Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters











Publication year range
1.
Virus Res ; 347: 199415, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38880334

ABSTRACT

Our study identified strains of the A/H5N1 virus in analyzed samples of subsistence poultry, wild birds, and mammals, belonging to clade 2.3.4.4b, genotype B3.2, with very high genetic similarity to strains from Chile, Uruguay, and Argentina. This suggests a migratory route for wild birds across the Pacific, explaining the phylogenetic relatedness. The Brazilian samples displayed similarity to strains that had already been previously detected in South America. Phylogeographic analysis suggests transmission of US viruses from Europe and Asia, co-circulating with other lineages in the American continent. As mutations can influence virulence and host specificity, genomic surveillance is essential to detect those changes, especially in critical regions, such as hot spots in the HA, NA, and PB2 sequences. Mutations in the PB2 gene (D701N and Q591K) associated with adaptation and transmission in mammals were detected suggesting a potential zoonotic risk. Nonetheless, resistance to neuraminidase inhibitors (NAIs) was not identified, however, continued surveillance is crucial to detect potential resistance. Our study also mapped the spread of the virus in the Southern hemisphere, identifying possible entry routes and highlighting the importance of surveillance to prevent outbreaks and protect both human and animal populations.


Subject(s)
Disease Outbreaks , Influenza A Virus, H5N1 Subtype , Influenza in Birds , Phylogeny , Phylogeography , Animals , Brazil/epidemiology , Influenza in Birds/virology , Influenza in Birds/epidemiology , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/classification , Influenza A Virus, H5N1 Subtype/isolation & purification , Birds/virology , Mammals/virology , Poultry/virology , Humans , Genotype , Neuraminidase/genetics , Viral Proteins/genetics , Mutation , Animals, Wild/virology
3.
Emerg Infect Dis ; 30(4): 812-814, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38413243

ABSTRACT

We report full-genome characterization of highly pathogenic avian influenza A(H5N1) clade 2.3.4.4b virus from an outbreak among sea lions (August 2023) in Argentina and possible spillover to fur seals and terns. Mammalian adaptation mutations in virus isolated from marine mammals and a human in Chile were detected in mammalian and avian hosts.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza A virus , Influenza in Birds , Animals , Humans , Influenza in Birds/epidemiology , Argentina/epidemiology , Birds , Disease Outbreaks , Phylogeny , Mammals
4.
Emerg Infect Dis ; 30(3): 619-621, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38290826

ABSTRACT

We report 4 highly pathogenic avian influenza A(H5N1) clade 2.3.4.4.b viruses in samples collected during June 2023 from Royal terns and Cabot's terns in Brazil. Phylodynamic analysis revealed viral movement from Peru to Brazil, indicating a concerning spread of this clade along the Atlantic Americas migratory bird flyway.


Subject(s)
Charadriiformes , Influenza A Virus, H5N1 Subtype , Influenza in Birds , Influenza, Human , Animals , Humans , Influenza in Birds/epidemiology , Animals, Wild , Brazil/epidemiology , Birds , Phylogeny
5.
Vet Anim Sci ; 22: 100319, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38022721

ABSTRACT

In 2021, the H5N1 virus lineage 2.3.4.4b spread to the Americas, causing high mortality in wild and domestic avian populations. South American countries along the Pacific migratory route have reported wild bird deaths due to A/H5Nx virus since October 2022. However, limited genomic data resulted in no cases reported in Brazil until May 2023. Brazil reported its first case of highly pathogenic avian influenza virus (HPAI A/H5N1) in May 2023. The virus was detected in Cabot's tern specimen in Marataízes, Espírito Santo. Cases were also found in backyard poultry and other wild birds, but no human or commercial poultry cases occurred. HPAI poses risks to the poultry industry, food security, and public health. Researchers used next-gen sequencing and phylogenetic analysis to study the Brazilian sample. It confirmed its affiliation with the 2.3.4.4b clade and proximity to sequences from Chile and Peru. This sheds light on the spread and evolution of HPAI A/H5N1 in the Americas, emphasizing continuous monitoring to mitigate risks for both avian and human populations. Understanding the virus's genetics and transmission allows implementing effective control measures to protect public health and the poultry industry.

6.
Pathogens ; 12(10)2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37887768

ABSTRACT

The influenza A virus (IAV) poses a significant global threat to public health and food security. Particularly concerning is the avian influenza virus (AIV) subtype H5N1, which has spread from Europe to North and Central/South America. This review presents recent developments in IAV evolution in birds, mammals, and humans in Chile. Chile's encounter with IAV began in 2002, with the highly pathogenic avian influenza (HPAI) H7N3 virus, derived from a unique South American low pathogenic avian influenza (LPAI) virus. In 2016-2017, LPAI H7N6 caused outbreaks in turkey, linked to wild birds in Chile and Bolivia. The pandemic influenza A (H1N1) 2009 (H1N1pdm09) virus in 2009 decreased egg production in turkeys. Since 2012, diverse IAV subtypes have emerged in backyard poultry and pigs. Reassortant AIVs, incorporating genes from both North and South American isolates, have been found in wild birds since 2007. Notably, from December 2022, HPAI H5N1 was detected in wild birds, sea lions, and a human, along Chile's north coast. It was introduced through Atlantic migratory flyways from North America. These findings emphasize the need for enhanced biosecurity on poultry farms and ongoing genomic surveillance to understand and manage AIVs in both wild and domestic bird populations in Chile.

7.
Emerg Infect Dis ; 29(9): 1842-1845, 2023 09.
Article in English | MEDLINE | ID: mdl-37487166

ABSTRACT

In December 2022, highly pathogenic avian influenza A(H5N1) clade 2.3.4.4b virus emerged in Chile. We detected H5N1 virus in 93 samples and obtained 9 whole-genome sequences of strains from wild birds. Phylogenetic analysis suggests multiple viral introductions into South America. Continued surveillance is needed to assess risks to humans and domestic poultry.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza in Birds , Animals , Birds , Chile/epidemiology , Influenza in Birds/epidemiology , Phylogeny
8.
Pathogens ; 11(11)2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36365034

ABSTRACT

The Mexican lineage H7N3 highly pathogenic avian influenza virus (HPAIV) has persisted in Mexican poultry since its first isolation in 2012. To date, the detection of this virus has gradually expanded from the initial one state to 18 states in Mexico. Despite the HPAIV H7N3 outbreak occurring yearly, the transmission pathways have never been studied, disallowing the establishment of effective control measures. We used a phylogenetic approach to unravel the transmission pathways of 2022 H7N3 HPAIVs in the new outbreak areas in Northern Mexico. We present genetic data of H7N3 viruses produced from 18 poultry farms infected in the spring of 2022. Our results indicate that the virus responsible for the current outbreak in Northern Mexico evolved from the Mexican lineage H7N3 HPAIV discovered in 2012. In the current outbreak, we identified five clusters of infection with four noticeably different genetic backgrounds. It is a cluster IV-like virus that was transmitted into one northern state causing an outbreak, then spreading to another neighboring northern state, possibly via a human-mediated mechanical transmission mechanism. The long-distance transmission event highlights the necessity for the more rigorous enforcement of biosafety measures in outbreaks. Additionally, we examined the evolutionary processes shaping the viral genetic and antigenic diversities. It is imperative to enhance active surveillance to include birds, the environment, and humans to detect HPAI in domestic poultry at an earlier point and eliminate it.

9.
Viruses ; 14(5)2022 05 03.
Article in English | MEDLINE | ID: mdl-35632700

ABSTRACT

We have demonstrated for the first time a comprehensive evolutionary analysis of the Mexican lineage H5N2 avian influenza virus (AIV) using complete genome sequences (n = 189), from its first isolation in 1993 until 2019. Our study showed that the Mexican lineage H5N2 AIV originated from the North American wild bird gene pool viruses around 1990 and is currently circulating in poultry populations of Mexico, the Dominican Republic, and Taiwan. Since the implementation of vaccination in 1995, the highly pathogenic AIV (HPAIV) H5N2 virus was eradicated from Mexican poultry in mid-1995. However, the low pathogenic AIV (LPAIV) H5N2 virus has continued to circulate in domestic poultry populations in Mexico, eventually evolving into five distinct clades. In the current study, we demonstrate that the evolution of Mexican lineage H5N2 AIVs involves gene reassortments and mutations gained over time. The current circulating Mexican lineage H5N2 AIVs are classified as LPAIV based on the amino acid sequences of the hemagglutinin (HA) protein cleavage site motif as well as the results of the intravenous pathogenicity index (IVPI). The immune pressure from vaccinations most likely has played a significant role in the positive selection of antigenic drift mutants within the Mexican H5N2 AIVs. Most of the identified substitutions in these viruses are located on the critical antigenic residues of the HA protein and as a result, might have contributed to vaccine failures. This study highlights and stresses the need for vaccine updates while emphasizing the importance of continued molecular monitoring of the HA protein for its antigenic changes compared to the vaccines used.


Subject(s)
Influenza A Virus, H5N2 Subtype , Influenza A virus , Influenza in Birds , Animals , Chickens , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza A virus/genetics , Mexico , Phylogeny , Poultry
10.
Transbound Emerg Dis ; 69(5): e1445-e1459, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35150205

ABSTRACT

The Mexican lineage H5N2 low pathogenic avian influenza viruses (LPAIVs) were first detected in 1994 and mutated to highly pathogenic avian influenza viruses (HPAIVs) in 1994-1995 causing widespread outbreaks in poultry. By using vaccination and other control measures, the HPAIVs were eradicated but the LPAIVs continued circulating in Mexico and spread to several other countries. To get better resolution of the phylogenetics of this virus, the full genome sequences of 44 H5N2 LPAIVs isolated from 1994 to 2011, and 6 detected in 2017 and 2019, were analysed. Phylogenetic incongruence demonstrated genetic reassortment between two separate groups of the Mexican lineage H5N2 viruses between 2005 and 2010. Moreover, the recent H5N2 viruses reassorted with previously unidentified avian influenza viruses. Bayesian phylogeographic results suggested that mechanical transmission involving human activity is the most probable cause of the virus spillover to Central American, Caribbean, and East Asian countries. Increased infectivity and transmission of a 2011 H5N2 LPAIV in chickens compared to a 1994 virus demonstrates improved adaptation to chickens, while low virus shedding, and limited contact transmission was observed in mallards with the same 2011 virus. The sporadic increase in basic amino acids in the HA cleavage site, changes in potential N-glycosylation sites in the HA, and truncations of PB1-F2 should be further examined in relation to the increased infectivity and transmission in poultry. The genetic changes that occur as this lineage of H5N2 LPAIVs continues circulating in poultry is concerning not only because of the effect of these changes on vaccination efficacy, but also because of the potential of the viruses to mutate to the highly pathogenic form. Continued vigilance and surveillance efforts, and the pathogenic and genetic characterization of circulating viruses, are required for the effective control of this virus.


Subject(s)
Influenza A Virus, H5N2 Subtype , Influenza A virus , Influenza in Birds , Amino Acids, Basic/genetics , Animals , Bayes Theorem , Chickens , Humans , Influenza A Virus, H5N2 Subtype/genetics , Influenza A virus/genetics , Mexico/epidemiology , Phylogeny , Poultry
11.
Emerg Infect Dis ; 26(12): 3094-3096, 2020 12.
Article in English | MEDLINE | ID: mdl-33219794

ABSTRACT

Low pathogenicity avian influenza (H5N2) virus was detected in poultry in the Dominican Republic in 2007 and re-emerged in 2017. Whole-genome sequencing and phylogenetic analysis show introduction of an H5N2 virus lineage from Mexico into poultry in the Dominican Republic, then divergence into 3 distinct genetic subgroups during 2007-2019.


Subject(s)
Influenza A Virus, H5N2 Subtype , Influenza in Birds , Poultry Diseases , Animals , Dominican Republic/epidemiology , Influenza in Birds/epidemiology , Mexico , Phylogeny , Poultry , Virulence
12.
Braz J Microbiol ; 51(4): 2163-2167, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32691394

ABSTRACT

Avian influenza virus (AIV) usually infects wild birds and domestic poultry; however, this virus could be transmitted to mammals and humans. The previous studies reported that the farmed mink could be infected with the H5 AIV and H9 AIV, indicating that the farmed fur-bearing animals may be susceptible to AIV. Here, we report the serological evidence of infection of H7 AIV and co-infection of H7 and H9 AIV in healthy framed fur-bearing animals. We collected serum specimens from healthy farmed fur-bearing animals (farmed mink and farmed fox) and make an investigation of serological surveillance of clade 2.3.2 H5 AIV, clade 7.2 H5 AIV, clade 2.3.4.4 H5 AIV, H7 AIV, and H9 AIV. We did not find the hemagglutination inhibition (HI) antibodies against clade 2.3.2 H5 AIV, clade 7.2 H5 AIV, or clade 2.3.4.4 H5 AIV in the serum specimens of farmed fur-bearing animals. However, we found that both farmed mink and farmed fox possess HI antibodies against H7 AIV or H9 AIV; furthermore, we found that some serum specimens possess both anti-H7 AIV antibodies and anti-H9 AIV HI antibodies, suggesting that one farmed fur-bearing animal can be infected with two different subtype AIVs and may play an important role in the reassortment course of the novel avian influenza viruses. Taken together, our data suggested that the enhanced surveillance of AIV in farmed fur-bearing animals and humans or animals in close contact with them is needed.


Subject(s)
Coinfection/veterinary , Coinfection/virology , Foxes/virology , Influenza A virus/classification , Influenza in Birds/epidemiology , Mink/virology , Animals , Antibodies, Viral/blood , Birds/virology , China/epidemiology , Farms , Hemagglutination Inhibition Tests , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza in Birds/classification
13.
Virus Res ; 286: 198063, 2020 09.
Article in English | MEDLINE | ID: mdl-32574681

ABSTRACT

Compared with mammalian ANP32A, most avian-coded ANP32A contains a 33 amino acids insertion (ch-ANP32A-33) or a 29 amino acids insertion (ch-ANP32A-29), which can rescue the mammalian-restricted avian influenza virus polymerase activity, with ch-ANP32A-33 exhibiting a more potent phenotype. The alternative splicing of 3' splice sites (SSs) of chicken ANP32A intron 4 generates full-length ch-ANP32A-33 and truncated ch-ANP32A-29. In this study, we found a splicing regulatory cis-element that affected the alternative splicing of 3' SSs by block-scanning mutagenesis. RNA affinity purification and mass spectrometry showed that the SRSF10 bound to the splicing cis-element and the binding was further identified and confirmed by RIP experiment. Overexpression of SRSF10 changed the ratio of the two chicken ANP32A transcripts with the increased ch-ANP32A-29 and the decreased ch-ANP32A-33. The knockdown of both of the ch-ANP32A-33 and ch-ANP32A-29 was harmful to avian influenza virus polymerase activity in DF-1 cells, but the restoration and increasement of only ch-ANP32A-29 could not completely rescue the activity of avian influenza virus polymerase. Overexpression of SRSF10 negatively affected the polymerase activity and replication of avian influenza virus, and the expression of ch-ANP32A-33 could partially recover the decrease of polymerase activity of avian influenza virus. By contrast, SRSF10 had weak inhibition on the polymerase activity of mammalian adapted influenza virus and had no effect on the replication of mammalian adapted influenza virus. Taken together, we demonstrated that SRSF10 acts as a negative regulator in polymerase activity and replication of avian influenza virus by binding to the splicing cis-element to regulate the alternative splicing of chicken ANP32A intron 4 for the reduced ch-ANP32A-33 and increased ch-ANP32A-29.


Subject(s)
Alternative Splicing , Influenza A Virus, H7N9 Subtype/physiology , Nuclear Proteins/genetics , Serine-Arginine Splicing Factors/genetics , Virus Replication , Animals , Cell Line , Chickens/virology , DNA-Directed DNA Polymerase/metabolism , Gene Expression Regulation , Influenza A Virus, H7N9 Subtype/enzymology , Influenza A Virus, H7N9 Subtype/genetics , Influenza in Birds/virology
14.
Zoonoses Public Health ; 67(3): 318-323, 2020 05.
Article in English | MEDLINE | ID: mdl-31912652

ABSTRACT

Highly pathogenic H7N3 influenza A viruses have persisted in poultry in Mexico since 2012, diversifying into multiple lineages that have spread to three Mexican states, as of 2016. The H7N3 viruses segregate into three distinct clades that are geographically structured. All 2016 viruses are resistant to adamantane antiviral drugs and have an extended 24-nucleotide insertion at the HA cleavage site that was acquired from host 28S ribosomal RNA.


Subject(s)
Biological Evolution , Chickens , Influenza A Virus, H7N3 Subtype/pathogenicity , Influenza in Birds/virology , Amino Acid Sequence , Animals , Disease Outbreaks , Genome, Viral , Influenza in Birds/epidemiology , Mexico/epidemiology , Viral Matrix Proteins/genetics , Viral Matrix Proteins/metabolism , Virulence
15.
J Virol ; 93(14)2019 07 15.
Article in English | MEDLINE | ID: mdl-31068421

ABSTRACT

Outbreaks of highly pathogenic avian influenza (HPAI) virus subtype H7N3 have been occurring in commercial chickens in Mexico since its first introduction in 2012. In order to determine changes in virus pathogenicity and adaptation in avian species, three H7N3 HPAI viruses from 2012, 2015, and 2016 were evaluated in chickens and mallards. All three viruses caused high mortality in chickens when given at medium to high doses and replicated similarly. No mortality or clinical signs and similar infectivity were observed in mallards inoculated with the 2012 and 2016 viruses. However, the 2012 H7N3 HPAI virus replicated well in mallards and transmitted to contacts, whereas the 2016 virus replicated poorly and did not transmit to contacts, which indicates that the 2016 virus is less adapted to mallards. In vitro, the 2016 virus grew slower and to lower titers than did the 2012 virus in duck fibroblast cells. Full-genome sequencing showed 115 amino acid differences between the 2012 and the 2016 viruses, with some of these changes previously associated with changes in replication in avian species, including hemagglutinin (HA) A125T, nucleoprotein (NP) M105V, and NP S377N. In conclusion, as the Mexican H7N3 HPAI virus has passaged through large populations of chickens in a span of several years and has retained its high pathogenicity for chickens, it has decreased in fitness in mallards, which could limit the potential spread of this HPAI virus by waterfowl.IMPORTANCE Not much is known about changes in host adaptation of avian influenza (AI) viruses in birds after long-term circulation in chickens or other terrestrial poultry. Although the origin of AI viruses affecting poultry is wild aquatic birds, the role of these birds in further dispersal of poultry-adapted AI viruses is not clear. Previously, we showed that HPAI viruses isolated early from poultry outbreaks could still infect and transmit well in mallards. In this study, we demonstrate that the Mexican H7N3 HPAI virus after four years of circulation in chickens replicates poorly and does not transmit in mallards but remains highly pathogenic in chickens. This information on changes in host adaptation is important for understanding the epidemiology of AI viruses and the role that wild waterfowl may play in disseminating viruses adapted to terrestrial poultry.


Subject(s)
Chickens/virology , Ducks/virology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza A Virus, H7N3 Subtype/physiology , Influenza in Birds , Mutation, Missense , Poultry Diseases , Viral Core Proteins/genetics , Amino Acid Substitution , Animals , Influenza in Birds/genetics , Influenza in Birds/transmission , Mexico , Poultry Diseases/genetics , Poultry Diseases/transmission , Poultry Diseases/virology
16.
Vet Sci ; 5(2)2018 May 09.
Article in English | MEDLINE | ID: mdl-29747454

ABSTRACT

Migratory waterfowl and shorebirds are known to be important reservoirs for influenza A viruses (IAV) and they have been repeatedly implicated as causing avian influenza virus (AIV) outbreaks in domestic poultry flocks worldwide. In recent years, wild birds have been implicated in spreading zoonotic H5 influenza viruses to many countries, which has generated high levels of public health concern. Trinidad and Tobago (T&T) is positioned along the wintering route of migratory birds from the Americas; every year, many species of wild birds stopover on the islands of T&T, potentially carrying AIVs and exposing local populations of wild and domestic birds, including commercial poultry, to infection. The aim of this study was to trap, sample, and test as many wild bird species as possible to see whether they were actively infected or previously exposed to AIV. A total of 38 wild birds were trapped, sampled, and tested for IAV RNA, antibodies specific for influenza A nucleoprotein (NP) and antibodies that were specific for H5 and H7 subtypes. Five of the samples tested antibody positive for IAV, while three of these samples had positive titres (≥16) for the H5 subtype, indicating that they were likely to have been previously infected with an H5 IAV subtype. One of the samples tested positive for IAV (M gene) RNA. These results highlight the potential threat that is posed by wild birds to backyard and commercial poultry in T&T and emphasise the importance of maintaining high levels of biosecurity on poultry farms, ensuring that domestic and wild birds are not in direct or indirect contact. The results also underline the need to carry out routine surveillance for AIV in domestic and wild birds in T&T and the wider Caribbean region.

17.
Vet Sci ; 5(1)2018 Jan 26.
Article in English | MEDLINE | ID: mdl-29373488

ABSTRACT

Viral pathogens cause devastating economic losses in poultry industries worldwide. The Caribbean region, which boasts some of the highest rates of poultry consumption in the world, is no exception. This review summarizes evidence for the circulation and spread of eight high-priority, economically important poultry viruses across the Caribbean region. Avian influenza virus (AIV), infectious bronchitis virus (IBV), Newcastle disease virus (NDV), infectious laryngotracheitis virus (ILTV), avian metapneumovirus (aMPV), infectious bursal disease virus (IBDV), fowl adenovirus group 1 (FADV Gp1), and egg drop syndrome virus (EDSV) were selected for review. This review of serological, molecular, and phylogenetic studies across Caribbean countries reveals evidence for sporadic outbreaks of respiratory disease caused by notifiable viral pathogens (AIV, IBV, NDV, and ILTV), as well as outbreaks of diseases caused by immunosuppressive viral pathogens (IBDV and FADV Gp1). This review highlights the need to strengthen current levels of surveillance and reporting for poultry diseases in domestic and wild bird populations across the Caribbean, as well as the need to strengthen the diagnostic capacity and capability of Caribbean national veterinary diagnostic laboratories.

18.
Influenza Other Respir Viruses ; 12(2): 220-231, 2018 03.
Article in English | MEDLINE | ID: mdl-29143465

ABSTRACT

BACKGROUND: There is insufficient knowledge about the relation of avian influenza virus (AIV) to migratory birds in South America. Accordingly, we studied samples obtained over a 4-year period (2009-2012) from wild birds at a major wintering site in southern Brazil. METHODS: We obtained 1212 oropharyngeal/cloacal samples from wild birds at Lagoa do Peixe National Park and screened them for influenza A virus by RT-PCR amplification of the matrix gene. Virus isolates were subjected to genomic sequencing and antigenic characterization. RESULTS: Forty-eight samples of 1212 (3.96%) contained detectable influenza virus RNA. Partial viral sequences were obtained from 12 of these samples, showing the presence of H2N2 (1), H6Nx (1), H6N1 (8), H9N2 (1), and H12N5 (1) viruses. As H6 viruses predominated, we generated complete genomes from all 9 H6 viruses. Phylogenetic analyses showed that they were most similar to viruses of South American lineage. The H6N1 viruses caused no disease signs in infected ferrets and, despite genetic differences, were antigenically similar to North American isolates. CONCLUSIONS: Lagoa do Peixe National Park is a source of multiple AIV subtypes, with the levels of influenza virus in birds being highest at the end of their wintering period in this region. H6N1 viruses were the predominant subtype identified. These viruses were more similar to viruses of South American lineage than to those of North American lineage.


Subject(s)
Birds/virology , Genetic Variation , Influenza A virus/classification , Influenza A virus/isolation & purification , Influenza in Birds/virology , Animals , Antigens, Viral/analysis , Brazil , Cloaca/virology , Influenza A virus/genetics , Oropharynx/virology , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA , Viral Matrix Proteins/genetics
19.
Braz. J. Microbiol. ; 48(4): 747-753, Oct.-Dec. 2017. ilus, mapas, tab
Article in English | VETINDEX | ID: vti-17466

ABSTRACT

ABSTRACT The red-tailed Amazon parrot (Amazona brasiliensis) is a threatened species of psittacine bird that inhabit coastal regions of Brazil. In view of the threat of this species, the aim of this study was to perform a health evaluation in wild nestlings in Rasa Island, determining the prevalence of enterobacteria and infectious agents according to type of nest. Blood samples were collected from 64 birds and evaluated for antibodies of Chlamydia psittaci by commercial dot-blot ELISA. Cloacal and oropharyngeal swabs samples were collected from 23 birds from artificial wooden nests, 15 birds from PVC nests and 2 birds from natural nests for microbiological analysis. Swab samples were collected from 58 parrots for C. psittaci detection by PCR and from 50 nestlings for Avian Influenza, Newcastle Disease and West Nile viruses detection analysis by real-time RT-PCR. Ten bacterial genera and 17 species were identified, and the most prevalent were Escherichia coli and Klebsiella oxytoca. There was no influence of the type of nest in the nestlings microbiota. All samples tested by ELISA and PCR were negative. There is currently insufficient information available about the health of A. brasiliensis and data of this study provide a reference point for future evaluations and aid in conservation plans.(AU)


Subject(s)
Animals , Parrots , Noxae , Brazil , Influenza in Birds/epidemiology , Newcastle disease virus/pathogenicity , West Nile virus/pathogenicity
20.
Braz. j. microbiol ; Braz. j. microbiol;48(4): 747-753, Oct.-Dec. 2017. tab, graf
Article in English | LILACS | ID: biblio-889165

ABSTRACT

ABSTRACT The red-tailed Amazon parrot (Amazona brasiliensis) is a threatened species of psittacine bird that inhabit coastal regions of Brazil. In view of the threat of this species, the aim of this study was to perform a health evaluation in wild nestlings in Rasa Island, determining the prevalence of enterobacteria and infectious agents according to type of nest. Blood samples were collected from 64 birds and evaluated for antibodies of Chlamydia psittaci by commercial dot-blot ELISA. Cloacal and oropharyngeal swabs samples were collected from 23 birds from artificial wooden nests, 15 birds from PVC nests and 2 birds from natural nests for microbiological analysis. Swab samples were collected from 58 parrots for C. psittaci detection by PCR and from 50 nestlings for Avian Influenza, Newcastle Disease and West Nile viruses' detection analysis by real-time RT-PCR. Ten bacterial genera and 17 species were identified, and the most prevalent were Escherichia coli and Klebsiella oxytoca. There was no influence of the type of nest in the nestlings' microbiota. All samples tested by ELISA and PCR were negative. There is currently insufficient information available about the health of A. brasiliensis and data of this study provide a reference point for future evaluations and aid in conservation plans.


Subject(s)
Animals , Bacteria/isolation & purification , Bacterial Infections/veterinary , Viruses/isolation & purification , Bird Diseases/microbiology , Bird Diseases/virology , Virus Diseases/veterinary , Amazona/microbiology , Amazona/virology , Bacteria/classification , Bacteria/genetics , Bacterial Infections/microbiology , Viruses/classification , Viruses/genetics , Brazil , Virus Diseases/virology , Endangered Species , Islands , Animals, Wild/microbiology , Animals, Wild/virology
SELECTION OF CITATIONS
SEARCH DETAIL