Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 308
Filter
1.
Front Microbiol ; 15: 1410568, 2024.
Article in English | MEDLINE | ID: mdl-38841073

ABSTRACT

Cotton, a key source of income for Pakistan, has suffered significantly by cotton leaf curl disease (CLCuD) since 1990. This disease is caused by a complex of phylogenetically-related begomovirus (genus Begomovirus, family Geminiviridae) species and a specific betasatellite (genus Betasatellite, family Tolecusatellitidae), cotton leaf curl Multan betasatellite. Additionally, another DNA satellite called alphasatellite (family Alphasatellitidae), is also frequently associated. All these virus components are vectored by a single species of whitefly (Bemisia tabaci). While many factors affect cotton productivity, including cotton variety, sowing time, and environmental cues such as temperature, humidity, and rainfall, CLCuD is a major biotic constraint. Although the understanding of begomoviruses transmission by whiteflies has advanced significantly over the past three decades, however, the in-field seasonal dynamics of the viruses in the insect vector remained an enigma. This study aimed to assess the levels of virus and betasatellite in whiteflies collected from cotton plants throughout the cotton growing season from 2014 to 2016. Notably, begomovirus levels showed no consistent pattern, with minimal variations, ranging from 0.0017 to 0.0074 ng.µg-1 of the genomic DNA in 2014, 0.0356 to 0.113 ng.µg-1 of the genomic DNA in 2015, and 0.0517 to 0.0791 ng.µg-1 of the genomic DNA in 2016. However, betasatellite levels exhibited a distinct pattern. During 2014 and 2015, it steadily increased throughout the sampling period (May to September). While 2016 showed a similar trend from the start of sampling (July) to September but a decline in October (end of sampling). Such a study has not been conducted previously, and could potentially provide valuable insights about the epidemiology of the virus complex causing CLCuD and possible means of controlling losses due to it.

2.
Plant Pathol J ; 40(3): 310-321, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38835302

ABSTRACT

Tomato yellow leaf curl virus (TYLCV) and tomato spotted wilt virus (TSWV) are well-known examples of the begomovirus and orthotospovirus genera, respectively. These viruses cause significant economic damage to tomato crops worldwide. Weeds play an important role in the ongoing presence and spread of several plant viruses, such as TYLCV and TSWV, and are recognized as reservoirs for these infections. This work applies a comprehensive approach, encompassing field surveys and molecular techniques, to acquire an in-depth understanding of the interactions between viruses and their weed hosts. A total of 60 tomato samples exhibiting typical symptoms of TYLCV and TSWV were collected from a tomato greenhouse farm in Nonsan, South Korea. In addition, 130 samples of 16 different weed species in the immediate surroundings of the greenhouse were collected for viral detection. PCR and reverse transcription-PCR methodologies and specific primers for TYLCV and TSWV were used, which showed that 15 tomato samples were coinfected by both viruses. Interestingly, both viruses were also detected in perennial weeds, such as Rumex crispus, which highlights their function as viral reservoirs. Our study provides significant insights into the co-occurrence of TYLCV and TSWV in weed reservoirs, and their subsequent transmission under tomato greenhouse conditions. This project builds long-term strategies for integrated pest management to prevent and manage simultaneous virus outbreaks, known as twindemics, in agricultural systems.

3.
Virus Genes ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38935183

ABSTRACT

The present study reports the complete genome of a novel monopartite begomovirus, named tentatively as "Citharexylum leaf curl virus" (CitLCuV), associated with leaf curl disease of Citharexylum spinosum in India. CitLCuV genome (2767 nucleotide) contained the typical genome organization of Old World begomoviruses and shared the maximum nucleotide sequence identity of 89.7% with a papaya leaf crumple virus (PaLCrV) isolate. In addition, two small non-canonical open reading frames (C5 and C6) were determined in the complementary strand of CitLCuV genome. Phylogenetic analysis revealed the relatedness of CitLCuV to PaLCrV and rose leaf curl virus. Recombination analysis detected a possible recombination event in CitLCuV genome. Based on begomovirus species demarcation criteria, CitLCuV can be regarded as a novel begomoviral species.

4.
Plant Dis ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38932448

ABSTRACT

Tomato interveinal chlorosis virus (ToICV; Begomovirus solanumintervenae, genus Begomovirus, family Geminiviridae) has been described infecting tomato (Solanum lycopersicum) and Macroptilium lathyroides in Northeastern (NE) Brazil for more than a decade (Albuquerque et al., 2012; Silva et al., 2012). During a survey in 2020, plants of the leguminous weed Rhynchosia minima exhibiting virus-like symptoms such as mosaic and interveinal chlorosis were observed in the state of Alagoas, NE Brazil. Symptomatic leaf samples of R. minima were randomly collected (n=15; supplementary figure 1). Total DNA from each sample was used as a template for PCR amplification of partial begomoviral DNA-A sequences using the degenerate primer pair PAL1v1978 and PAR1c496, universal for geminiviruses (Rojas et al., 1993). Amplicons of ~1.2 kbp were observed from 12 samples, although this should not be considered as incidence since only symptomatic plants were collected. To identify the begomovirus associated with R. minima, viral genomes were amplified from PCR-positive samples using rolling circle amplification (RCA) (Inoue-Nagata et al., 2004). The RCA products were digested with HindIII, cloned into the pBluescript II KS+ plasmid vector and bidirectionally Sanger-sequenced (Macrogen Inc., Seoul). BLASTn searches indicated that the clones (n=4) reported here corresponded to a begomovirus DNA-A component, and pairwise comparisons showed that they shared the highest identity with ToICV, at 92.4-94.7% nucleotide sequence identity. Based on the species demarcation criteria of ≥91% nucleotide identity for the genus Begomovirus (Brown et al., 2015), the begomoviruses obtained from R. minima are new isolates of ToICV. The new DNA-A sequences of 2,619-2,623 nt in length were deposited in GenBank under accession numbers PP639092 to PP639095. Multiple nucleotide sequence alignments were prepared using the MUSCLE algorithm implemented in MEGA v.11 (Kumar et al., 2018), and a maximum likelihood (ML) tree was reconstructed in RaxML-NG (Kozlov et al., 2019), assuming a general time reversible (GTR) nucleotide substitution model with a gamma (G) model of rate heterogeneity and 1,000 bootstrap replicates. The DNA-A-based tree showed that the ToICV sequences clustered into a monophyletic group, additionally supporting these isolates as members of the species Begomovirus solanumintervenae. At least two independent interspecies recombination events were predicted among the ToICV isolates, with breakpoints located in the Rep-encoding region and ToICV (GenBank Accession JF803253), tomato mottle leaf curl virus (JF803248) and soybean blistering mosaic virus (MN486865) detected as putative parents. To the best of our knowledge, this is the first report of ToICV infecting R. minima worldwide, expanding the host range of this begomovirus. Non-cultivated plants such as R. minima play a crucial role as reservoirs and sources of inoculum for begomoviruses (Paz-Carrasco et al., 2014), reinforcing their relevance to socioeconomically important crops.

5.
Mol Biotechnol ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38900362

ABSTRACT

Deployment of different natural disease resistance alleles is the most sustainable and eco-friendly way for multiple disease management in tomato. Diagnostic molecular markers are indispensible in this effort as they offer early generation identification of resistance alleles in an environment-independent manner. Moreover, optimized multiplex polymerase chain reaction (PCR) for detecting different disease resistance alleles in a single reaction can speed-up the selection process with cost and labour-effectiveness. Here we report the optimized multiplex detection and stacking of leaf curl disease resistance alleles Ty-2 and Ty-3 along with late blight disease resistance allele Ph-3 in tomato genotypes and F2 segregants. The triplex assay could be replaced by a duplex assay (for Ty-2 and Ty-3 resistance alleles) followed by analysis at Ph-3 locus to achieve further cost-effectiveness. We identified two plants in F2 populations derived from the Arka Samrat (F1) x Kashi Chayan combination to carry the Ty-2, Ty-3 and Ph-3 resistance alleles in homozygous condition. Early generation genotyping also allowed us to identify a few morphologically better segregants, where further marker assisted selection (MAS) should identify superior multiple disease resistant lines. Thus we advocate the utility of multiplex PCR in MAS to address multiple disease resistance breeding in tomato.

6.
Plants (Basel) ; 13(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38931079

ABSTRACT

In tropical countries, combating leaf curl disease in hot peppers has become important in improvement programs. Leaf curl disease is caused by whitefly (Bemisia tabaci) transmitted begomoviruses, which mainly include chilli leaf curl virus (ChiLCV). However, multiple begomoviruses have also been found to be associated with this disease. The Capsicum annuum line, DLS-Sel-10, was found to be a tolerant source against this disease during field screening. In this study, we characterized the resistance of DLS-sel-10 against chilli leaf curl virus (ChiLCV) in comparison to the susceptible cultivar Phule Mukta (PM), focusing on the level, stage, and nature of resistance. Comprehensive investigations involved screening of DLS-Sel-10 against the whitefly vector ChiLCV. The putative tolerant line displayed reduced virus infection at the seedling stage, with increasing resistance during vegetative, flowering, and fruiting stages. Both DLS-Sel-10 and PM could be infected with ChiLCV, although DLS-Sel-10 remained symptomless. Insect feeding assays revealed DLS-Sel-10 as a less preferred host for whiteflies compared to PM. In conclusion, DLS-Sel-10 demonstrated tolerance not only to ChiLCV but also served as an unfavorable host for the whitefly vector. The study highlighted an age-dependent increase in tolerance within DLS-Sel-10, showcasing its potential for effective leaf curl disease management in chilli.

7.
Front Plant Sci ; 15: 1376284, 2024.
Article in English | MEDLINE | ID: mdl-38807782

ABSTRACT

Begomoviruses (family Geminiviridae) are known for causing devastating diseases in fruit, fibre, pulse, and vegetable crops throughout the world. Begomoviruses are transmitted in the field exclusively through insect vector whitefly (Bemisia tabaci), and the frequent outbreaks of begomoviruses are attributed largely due to the abundance of whitefly in the agri-ecosystem. Begomoviruses being phloem-borne were known not be transmitted through seeds of the infected plants. The recent findings of seed transmission of begomoviruses brought out a new dimension of begomovirus perpetuation and dissemination. The first convincing evidence of seed transmission of begomoviruses was known in 2015 for sweet potato leaf curl virus followed by several begomoviruses, like bhendi yellow vein mosaic virus, bitter gourd yellow mosaic virus, dolichos yellow mosaic virus, mungbean yellow mosaic virus, mungbean yellow mosaic India virus, pepper yellow leaf curl Indonesia virus, tomato leaf curl New Delhi virus, tomato yellow leaf curl virus, tomato yellow leaf curl Sardinia virus, and okra yellow mosaic Mexico virus. These studies brought out two perspectives of seed-borne nature of begomoviruses: (i) the presence of begomovirus in the seed tissues derived from the infected plants but no expression of disease symptoms in the progeny seedlings and (ii) the seed infection successfully transmitted the virus to cause disease to the progeny seedlings. It seems that the seed transmission of begomovirus is a feature of a specific combination of host-genotype and virus strain, rather than a universal phenomenon. This review comprehensively describes the seed transmitted begomoviruses reported in the last 9 years and the possible mechanism of seed transmission. An emphasis is placed on the experimental results that proved the seed transmission of various begomoviruses, factors affecting seed transmission and impact of begomovirus seed transmission on virus circulation, outbreak of the disease, and management strategies.

8.
Plants (Basel) ; 13(9)2024 May 02.
Article in English | MEDLINE | ID: mdl-38732482

ABSTRACT

Sweet potato leaf curl virus (SPLCV) is a whitefly-transmitted begomovirus infecting sweetpotato and other morning glory (Convolvulaceae) species worldwide. The virus is widespread at the USDA, ARS, U.S. Vegetable Laboratory (USVL), and testing of germplasm maintained in the breeding program indicates nearly 100% infection in storage roots of materials propagated for at least four years. Prior to the public release of new germplasm, viruses must be eliminated via laborious and time-consuming meristem-tip culture. The identification of virus-free seedlings early in the selection process can offer an alternative to meristem-tip culture. In this study, we investigated the transmission of SPLCV over two years of consecutive field plantings (early and late) of sweetpotato. While SPLCV is endemic at the USVL, virus transmission pressure over the typical cultivation season is unknown, and avoidance of virus transmission paired with the selection and maintenance of clean material may be a viable alternative to virus elimination. In 2022, the storage roots of 39 first-year seedling (FYS) selections were tested for SPLCV after early-season cultivation, revealing a single selection (2.6%) with a positive test. Similar testing was conducted in 2023 with no SPLCV-positive FYS selections detected. To further assess SPLCV acquisition in the field, replicated late-season plantings of each selected FYS (n = 37) were monitored from planting to harvest. Testing was conducted at 60 and 120 days after planting (DAP). Approximately 35% of the bulk samples were infected at 60 DAP, and infection increased to 52.3% by 120 DAP. Testing of individuals within selected positive bulked samples did not support 100% infection at harvest. Altogether, these results demonstrate that SPLCV transmission during early planting is sufficiently low to facilitate the maintenance of virus-free selections, offering an alternative to virus cleaning and a cultivation strategy that may be leveraged for production.

9.
Viruses ; 16(4)2024 04 10.
Article in English | MEDLINE | ID: mdl-38675929

ABSTRACT

Plants can respond to insect infestation and virus infection by inducing plant defenses, generally mediated by phytohormones. Moreover, plant defenses alter host quality for insect vectors with consequences for the spread of viruses. In agricultural settings, other organisms commonly interact with plants, thereby inducing plant defenses that could affect plant-virus-vector interactions. For example, plant defenses induced by omnivorous insects can modulate insect behavior. This study focused on tomato yellow leaf curl virus (TYLCV), a plant virus of the family Geminiviridae and genus Begomovirus. It is transmitted in a persistent circulative manner by the whitefly Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae), posing a global threat to tomato production. Mirids (Hemiptera: Miridae) are effective biological control agents of B. tabaci, but there is a possibility that their omnivorous nature could also interfere with the process of virus transmission. To test this hypothesis, this study first addressed to what extent the mirid bug Dicyphus hesperus Knight induces plant defenses in tomato. Subsequently, the impact of this plant-omnivore interaction on the transmission of TYLCV was evaluated. Controlled cage experiments were performed in a greenhouse setting to evaluate the impact of mirids on virus transmission and vector acquisition by B. tabaci. While we observed a reduced number of whiteflies settling on plants exposed to D. hesperus, the plant defenses induced by the mirid bug did not affect TYLCV transmission and accumulation. Additionally, whiteflies were able to acquire comparable amounts of TYLCV on mirid-exposed plants and control plants. Overall, the induction of plant defenses by D. hesperus did not influence TYLCV transmission by whiteflies on tomato.


Subject(s)
Begomovirus , Hemiptera , Insect Vectors , Plant Diseases , Solanum lycopersicum , Begomovirus/physiology , Solanum lycopersicum/virology , Animals , Plant Diseases/virology , Hemiptera/virology , Hemiptera/physiology , Insect Vectors/virology , Heteroptera/virology , Heteroptera/physiology , Plant Defense Against Herbivory
10.
Front Microbiol ; 15: 1340275, 2024.
Article in English | MEDLINE | ID: mdl-38605706

ABSTRACT

Papaya leaf curl disease (PaLCuD) is widespread and classified in the genus begomovirus (Geminiviridae), disseminated by the vector whitefly Bemisia tabaci. RNA interference (RNAi)-based antiviral innate immunity stands as a pivotal defense mechanism and biological process in limiting viral genomes to manage plant diseases. The current study aims to identify and analyze Carica Papaya locus-derived capa-microRNAs with predicted potential for targeting divergent begomovirus species-encoded mRNAs using a 'four integrative in silico algorithms' approach. This research aims to experimentally activate the RNAi catalytic pathway using in silico-predicted endogenous capa-miRNAs and create papaya varieties capable of assessing potential resistance against begomovirus species and monitoring antiviral capabilities. This study identified 48 predicted papaya locus-derived candidates from 23 miRNA families, which were further investigated for targeting begomovirus genes. Premised all the four algorithms combined, capa-miR5021 was the most anticipated miRNA followed by capa-miR482, capa-miR5658, capa-miR530b, capa-miR3441.2, and capa-miR414 'effective' papaya locus-derived candidate capa-miRNA and respected putative binding sites for targets at the consensus nucleotide position. It was predicted to bind and target mostly to AC1 gene of the complementary strand and the AV1 gene of the virion strand of different begomovirus isolates, which were associated with replication-associated protein and encapsidation, respectively, during PaLCuD. These miRNAs were also found targeting betaC1 gene of betasatellite which were associated with retardation in leaf growth and developmental abnormalities with severe symptoms during begomovirus infection. To validate target prediction accuracy, we created an integrated Circos plot for comprehensive visualization of host-virus interaction. In silico-predicted papaya genome-wide miRNA-mediated begomovirus target gene regulatory network corroborated interactions that permit in vivo analysis, which could provide biological material and valuable evidence, leading to the development of begomovirus-resistant papaya plants. The integrative nature of our research positions it at the forefront of efforts to ensure the sustainable cultivation of papaya, particularly in the face of evolving pathogenic threats. As we move forward, the knowledge gained from this study provides a solid foundation for continued exploration and innovation in the field of papaya virology, and to the best of our knowledge, this study represents a groundbreaking endeavor, undertaken for the first time in the context of PaLCuD research.

11.
Plant Dis ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38587795

ABSTRACT

The tomato yellow leaf curl disease (TYLCD) caused by whitefly (Bemisia tabaci) transmitted begomoviruses (Geminiviridae) has constrained tomato production in Taiwan since 1981. Lisianthus enation leaf curl virus (LELCV), tomato leaf curl Taiwan virus (ToLCTV), and tomato yellow leaf curl Thailand virus (TYLCTHV) were the major viruses associated with TYLCD. In 2019-2020, we investigated TYLCD throughout Taiwan, with a 10-100% incidence on tomato fields. Begomovirus sequences were detected in 321 out of 506 collected samples by PCR with primers PAL1v1978B and PAR1c71H. In 2015-2016, 59 out of 99 samples collected in Hualien-Taitung areas were also found to have begomovirus sequences. Based on the analysis of 68 viral genomic sequences, six begomoviruses were identified, including LELCV, ToLCTV, TYLCTHV, tomato leaf curl Hsinchu virus (ToLCHsV) and two new begomoviruses, tentatively named tomato leaf curl Chiayi virus (ToLCCYV) and tomato leaf curl Nantou virus (ToLCNTV). Various isolates of LELCV and TYLCTHV were grouped into four and two strains, respectively. Recombinants were detected in LELCV-A, -C, and -D, ToLCCYV, ToLCNTV, and TYLCTHV-F. Based on virus specific detection, the majority of TYLCD-associated viruses were mixed-infected by TYLCTHV-B with either TYLCTHV-F, LELCV-A, -B, or -D, and/or ToLCTV. Meanwhile, viral DNA-B was mostly associated with TYLCTHV and all identified DNA-Bs were highly homologous with previous TYLCTHV DNA-B. The pathogenicity of selected begomoviruses was confirmed through agroinfection and whitefly transmission. All tomato plants carrying Ty-1/3 and Ty-2 resistant genes were infected by all LELCV strains and ToLCCYV, although they appeared symptomless, suggesting these viruses could be managed through the use of the resistance pyramid.

12.
Virology ; 594: 110040, 2024 06.
Article in English | MEDLINE | ID: mdl-38471198

ABSTRACT

A begomovirus isolated from whiteflies (Bemisia tabaci) and tomato, sweet potato in China was found to be representative of a distinct begomovirus species, for which the name tomato yellow leaf curl Chuxiong virus (TYLCCxV) is proposed. The results of genomic identification and sequence comparison showed that TYLCCxV shares the highest complete nucleotide sequence identity (88.3%) with croton yellow vein mosaic virus (CroYVMV), and may have originated from the recombination between synedrella leaf curl virus (SyLCV) and squash leaf curl Yunnan virus (SLCuYV). Agrobacterium-mediated inoculation showed that TYLCCxV is highly infectious for a range of plant species, producing upward leaf curling, leaf crumpling, chlorosis, distortion, and stunt symptoms in Solanum lycopersicum plants. The results of Southern blot indicated that TYLCCxV is capable of efficiently replicating two heterologous betasatellites. The inoculation of PVX::C4 on Nicotiana benthamiana induced upward leaf curling and stem elongation symptoms, suggesting that TYLCCxV C4 functions as a symptom determinant. TYLCCxV V2 is an important virulence factor that induces downward leaf curling symptoms, elicits systemic necrosis, and suppresses local and systemic GFP silencing in co-agroinfiltrated N. benthamiana and transgenic 16c plants. Considering the multifunctional virulence proteins V2 and C4, the possibility of TYLCCxV causing devastating epidemics on tomato in China is discussed.


Subject(s)
Begomovirus , Hemiptera , Solanum lycopersicum , Animals , RNA Interference , Begomovirus/genetics , Plant Diseases , China
13.
Virology ; 594: 110061, 2024 06.
Article in English | MEDLINE | ID: mdl-38518441

ABSTRACT

The occurrence of geminiviruses causes significant economic losses in many economically important crops. In this study, a novel geminivirus isolated from tobacco in Sichuan province of China, named tomato leaf curl Chuxiong virus (TLCCxV), was characterized by small RNA-based deep sequencing. The full-length of TLCCxV genome was determined to be 2744 nucleotides (nt) encoding six open reading frames. Phylogenetic and genome-wide pairwise identity analysis revealed that TLCCxV shared less than 91% identities with reported geminiviruses. A TLCCxV infectious clone was constructed and successfully infected Nicotiana benthamiana, N. tabacum, N. glutinosa, Solanum lycopersicum and Petunia hybrida plants. Furthermore, expression of the V2, C1 and C4 proteins through a potato virus X vector caused severe chlorosis or necrosis symptom in N. benthamiana. Taken together, we identified a new geminivirus in tobacco plants, and found that V2, C1 and C4 contribute to symptom development.


Subject(s)
Begomovirus , Geminiviridae , Geminiviridae/genetics , Nicotiana , Phylogeny , Virulence , Plant Diseases , Begomovirus/genetics , China
14.
Virus Evol ; 10(1): veae010, 2024.
Article in English | MEDLINE | ID: mdl-38384786

ABSTRACT

Single-stranded DNA multipartite viruses, which mostly consist of members of the genus Begomovirus, family Geminiviridae, and all members of the family Nanoviridae, partly resolve the cost of genomic integrity maintenance through two remarkable capacities. They are able to systemically infect a host even when their genomic segments are not together in the same host cell, and these segments can be separately transmitted by insect vectors from host to host. These capacities potentially allow such viruses to reassort at a much larger spatial scale, since reassortants could arise from parental genotypes that do not co-infect the same cell or even the same host. To assess the limitations affecting reassortment and their implications in genome integrity maintenance, the objective of this review is to identify putative molecular constraints influencing reassorted segments throughout the infection cycle and to confront expectations based on these constraints with empirical observations. Trans-replication of the reassorted segments emerges as the major constraint, while encapsidation, viral movement, and transmission compatibilities appear more permissive. Confronting the available molecular data and the resulting predictions on reassortments to field population surveys reveals notable discrepancies, particularly a surprising rarity of interspecific natural reassortments within the Nanoviridae family. These apparent discrepancies unveil important knowledge gaps in the biology of ssDNA multipartite viruses and call for further investigation on the role of reassortment in their biology.

15.
Plant Dis ; : PDIS07231346RE, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-37743589

ABSTRACT

Tobacco (Nicotiana tabacum) is an herbaceous crop. Cigar tobacco, a group of tobacco cultivars, has recently been planted in a few provinces in China. Since its introduction, symptoms such as leaf curling and vein thickening have appeared. Here we report a begomovirus, Sida yellow mosaic China virus-Hainan isolate (designated SiYMCNV-HN), associated with the betasatellite (designated SiYMCNB-HN) as the causal agent of a leaf curl disease in cigar tobacco (N. tabacum cv. Haiyan101) in Hainan Province, China. Phylogenetic and recombination analyses indicate that SiYMCNV-HN is an interspecies recombinant with a SiYMCNV isolate as the major parent and a Sida yellow vein Vietnam virus isolate as the minor parent. Full-length infectious clones of SiYMCNV-HN and SiYMCNB-HN were generated, which were highly infectious and induced high pathogenicity through agroinfiltration in Nicotiana benthamiana and N. tabacum. This newly reported recombinant begomovirus poses potential threats to tobacco plantations in the region.

16.
Phytopathology ; 114(1): 294-303, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37321561

ABSTRACT

The global dissemination of the Israel (IL) and mild (Mld) strains of tomato yellow leaf curl virus (TYLCV) (family Geminiviridae, genus Begomovirus) is a major threat to tomato production in many regions worldwide. The use of resistant hybrid cultivars bearing the dominant resistance genes Ty-1, Ty-3, and Ty-3a has become a common practice for controlling tomato yellow leaf curl disease (TYLCD) caused by TYLCV. However, TYLCD symptoms have been sporadically observed in resistant cultivars grown in seasons when temperatures are high. In this study, we used TYLCV-resistant cultivars with confirmed presence of Ty-1, which were determined using newly developed allele-specific markers based on polymorphisms within the locus. These Ty-1-bearing resistant tomato plants and susceptible plants were infected with TYLCV and grown at moderate or high temperatures. Under high-temperature conditions, the Ty-1-bearing tomato cultivar Momotaro Hope (MH) infected with TYLCV-IL had severe TYLCD symptoms, which were almost equivalent to those of the susceptible cultivar. However, MH plants infected with TYLCV-Mld were symptomless or had slight symptoms under the same temperature condition. The quantitative analysis of the TYLCV-IL viral DNA content revealed a correlation between symptom development and viral DNA accumulation. Furthermore, under high-temperature conditions, TYLCV-IL caused severe symptoms in multiple commercial tomato cultivars with different genetic backgrounds. Our study provided the scientific evidence for the experientially known phenomenon by tomato growers, and it is anticipated that global warming, associated with climate change, could potentially disrupt the management of TYLCV in tomato plants mediated by the Ty-1 gene.


Subject(s)
Begomovirus , Solanum lycopersicum , Solanum lycopersicum/genetics , Begomovirus/genetics , Temperature , DNA, Viral , Plant Diseases
17.
3 Biotech ; 14(1): 8, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38074288

ABSTRACT

While conducting field trial of 82 genotypes of bottle gourd at Delhi during 2020-2021, a particular genotype, IC-0262269 was found to be affected by chlorotic curly stunt disease (CCSD). The affected plants were severely stunted and bearing very small chlorotic and crinkle leaves. The disease incidence in the said genotype was as high as 80% among different replicated trial blocks. The application of PCR using a generic primers specific to begomoviruses, as well as species-specific PCR diagnostics to six tomato-infecting begomoviruses: tomato leaf curl New Delhi virus (ToLCNDV), tomato leaf curl Palampur virus (ToLCPalV), tomato leaf curl Joydebpur virus (ToLCJoV), tomato leaf curl Gujrat virus (ToLCGuV), tomato leaf curl Bangalore virus (ToLCBV), and chilli leaf curl virus (ChiLCV) showed that, only ToLCPalV could be detected in the genotype IC-0262269. Following, rolling circle amplification, cloning and sequencing of full-length DNA-A and DNA-B genome of an isolate BoG1-ND from the genotype IC-0262269 revealed association of ToLCPalV with the disease. The successful agro-infection of the cloned genome of BoG1-ND (DNA-A and DNA-B) in the plants of Nicotiana benthamiana and bottle gourd demonstrated that ToLCPalV is the causal begomovirus of CCSD. The study provides the first evidence of the natural occurrence of ToLCPalV in bottle gourd crop and also showed that the bottle gourd genotype IC-0262269 is super-susceptible to ToLCPalV. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03838-y.

18.
Viruses ; 15(12)2023 11 30.
Article in English | MEDLINE | ID: mdl-38140599

ABSTRACT

Pedilanthus leaf curl virus (PeLCV) is a monopartite begomovirus (family Geminiviridae) discovered just a few decades ago. Since then, it has become a widely encountered virus, with reports from ca. 25 plant species across Pakistan and India, indicative of its notable evolutionary success. Viruses mutate at such a swift rate that their ecological and evolutionary behaviors are inextricably linked, and all of these behaviors are imprinted on their genomes as genetic diversity. So, all these imprints can be mapped by computational methods. This study was designed to map the sequence variation dynamics, genetic heterogeneity, regional diversity, phylogeny, and recombination events imprinted on the PeLCV genome. Phylogenetic and network analysis grouped the full-length genome sequences of 52 PeLCV isolates into 7 major clades, displaying some regional delineation but lacking host-specific demarcation. The progenitor of PeLCV was found to have originated in Multan, Pakistan, in 1977, from where it spread concurrently to India and various regions of Pakistan. A high proportion of recombination events, distributed unevenly throughout the genome and involving both inter- and intraspecies recombinants, were inferred. The findings of this study highlight that the PeLCV population is expanding under a high degree of genetic diversity (π = 0.073%), a high rate of mean nucleotide substitution (1.54 × 10-3), demographic selection, and a high rate of recombination. This sets PeLCV apart as a distinctive begomovirus among other begomoviruses. These factors could further exacerbate the PeLCV divergence and adaptation to new hosts. The insights of this study that pinpoint the emergence of PeLCV are outlined.


Subject(s)
Begomovirus , Geminiviridae , Phylogeny , Plant Diseases , Geminiviridae/genetics , Genetic Variation , DNA, Viral/genetics , Sequence Analysis, DNA
19.
Front Plant Sci ; 14: 1250105, 2023.
Article in English | MEDLINE | ID: mdl-37915512

ABSTRACT

Cassava is a major crop in Sub-Saharan Africa, where it is grown primarily by smallholder farmers. Cassava production is constrained by Cassava mosaic disease (CMD), which is caused by a complex of cassava mosaic begomoviruses (CMBs). A previous study showed that SEGS-1 (sequences enhancing geminivirus symptoms), which occurs in the cassava genome and as episomes during viral infection, enhances CMD symptoms and breaks resistance in cassava. We report here that SEGS-1 also increases viral disease severity in Arabidopsis thaliana plants that are co-inoculated with African cassava mosaic virus (ACMV) and SEGS-1 sequences. Viral disease was also enhanced in Arabidopsis plants carrying a SEGS-1 transgene when inoculated with ACMV alone. Unlike cassava, no SEGS-1 episomal DNA was detected in the transgenic Arabidopsis plants during ACMV infection. Studies using Nicotiana tabacum suspension cells showed that co-transfection of SEGS-1 sequences with an ACMV replicon increases viral DNA accumulation in the absence of viral movement. Together, these results demonstrated that SEGS-1 can function in a heterologous host to increase disease severity. Moreover, SEGS-1 is active in a host genomic context, indicating that SEGS-1 episomes are not required for disease enhancement.

20.
Curr Genomics ; 24(1): 2-17, 2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37920727

ABSTRACT

Papaya leaf curl disease (PaLCD) was primarily detected in India and causes major economic damage to agriculture crops grown globally, seriously threatening food security. Begomoviruses are communicated by the vector Bemisia tabaci, and their transmission efficiency and persistence in the vector are the highest, exhibiting the widest host range due to adaptation and evolution. Symptoms induced during PaLCD include leaf curl, leaf yellowing, interveinal chlorosis, and reduced fruit quality and yield. Consequently, plants have evolved several multi-layered defense mechanisms to resist Begomovirus infection and distribution. Subsequently, Begomovirus genomes organise circular ssDNA of size ~2.5-2.7 kb of overlapping viral transcripts and carry six-seven ORFs encoding multifunctional proteins, which are precisely evolved by the viruses to maintain the genome-constraint and develop complex but integrated interactions with a variety of host components to expand and facilitate successful infection cycles, i.e., suppression of host defense strategies. Geographical distribution is continuing to increase due to the advent and evolution of new Begomoviruses, and sweep to new regions is a future scenario. This review summarizes the current information on the biological functions of papaya-infecting Begomoviruses and their encoded proteins in transmission through vectors and modulating host-mediated responses, which may improve our understanding of how to challenge these significant plant viruses by revealing new information on the development of antiviral approaches against Begomoviruses associated with PaLCD.

SELECTION OF CITATIONS
SEARCH DETAIL