulse picker prior to power amplification allows for decreasing the repetition rate from 74 MHz by a factor of up to 4 without affecting the pulse parameters. To compensate for phase jitter added by the amplifier to the feed-forward phase-stabilized seeding pulses, a self-referencing feed-back loop is implemented at the system output. An integrated out-of-loop phase noise of less than 100 mrad was measured in the band from 0.4 Hz to 400 kHz, which to the best of our knowledge corresponds to the highest phase stability ever demonstrated for high-power, multi-MHz-repetition-rate ultrafast lasers. This system will enable experiments in attosecond physics at unprecedented repetition rates, it offers ideal prerequisites for the generation and field-resolved electro-optical sampling of high-power, broadband infrared pulses, and it is suitable for phase-stable white light generation.

4.
J Mol Model ; 22(12): 291, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27873092

ABSTRACT

Molecular high-order harmonic generation (HHG) spectra from H2+ and its application to the generation of the isolated attosecond pulses (IAPs) have been numerically investigated. Results show that (i) the 7th harmonic order is enhanced with the nuclei around the equilibrium internuclear, and as the internuclear distance increased, this enhanced harmonic produces a red-shift (even disappearance). Theoretical analyses show that the electronic transition between the ground and the 1st excited states is responsible for the red-shift enhanced harmonic. (ii) The harmonic spectra exhibit several maxima and minima, and a red-shift of these points is predicted as the internuclear distance increased. (iii) By properly choosing the internuclear distance, the harmonic yield is enhanced, and there is only the single quantum path contributing to the harmonic spectra. (iv) Further, by properly adding the half-cycle pulse as well as the spatial inhomogeneous effect, a 375 eV supercontinuum with a pulse enhancement of 3.9 dB and some attosecond X-ray pulses shorter than 60as can be produced.

5.
J Synchrotron Radiat ; 23(Pt 6): 1273-1281, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27787233

ABSTRACT

A method is proposed to generate an isolated attosecond X-ray pulse in free-electron lasers, using irregularly spaced current peaks induced in an electron beam through interaction with an intense short-pulse optical laser. In comparison with a similar scheme proposed in a previous paper, the irregular arrangement of current peaks significantly improves the contrast between the main and satellite pulses, enhances the attainable peak power and simplifies the accelerator layout. Three different methods are proposed for this purpose and achievable performances are computed under realistic conditions. Numerical simulations carried out with the best configuration show that an isolated 7.7 keV X-ray pulse with a peak power of 1.7 TW and pulse length of 70 as can be generated. In this particular example, the contrast is improved by two orders of magnitude and the peak power is enhanced by a factor of three, when compared with the previous scheme.

SELECTION OF CITATIONS
SEARCH DETAIL